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Abstract: Semantic segmentation is an important and challenging task in the aerial image community
since it can extract the target level information for understanding the aerial image. As a practical
application of aerial image semantic segmentation, building extraction always attracts researchers’
attention as the building is the specific land cover in the aerial images. There are two key points for
building extraction from aerial images. One is learning the global and local features to fully describe
the buildings with diverse shapes. The other one is mining the multi-scale information to discover
the buildings with different resolutions. Taking these two key points into account, we propose a new
method named global multi-scale encoder-decoder network (GMEDN) in this paper. Based on the
encoder-decoder framework, GMEDN is developed with a local and global encoder and a distilling
decoder. The local and global encoder aims at learning the representative features from the aerial
images for describing the buildings, while the distilling decoder focuses on exploring the multi-scale
information for the final segmentation masks. Combining them together, the building extraction
is accomplished in an end-to-end manner. The effectiveness of our method is validated by the
experiments counted on two public aerial image datasets. Compared with some existing methods,
our model can achieve better performance.

Keywords: building extraction; aerial image; encoder-decoder network

1. Introduction

The aerial image is a kind of high-resolution remote sensing image, which can provide diverse
and high-definition information of land covers [1]. With the development of imaging techniques,
a large number of aerial images can be collected. How to effectively use them to get more useful
knowledge for understanding our planet is always an open and tough task. Many technologies can
be adopted to mine the contents from aerial images, such as image classification [2], image semantic
segmentation [3], and content-based image retrieval [4,5]. Among the mentioned techniques, image
semantic segmentation is the basic and important research topic as it can assign the corresponding
semantics to each pixel within the aerial image [3]. Aerial image segmentation has been successfully
applied on many remote sensing applications, such as land-use/land-cover classification [6] and
points-of-interest detection [7–10].
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Traditional image segmentation methods are always unsupervised, which group images into
several regions with the consideration of the similarity between pixels [11,12]. Although they can
divide the image into different parts, there is no semantic belonging to those segmented regions.
To solve this issue, semantic segmentation attracts researchers’ attention, which is the supervised
method [13,14]. In general, there are two steps in the semantic segmentation methods, including
pixel-wise feature extraction and classification [15]. In the past, these two steps were independent.
In other words, the pixel-wise features are extracted according to some algorithms first, and then the
common or specific classifiers are adopted to complete the segmentation. For the pixel-wise features,
the color [16], texture [17], shape [18], and their combination [19] are widespread. For the classifier,
the support vector machine (SVM) [20], decision tree [21], and some statistic models [22] are popular.
After entering the era of deep learning, semantic segmentation also moves into a new stage. Due to the
strong feature learning capacity of the deep learning [23], especially the convolutional neural network
(CNN) [24–26], the deep-based semantic segmentation methods achieve the cracking performance.
Furthermore, due to the specific structure of CNN, the semantic segmentation can be accomplished in
an end-to-end framework. Among an ocean of deep-based methods, the fully convolutional neural
network (FCN) [27] is a pioneering one that we must mention. It laid the fundamental framework of
the deep-based semantic segmentation methods, i.e., the encoder-decoder architecture. FCN uses the
de-convolution layers (i.e., up-sampling and convolutional layers) to replace the fully connected layers
within the normal CNN for predicting each pixel within the images.

In the aerial image community, semantic segmentation is still an open and tough research topic.
As a branch of aerial image segmentation, the building extraction attracts scholars’ attention since it
can be used in many realistic applications, such as urban planning and management [28]. The task
of building extraction can be considered as a two-class segmentation problem on the aerial image.
One class is the target (building) and the other class is the background (non-building). Although many
existing methods can be selected to complete the building extraction, their performance cannot reach
the satisfactory stage due to the complex contents within the aerial images. For example, the buildings
within an aerial image are diverse in shape, various in size, and huge in volume. In addition, some
other types of objects have a similar appearance to the buildings. To overcome the limitation mentioned
above and improve building extraction performance, two key problems should be considered.

1. How to explore local and global information is the first key point. Note that, in this paper,
we define the detailed structure (e.g., buildings’ outlines and shapes) as the local information.
Meanwhile, the overall structure (e.g., buildings’ context within an aerial image) is defined as the
global information.

2. How to capture the multi-scale information is the second key point. Due to the specific
characteristics of the aerial images, the buildings within an aerial image are different in size.
The buildings with bigger sizes may contain hundreds of pixels while the buildings with smaller
sizes occupy dozens of pixels. In this paper, we define the mentioned issue as the multi-scale
information contained in the aerial images.

