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Abstract: In recent years, a number of different procedures have been proposed for segmentation
of remote sensing images, basing on spectral information. Model-based and machine learning
strategies have been investigated in several studies. This work presents a comprehensive overview
and an unbiased comparison of the most adopted segmentation strategies: Support Vector Machines
(SVM), Random Forests, Neural networks, Sen2Cor, FMask and MAJA. We used a training set for
learning and two different independent sets for testing. The comparison accounted for 135 images
acquired from 54 different worldwide sites. We observed that machine learning segmentations are
extremely reliable when the training and test are homogeneous. SVM performed slightly better
than other methods. In particular, when using heterogeneous test data, SVM remained the most
accurate segmentation method while state-of-the-art model-based methods such as MAJA and FMask
obtained better sensitivity and precision, respectively. Therefore, even if each method has its specific
advantages and drawbacks, SVM resulted in a competitive option for remote sensing applications.
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1. Introduction

Accurate land cover classification of multispectral remote sensing images is of paramount
importance to fully exploit their informative content. The correct detection of clouds, shadows,
snow or ice, is critical for many activities such as image compositing [1], correction for atmosphere
effects [2,3], calculation of vegetation indices [4], classification of land cover [5] and change detection [6].
In recent years, different strategies have been proposed especially for cloud segmentation. In particular,
two different strategies can be distinguished [7]: (i) model-based approaches, in this case pixels are
assigned to a specific category by evaluating the available reflectances and using an a priori physical
model to determine proper thresholds; (ii) learning approaches, these strategies exploit supervised
algorithms to learn statistical models able to maximize the separation of pixels belonging to different
classes and minimize classification errors.

Model-based approaches use specific physical constraints to separate different classes according
to spectral bands; these constraints are usually formalized by proper combining the bands in
suitable indicators and thresholds, which assign an image pixel or polygon to a class [2,8,9].
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Accordingly, the implementation of model-based methods is computationally efficient and makes
them particularly suitable for large scale satellite applications. However, especially when relying on
hand-crafted features or empirical and study-specific thresholds, these methods may present some
issues in segmenting particular classes such as low clouds and bright deserts [10,11]. A possible
solution is considering models that include information from multiple time observations, namely
multi-temporal approaches [12]; they exploit the information of several time points to approach cloud
segmentation as a novelty detection problem. Of course, this solution requires increased computational
requirements for both processing time and storage [12,13].

More recently, alternative strategies exploiting machine learning and deep learning have been
proposed [14–18]. Learning strategies provide excellent segmentations for many applications such as
the separation of clear-sky pixels from cloudy ones. This task is particularly challenging when relying
only on spectral features [19], a possible reason being the difficulty in detecting thin clouds, which
share a spectral signature similar to that of the underneath surface [5].

It is worth noting that in some cases machine learning can be computationally demanding and
can require large training sets. However, the increasing availability of low-cost and high-performance
computational infrastructures and the possibility for researchers to easily access different image
databases has eased their adoption.

In this work we intend to investigate advantages and drawbacks of both approaches by comparing
their segmentation performance using several metrics and data. Recently, a first study compared one
learning method, based on boosting, with three model-based approaches on a dataset of Amazon
forest images [20]. Here, we consider a larger and more heterogeneous dataset, including images from
all over the world, and extend the comparison to six different methods.

The unbiased evaluation of segmentation algorithms is particularly compelling in medical
applications, this is why in recent years many efforts have been devoted to the organization of “challenges”
where different algorithms are trained on a common set and evaluated on an independent test set [21,22].
Accordingly, in this work we use three publicly available datasets of Sentinel-2 L1C images: a first dataset
was used for training of machine learning methods; a second homogeneous dataset, characterized by the
same segmentation protocols and similar geographical distribution, was used for validation and a first
comparison with model-based segmentations; finally, a completely independent dataset was used as to
evaluate segmentation performance when considering heterogeneous data.

2. Sentinel-2 Data

The Sentinel-2 mission provides multispectral observations with a spatial resolution up to 10 m
and systematic global coverage of the Earth’s land surface. In particular, these data contain information
from 13 different bands Bx, where x is a code identifying a band that captures specific land properties
(see Table 1).

Table 1. Sentinel-2 MSI spatial resolution, central wavelength and bandwidth.

Sentinel-2 Bands Spatial Resolution (m) Central Wavelength (nm) Bandwidth (nm)

B1 – Coastal aerosol 60 442.7 21
B2 – Blue 10 492.4 66

B3 – Green 10 559.8 36
B4 – Red 10 664.6 31

B5 – Vegetation Red Edge 20 704.1 15
B6 – Vegetation Red Edge 20 740.5 15
B7 – Vegetation Red Edge 20 782.8 20

B8 – NIR 10 832.8 106
B8a – Narrow NIR 20 864.7 21
B9 – Water vapour 60 945.1 20
B10 – SWIR Cirrus 60 1373.5 31

B11 – SWIR 20 1613.7 91
B12 – SWIR 20 2202.4 175
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Their central wavelength ranges from 442.7 nm for B1 to 2202.4 nm for B12. B1 is coastal aerosol,
useful for imaging of shallow waters; B2, B3 and B4 are the blue, green and red bands, respectively;
B5, B6 and B7 are useful for vegetation; B8 and B8a are near infrared bands, suitable to measure plant
health; B9 is water vapour band; B10, B11 and B12 are shortwave infrared (SWIR) bands, particularly
useful for cirrus detection. Sentinel-2 data are available to users under a free and open data policy,
which underpins the development of long-term, sustainable Earth Observation (EO) applications.

In this work we used three publicly available data sets of manually labelled Sentinel-2 scenes, the
distribution of which is shown in Figure 1. We used the first set for training and tuning of machine
learning models (Support Vector Machines, Random Forests and Neural Networks), the second and the
third one for test and comparison on homogeneous and inhomogeneous data with the state-of-the-art
model-based segmentations (Sen2Cor, FMask and MAJA). Further details about the segmentation
methods will be provided in the next section.

The first dataset D1 consists of about 3.8 million labelled pixels from 67 scenes and 26 different
sites; according to the original works [23,24], pixels belong to six different classes:

• Water;
• Snow;
• Clouds;
• Cirrus;
• Clear sky;
• Shadows.

This dataset was selected to ensure a global geographical distribution and, therefore, a wide scene
variability. This variability is highlighted in Figure 1.

Figure 1. Global distribution of Sentinel-2 scenes included in the data sets used in this work.

The second set D2 consists of about 2.7 million labelled pixels from 39 scenes and 18 sites. This set
has been collected by the same authors of [23,24] and it is labelled according to the same labels
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of D1. The homogeneity of this data provides an excellent way to test the reliability of machine
learning methods.

Finally, the third set D3 consists of about 100 million labelled pixels from 29 scenes [25,26]
captured in 10 different sites. This set was used to test the generalization power of the machine
learning methodologies across a non homogeneous set of images collected with different modalities
and in different sites. D3 includes the following classes:

• Low cloud;
• High cloud;
• Cloud shadow;
• Land;
• Water;
• Snow.

As we are interested in detecting clouds, we regrouped them into clear sky and clouds. A synthetic
overview about D1, D2 and D3 is provided in Table 2.

Table 2. Overview of the data used in this work: D1 training, D2 homogeneous test, D3 inhomogeneous test.

Dataset # Pixels # Images # Sites Cloud Fraction Spatial Resolution

D1 3.87 × 106 67 26 28% 20 m
D2 2.73 × 106 39 18 30% 20 m
D3 8.24 × 107 29 10 25% 60 m

Although Sentinel-2 cirrus band B10, centred at 1.38 µm, was designed to detect high clouds, the
only light reflected in this band comes from altitudes above 1000–2000 m [27]. Thus, in order to avoid
misclassification of high altitude bright rocks, GTOPO30 digital elevation models were included in
our analyses [28].

3. Model-Based Segmentation

Model-based methodologies consist of a series of constraints based on physical models and
phenomenological observations. These constraints provide ranges and thresholds for reflectances and
their ratios, which can be used to assign the image pixels to different classes [29]. Among several
possibilities, we present here the evaluation and the comparison of the most adopted and accurate,
according to recent literature, model-based segmentation algorithms: Sen2Cor [30], FMask [9]
and MAJA [12].

3.1. Sen2Cor

Sen2Cor is mainly based on four different steps:

1. Bright pixels are detected with the red band (B4), as this band tends to be highly sensitive to
bright pixels, likely containing snow or clouds;

2. Snow and cloudy pixels can be distinguished by considering the Normalized Difference Snow
Index (NDSI):

NDSI =
B3− B11
B3 + B11

(1)

furthermore, ancillary information (e.g., latitude, near infrared reflectances) can be used;
3. Vegetation pixels can be detected with the Normalized Difference Vegetation Index (NDVI):

NDVI =
B8− B4
B8 + B4

(2)

furthermore, a reflectance ratio of B8 and B3 is used for senescent vegetation;
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4. Soils and waters are mainly recognized using the blue band (B2) and the soil band (B11).

Using a combination of thresholds and ratios, Sen2Cor can provide a detailed scene classification,
accounting for several categories.

3.2. FMask

FMask was initially developed for Landsat 5 and Landsat 7 data, but later it was also used with
Landsat 8 and Sentinel-2 images [9,31]. FMask first assigns some pixels to clouds and their shadows
based on thresholds analogously to what happens in Sen2Cor. Then, pixel-based statistics are used
to compute a cloud probability map pcloud for the undecided cases; in these cases, a pixel k is then
classified as cloud if:

pcloud(k) > 82.5 percentile(pcloud) + 0.2 (3)

Thus, FMask dynamically determines a data-driven threshold and, in this sense, it can be
considered a statistical extension of Sen2Cor. Furthermore, FMask includes other information related
to cloud displacement, spectral context and auxiliary features like digital elevation model and global
water map [32,33].

3.3. MAJA

MAJA is a recursive algorithm specifically developed for cloud detection in FORMOSAT and
Landsat images, then extended to Sentinel-2 images [12]. It is a multitemporal and recursive algorithm
because it requires a chronologically ordered time series of images for training. Firstly, a monotemporal
analysis is performed to distinguish high and low clouds. In particular, a pixel is assigned to the high
cloud class if:

B10∗ > 0.07 + 0.07× h2 (4)

where h denotes the pixel altitude (Km) above the sea level and B10∗ is the B10 pixel reflectance
corrected for Rayleigh scattering. Pixels are assigned to the low cloud class if all the following
constraints are satisfied: 

B2∗ > 0.22

B4∗ > 0.15

B8∗ > 0.8× B4∗

B8∗ < 2× B4∗

B8∗ > B11∗

(5)

Accordingly, a first cloud mask is obtained. This segmentation is then refined including information
from a time series. In the end, an analysis of spatial correlations yields the final segmentation [34].

4. Learning-Based Segmentation

In this work, we considered three different learning-based segmentation approaches: Random
Forest (RF), Support Vector Machines (SVM) and Multilayer Perceptrons (MLP).

4.1. Random Forest

Random Forest (RF) is an ensemble learning classifier [35] conceptually based on classification
trees. The basic idea behind RF is growing an ensemble of classification trees with each tree being
trained using a bootstrap sample from the available data; to avoid biased estimates, one third of
available examples is left out of and used for the so called out-of-bag error estimation.

When growing a tree, at each node the optimal split is determined using
√

M randomly sampled
features (if M features are available). It is demonstrated that the classification error depends on two
factors: the correlation among the forest trees and the individual strength of each tree. These factors
are essentially controlled by the number of trees used to grow the forest and the number of features
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sampled at each split; the optimal tuning of these two parameters usually yields accurate and robust
predictions. RF has shown its effectiveness in several remote sensing applications [36,37].

In this study, RF was implemented using the randomForest (v.4.6 − 14) R 3.6.1 package [38].
Using the training set D1 we investigated the optimal values for the number of trees and the number
of variables used at each node split. The number of tree parameter was set equal to 100; in fact, over
this value, no further performance increase was observed. For what concerns the number of features,
the default value equal to the square root of the number of the available features was used.

4.2. Support Vector Machine

Support Vector Machine (SVM) is a learning algorithm [39] in which the essential idea is that the
separation of two classes in the feature space is analogous to the definition of a suitable hyperplane,
at least for linearly separable variables. Geometrically determining a separation hyperplane is
equivalent to determining a number of observations, called support vectors, best representing the
classes of the problem. A margin parameter determines how well observations are separated as well
as the number of support vectors needed by the model. SVM can be proficiently used even with
non-linearly separable observations, provided the existence of a higher dimensional space where
linear separation can be achieved with a suitable transformation or kernel function. As infinite choices
can be adopted, one of the most important SVM parameters to tune is the optimal kernel; of course
many kernel functions can be explored, but to keep the computational burden affordable, a particular
constraint is often adopted, i.e., that distances in the new feature space depend only on the original
features. A detailed review of SVM and its efficiency in remote sensing can be found in [40].

The main SVM parameters explored in this work were the margin C and the kernel. In particular, a
radial kernel was finally adopted, thus requiring the search for the optimal γ parameter. For the radial
kernel, γ determines the influence range of training observations, the greater the γ value, the lesser
that range. Accordingly, models with large γ values tend to overfit, and models with small values tend
to underfit. In this study, the e1071 (v.1.7− 3) R package was used [41]. SVM hyperparameters were
optimized using a uniform grid algorithm; we preferred this solution given the exiguous number of
parameters to tune. We used our training data for cross-validated estimations of accuracy and used this
metric to choose the best configuration. In particular, the explored grid consisted of C ranging from
0.5 and 10 (step 0.5) and gamma ranging from 0.03 to 0.6 (step 0.03). More extreme values were not
taken into account as we observed a consistent accuracy worsening. We observed that the performance
remained stable over a wide range of values; however, we found that a slight increase in segmentation
accuracy can be obtained by choosing the configuration C = 9 and γ = 0.18.

4.3. Artificial Neural Networks

Our last baseline method attempts to perform pixel-level classification using a Multilayered
Perceptron (MLP) with a fully connected architecture. MLPs are composed by three basic structures:
an input layer fed by the features, hidden inner layers combining the output vectors of previous layers
with linear combinations and a final output layer, which yields the classification result. MLPs can
generally be distinguished in shallow and deep neural networks according to the depth of the hidden
layers, accordingly including this model allowed us the exploration of a deep learning architecture.

With the adopted architecture, every node of a given layer receives a weighted average of the
outputs of the previous one; given its specific weight, that node will propagate the obtained information
to the next layer where a new weighted average is calculated; this procedure ends with the final layer
where all information is collected and summarized in a vector score (with a number of components
equal to the number of desired classes). During the training phase, a backpropagation algorithm [42–44]
measures the classification error according to the given nodal weights and rearranges the weights in
order to minimize the error. In this study, the h2o package R implementation (v.3.28.0.4) of MLP was
used [45]. As MLPs are characterized by the use of several hyper-parameters, the best configuration
was obtained by means of a random grid [46] and resulted in a 14-20-20-2 architecture, without any
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regularization and dropout and Rectified Linear Unit (ReLu) activation functions. This model was
chosen with a random grid search and using cross-validation accuracy to minimize overfitting risk
and determine the optimal configuration. It is worth noting that several deep architectures were also
tested, but a shallow one yielded the best results.

5. Post Processing and Segmentation Evaluation

All the segmentations compared in this study underwent an image post-processing based on
morphological filtering. Different filters can be investigated, depending on the specific properties of
the analyzed data. The most important are erosion and dilation filters. The former being preferred to
reduce segmentations (excess of false positives), the latter to enlarge them (excess of false negatives).

Several studies [11,25] have demonstrated the appropriate filtering in this kind of application is
dilation. At least two distinct arguments support this choice:

• Cloud edges are so thin that their pixels remain undetected more frequently than inner ones, thus
resulting in large numbers of false negatives;

• Clouds scatter light to their neighbourhood pixels thus resulting in blurred edges in which the
pixels are hardly recognized as clouds.

Because of these considerations, we decided to dilate the obtained cloud masks with a 180 × 180 m
square kernel window in order to avoid the under detection of cloud contaminated pixels [25]. These
images were then used for classification and segmentation purposes.

Computational requirements for training machine learning algorithms can be extremely
demanding, especially when dealing with high-cardinality data as satellite images. In this case,
millions of examples are available, but the adoption of sampling strategies can suitably yield a faithful
representation of the whole feature space. Accordingly, we investigated to which extent it was possible
to use random sampling in order to reduce the computational burden without a significant loss
in performance.

Performance evaluation was assessed with several metrics and a five-fold cross-validation
procedure. A rigorous application of cross-validation is important for unbiased estimations of machine
learning accuracy [47]. This can be particularly true for remote sensing images in which pixels and
polygons have strong spatial correlation: for example, let us suppose that two adjacent pixels are used
for training and test, respectively. In principle, learning a model using the first pixel and evaluating
the model performance on the second would be correct; however, this would lead to overestimating
the performance as the two examples are often indistinguishable. Some studies have performed
cross-validation over pixels [23], but we preferred here to perform cross-validation over the available
images, a choice which is also more adherent to practical purposes. Cross-validation was repeated 100
times. The adopted metrics were accuracy (Acc), sensitivity (Sens), precision (Prec), specificity (Spec)
and F1 according to the following definitions:

Acc =
TP + TN

TP + TN + FP + FN
(6)

Sens =
TP

TP + FN
(7)

Prec =
TP

TP + FP
(8)

Spec =
TN

TN + FP
(9)

F1 =
2 · Sens · Prec
Sens + Prec

(10)
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where TP, TN, FP and FN are the number of true positives, true negatives, false positives and false
negatives, respectively. We considered as positive pixels those ones belonging to the cloud class.

Accuracy is the ratio between the correctly classified pixels and all the pixels of a single scene.
Sensitivity and specificity are the portion of correctly classified examples of the positive and negative
classes, respectively. Precision is the ratio of positive examples correctly classified within the positive
predictions. Finally, F1 is the harmonic mean of sensitivity and precision. Some studies present their
results in terms of accuracy, sensitivity and specificity; others prefer F1 and precision. Here, we chose
to present all of them to ease the comparison with already published studies.

6. Results

6.1. Cross-Validation Assessment of Learning Methods on D1

To compare machine learning algorithms with the state-of-the-art cloud detection techniques,
we trained RF, SVM and MLP classifiers on the dataset D1 and assessed their robustness. An overview
is presented in Figure 2.

Figure 2. Performance estimation in terms of each metric, on cross validation, of Multilayer Perceptrons
(MLP), Random Forest (RF) and Support Vector Machines (SVM) trained with 105 randomly sampled
pixel for cloud detection task.

SVM achieved the highest cross-validation performance in terms of all proposed metrics except
sensitivity, in the latter case, MLP obtained the best result. The numeric values are reported to ease
comparison in Table 3.

Table 3. The median and 95% confidence intervals for all adopted metrics are reported to compare
different learning methods. In bold, we reported the higher values for each metric.

Metric (%) Acc F1 Sens Prec Spec

SVM 97.9 (91.4,99.6) 95.8 (85.5,99.1) 95.4 (85.8,99.8) 97.9 (77.2,99.9) 99.4 (88.7,99.9)
RF 97.5 (93.5,99.3) 95.4 (86.4,98.8) 94.7 (88.7,99.7) 97.9 (80.6,99.9) 99.4 (92.7,100.0)

MLP 97.0 (91.9,99.7) 94.3 (85.5,99.4) 97.9 (78.2,100.0) 94.6 (79.7,99.9) 97.7 (93.9,99.9)

We assessed the statistical difference of cross-validation distributions by means of a
Mann–Whitney U test [48], and found that MLP performs significantly better (5%) in terms of sensitivity
than RF and SVM. Both SVM and RF perform significantly better (5%) than MLP in terms of precision
and specificity. SVM obtains the best better performance in terms of accuracy and F1. Moreover, we
assessed the statistical difference of the variances for the performance distributions by means of a
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Levene Test [49]. The only significant differences we found were for the accuracy distribution of RF and
the sensitivity distribution of MLP. In conclusion, RF would seem a slightly more robust segmentation
method while SVM is more accurate; accordingly, for the following investigations we considered only
SVM.

6.2. How Sample Size and Heterogeneity Affect Performance

Firstly, we evaluated how training set size affected classification performance. The aim of
this analysis was twofold: on the one hand, understanding whether or not it is possible to use a
reduced training set size to accurately distinguish clouds form clear sky pixels; on the other hand,
reducing the computational burden of learning processes. Then, we investigated how the availability
of heterogeneous data affects the learning process. Using a fixed number of training examples,
we sampled them from a varying number of images. The SVM results are presented in Figure 3,
a similar behaviour was also observed for RF and MLP.

Figure 3. (a) Accuracy of the SVM classifier increases with the number of training examples: after
104 pixels are provided no significant improvement is registered. (b) The effect of heterogeneity on
performance: despite the equal number of training examples (104), only after 50% of images are used,
the performance reaches stable values.

Left panel (a) shows how SVM performance reaches a plateau after 104 training pixels are provided
for learning. As 104 pixels is a sufficient number of training examples to reach accurate classification,
the following analyses are performed using this value. Right panel (b) shows how the number of
different images affect the classification performance. In this way we evaluated the heterogeneity of
D1 images. We varied the number of images used for training from 10% to 90% of the whole training
set. Once reached 80% of training images, the mean and the variance of SVM accuracy are statistically
indistinguishable. For the mean, we used the Mann–Whitney U test, and for variance, a Levene Test
[49].

6.3. Segmentation Reliability on the Independent Test Set D2

We evaluated the reliability of SVM segmentation on an independent test set D2, which is
homogeneous with D1. Furthermore, we compared our results with state-of-the-art threshold-based
methods: Sen2Cor and FMask. It was not possible to evaluate MAJA on D2 as it requires a temporal
series of images that for the present case were not available. Specifically, we trained SVM on D1 pixels
and we evaluated its segmentation performance on D2. Results are shown in Figure 4.
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Figure 4. Performance comparison of FMask, Sen2Cor and SVM.

SVM achieved a similar performance to the one obtained on D1, thus confirming the robustness
of its segmentations. A complete overview of the comparison is presented in Table 4.

Table 4. The median and 95% confidence intervals for all adopted metrics are reported for all the
compared methods. MAJA was excluded from this comparison as the longitudinal series of images
needed for its training are not available. Best results are in bold.

Metric (%) Acc F1 Sens Prec Spec

SVM 97.7 (78.4,100.0) 93.6 (71.6,100.0) 99.7 (61.8,100.0) 96.6 (56.5,100.0) 98.4 (83.2,100.0)
Sen2Cor 96.4 (43.9,100.0) 93.2 (19.4,99.6) 97.8 (21.1,100.0) 96.1 (13.7,100.0) 97.8 (33.8,100.0)
FMask 98.2 (24.9,100.0) 95.3 (5.6,100.0) 99.9 (3.1,100.0) 93.5 (15.4,100.0) 98.6 (35.8,100.0)

SVM segmentations significantly (5%) resulted in the best ones in terms of precision and specificity
according to a paired Wilcoxon test [50]. For what concerns accuracy, F1 and sensitivity FMask
performed slightly better than other methods. However, these differences were not statistically
significant. Finally, FMask and Sen2Cor performance distributions resulted as less sharp than the SVM
one (5% significance), according to the Levene Test.

6.4. Generalization Power on D3

Another independent test set D3 was used to evaluate the generalization power of SVM on a set
inhomogeneous with the training one. In order to accomplish such task, we trained SVM on pixels
from D1 and D2 and evaluated its performance on D3. Figure 5 shows a comparison of the distribution
of the classification metrics computed over the 29 scenes of the D3 dataset.

A comprehensive overview of all performance metrics is reported in Table 5.

Table 5. The comparison of segmentation performance on the D3 dataset according to different metrics.
In bold, we reported the higher values for each validation metric.

Metric (%) Acc F1 Sens Prec Spec

SVM 94.7 (69.1,99.6) 84.5 (47.5,96.2) 88.2 (32.6,99.3) 89.3 (33.2,99.8) 99.0 (66.3,100.0)
FMask 94.0 (76.1,99.8) 80.3 (23.5,93.8) 70.9 (18.7,96.0) 98.0 (38.2,100.0) 99.5 (92.8,100.0)
MAJA 91.5 (71.1,98.3) 75.7 (30.4,94.7) 95.3(70.4,99.8) 67.6 (18.2,98.8) 94.6 (31.1,99.6)

Sen2Cor 90.4 (71.3,99.5) 72.1 (11.2,91.3) 63.8 (14.4,98.7) 97.2 (29.8,100.0) 99.4 (79.6,100.0)
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Figure 5. Performance estimation, on the independent test set, of FMask, MAJA, Sen2Cor and SVM in
terms of each classification metric. The classification metrics are evaluated over the 29 scenes of D3.

SVM significantly (5%) resulted in the best performing method in terms of accuracy and F1
according to a paired Wilcoxon test. Conversely, FMask is significantly more accurate than Sen2Cor
while no significant difference in terms of accuracy can be assessed between MAJA and FMask.
Furthermore, SVM is the most balanced segmentation strategy as it can be observed in terms of the
95% confidence intervals; this difference is statistically significant according to the Levene test. MAJA
is significantly (5%) the best segmentation method in terms of sensitivity, followed by SVM. FMask is
the second method in terms of F1, it has high specificity but a significant lower sensitivity compared to
MAJA and SVM. Finally, Sen2Cor is the least accurate in terms of accuracy and F1, but with remarkable
precision and specificity, where it scored as the second. A visual assessment of these results is shown
in Figure 6.
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Figure 6. The top left image shows the RGB image from Gobabeb, Namibia, on 9 September 2017.
The three other images show the comparison of each procedure (as default) to the reference mask
(top-right, SVM, bottom-left, FMask, and bottom-right, MAJA). Green colour corresponds to true
positive, red colour to false negative, and yellow to false positive.

SVM provides a balanced segmentation between false negative and false positive errors.
FMask and MAJA segmentations tend to prefer false negatives and false positives, respectively;
Sen2Cor was not considered here as its segmentations tend to be similar to those obtained by FMask.

7. Discussion

This study proposed a comparison of machine learning and threshold-based techniques for cloud
detection and segmentation in Sentinel-2 L1C images. In order to enable an unbiased performance
comparison, we first built and validated supervised learning models, namely SVM, RF and MLP,
with a cross-validation procedure on a training set D1. Machine learning strategies achieve extremely
accurate performances, despite the exiguous number of features used; in this work we used only the
13 spectral band intensities and the GTOPO30 digital elevation feature. Although all machine learning
strategies were accurate, SVM performed slightly better than the other classifiers in almost all metrics;
MLP was the most sensitive method and RF the one with less variance.

For what concerns MLP, it is worth noting that we explored several deep neural network
configurations, but a shallow one resulted in the best performing. This is particularly striking compared
with the RF performance; it is reasonable to conclude that when dealing with pixel-based approaches,
deep learning cannot exploit their full potential as they certainly do in other situations and with
other approaches, for example when considering Convolutional Neural Networks (CNN) [51,52]. To
this purpose, it should also be noted that CNN algorithms cannot be suitably applied to whatever
data format; in particular, in this study we used images with labelled polygons of varying size and
shape, a typical situation in remote sensing imagery, thus it is not possible to adopt ready-to-use
CNN solutions, and specific solutions and customizations would be required. In this sense, standard
learning algorithms, which simply require labelled pixels as the base of knowledge, represent an
efficient, user-friendly and therefore still valuable solution for several engineering purposes [53,54].

Furthermore, we evaluated how, despite the increasing size of the training set for remote sensing
applications, machine learning strategies remain an efficient tool for segmentation as they require
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relatively small-size training sets. According to our experiments, 104 pixels collected from ∼20 scenes
provide a sufficiently accurate classification. This analysis confirmed the robustness of machine
learning strategies, in fact for all the classifiers showed a common behaviour.

Typically, a Sentinel-2 acquisition covers a swath of 298 km roughly corresponding to three
distinct but adjacent images. Of course, these images are strongly correlated, thus to avoid results
biased by spatial correlations we always kept adjacent tiles within the same cross-validation fold.
Previous works in remote sensing and other fields have outlined the danger of double dipping in
machine learning [47,55], especially for generalization purposes. As demonstrated elsewhere [21,56],
generalization remains the most difficult challenge to tackle for learning algorithms. Accordingly, we
evaluated the performance of our best machine learning strategy on an independent test set and
compared it with model-based segmentations.

A first evaluation was performed using the independent test set D2, which was labelled by the
same experts of D1; we observed that SVM substantially reproduced the performances observed
on D1. These findings remark that when training and validation data are homogeneous (e.g., same
geographical regions and same segmentation protocols) learning strategies like SVM can provide
reliable segmentations. SVM achieved comparable performance with the state-of-the-art methodologies
Sen2Cor and FMask. Notably, SVM segmentations were significantly more accurate in terms of
precision and specificity. Furthermore, we observed that SVM segmentations were statistically less
prone to drastic failures, thus yielding performance distributions affected by less variability, an effect
demonstrated by a Levene test. This result can represent a particularly interesting feature, as it suggests
that in some cases learning-based approaches are more robust.

A second evaluation was performed using the test set D3, which for its characteristics could
be considered not homogeneous with D1. SVM remained the best performing method in terms of
accuracy (94.7%) and F1 (84.5%). Although homogeneity of training and test data is a primary issue for
machine learning accuracy [57,58], the only statistically significant drop in performance we observed
were ∼4% in accuracy and ∼10% in F1. MAJA was able to provide segmentations more accurate than
SVM and other methods in a few cases. An example is shown in Figure 7.
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Figure 7. The top left image shows the RGB image from Railroad Valley, Nevada on 1 May 2017.
The three other images show the comparison of each procedure (as default) to the reference mask
(top-right, SVM, bottom-left, FMask, and bottom-right, MAJA). Green colour corresponds to true
positive, red colour to false negative, and yellow to false positive.

As can be seen, MAJA gets the most accurate cloud classification on a barren area. In these regions,
characterized by high reflectance, the multi-temporal base of knowledge allows a correct classification
of bright surfaces, which otherwise could be classified as clouds [10,11,59].

In general, MAJA resulted in the most sensitive (95.3%) method and FMask resulted in the most
precise (98.0%) and specific (99.5%); however, it is worth noting that according to specificity the
difference with Sen2Cor is negligible (99.4%). These findings should be taken into consideration as
the main purpose of cloud detection is avoiding false positives, especially for change detection or
land cover applications [23,25,60,61]. Nevertheless, learning strategies and specifically SVM seem to
provide more balanced classifications, which can achieve better results, especially in terms of metrics
evaluating the overall performance as accuracy and F1.

8. Conclusions

In this work, we developed a pixel-based classification procedure based on machine learning
techniques for cloud detection in Sentinel-2 data. We evaluated different supervised models: RF,
SVM and MLP. Our analyses demonstrated that, among learning models, SVM is the best option. In
addition, we compared SVM with state-of-the-art model-based methodologies such as MAJA, FMask
and Sen2Cor. We evaluated how data homogeneity affects the segmentations using two independent
test sets, the first one collected and segmented with the same procedures of our training set and the
second characterized by a deep heterogeneity. In both cases, SVM was the best performing method
in terms of accuracy and F1. Nonetheless, all different strategies have strengths and weaknesses:
MAJA resulted in the most sensitive method, FMask and Sen2Cor were the most precise. The access
to homogeneous data remains a key issue, in fact when using not homogeneous data, we observed a
slight but significant drop in performance. The comparison with model-based segmentation suggests
that learning methods can improve their performance when trained on temporal series, an aspect that
deserves future investigations. Our findings demonstrate the accuracy of standard machine learning
methods, especially SVM as a valid alternative to state-of-the-art segmentation strategies. As far as we
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know, this work presents the most extensive comparison between machine learning and model-based
segmentations. Furthermore, other studies comparing different segmentation strategies focused on
small data usually covering homogeneous environments. As far as we know, this is the first work
considering learning procedures and comparing them with model-based approaches for world-scale
analyses, whilst regional scale analyses are usually preferred. Future studies should consider the
design and customization of CNN architectures for this data; another interesting aspect to consider is
the investigation of eventual differences in segmentation performance between Sentinel and Landsat
data.
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