Considering two key points mentioned above, we propose a new building extraction network
with the encoder-decoder structure for aerial images in this paper, and we name it a global multi-scale
encoder-decoder network (GMEDN). To extract the local and global information, we design a local
and global encoder in this paper. The VGG16 network [29] is used to extract local information
through several convolutional layers. Based on the feature maps with local information, a non-local
block is introduced to capture global information through mining the similarities between all pixels.
To learn multi-scale information, a distilling decoder is developed, which includes the de-convolution
and the multi-scale branches. The multi-scale branch predicts the final segmentation results by
aggregating multi-layer feature maps in the decoder. Our source code is available on https://github.
com/smallsmallflypigtang/Building-Extraction.

The main contributions of this method are summarized as follows:

https://github.com/smallsmallflypigtang/Building-Extraction
https://github.com/smallsmallflypigtang/Building-Extraction
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1. The proposed GMEDN adopts the encoder-decoder framework with a simple skip connection
scheme as the backbone. For the local and global encoder, a VGG16 is used to capture the local
information from the aerial images. Based on this, the non-local block is introduced to explore the
global information from the aerial images. Combing local and global information, the buildings
with diverse shapes can be segmented.

2. A distilling decoder is developed for our GMEDN, in which the de-convolution and the
multi-scale branches are combined to explore the fundamental and multi-scale information from
the aerial building images. Through the de-convolution branch, not only the low-level features
(e.g., edge and texture) but also the high-level features (e.g., semantics) can be extracted from
the images for segmenting the buildings. We name these features the fundamental information.
By the multi-scale branch, the multi-scale information that is used to predict the buildings
with different sizes can be captured. Integrating the fundamental and multi-scale information,
the buildings with various sizes can be segmented.

The remaining of this paper is organized as follows. The related work of segmentation network
and aerial building extraction are summarized in Section 2. In Section 3, we describe our GMEDN
method in detail. Then the experimental and discussion are dedicated to Section 4. Finally,
the conclusion of our letter is in Section 5.

2. Related Work

2.1. Semantic Segmentation Architecture

Image semantic segmentation is a classical problem in the computer vision community. With the
development of deep learning, CNN becomes important in this topic. Here, we roughly divide the
current deep CNN-based segmentation networks into three groups.

In the first group, the proposed methods are always general-purpose [30,31]. In 2015, the FCN
model [27] transformed the fully connection layer of the traditional CNN into a series of convolutional
layers. It provides a basic idea to solve semantic segmentation problem with the deep learning.
Apart from FCN, another group of successful semantic segmentation networks were proposed and
named DeepLab. There are three versions of DeepLab, and they were published in [32–34], respectively.
DeepLab-v1 uses a fully connected conditional random field (CRF) at the end of the FCN framework to
obtain more accurate information. To control the receptive field of the network, they adopt the dilated
convolution to replace the last two pooling layers. Based on DeepLab-v1, DeepLab-v2 adds atrous
spatial pyramid pooling (ASPP) into the network. ASPP contains dilated convolutions of different
rates, which can capture the context of the image at multiple scales. Moreover, DeepLab-v2 uses deep
residual network instead of VGG16 [29] (which was used in Deeplab-v1) to improve the performance
of the model. Based on DeepLab-v2, DeepLab-v3 refines the structure of the network so that the
segmentation results are further enhanced.

In the second group, researchers make full use of CNN’s hierarchical structure to extract rich
information from the images, which is beneficial for segmenting complex contextual scenarios and
small targets. For example, the pyramid scene parsing network (PSPNet) [35] aggregates the context
information of different layers to improve the models’ capacity of obtaining global information.
PSPNet embeds the multi-scale, global, and local information in the FCN-based framework through
the pyramid structure. Furthermore, to speed up convergence, the authors add the supervisory loss
function into the backbone network. Another popular method, feature pyramid network (FPN), was
introduced in the literature [36]. It uses feature maps of different resolutions to explore objects of
different sizes. Through continuous up-sampling and cross-layer fusion mechanism, both the low-level
visual information and the high-level semantic information can be reflected by the output feature maps.

In the third group, scholars develop segmentation networks based on object detection algorithms.
Inspired by the region selection idea, the mask region-based CNN (Mask R-CNN) was presented in the
literature [37]. It adds the mask prediction branch on the basis of the structure of faster R-CNN [38] to
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complete the semantic segmentation. In addition, the regions of interest (RoI) Align is used to replace
the RoI Pooling for removing the rough quantization. Although the segmentation performance of Mask
R-CNN is positive, the evaluation function shared scheme would influence the segmentation results
negatively. To address this issue, Huang et al. [39] developed the mask score R-CNN (MSR-CNN)
model in 2019. It adds the Mask-IoU block to learn how to predict the quality of an instance mask and
obtain a great result.

2.2. Aerial Building Extraction

The semantic segmentation methods discussed above are proposed for natural images.
Although they can be used to complete the building extraction from the aerial images, their
performance may not reach the satisfactory stage. Therefore, many aerial images oriented semantic
segmentation approaches were introduced in recent years. Here, we review some popular aerial
building extraction networks from the following two aspects.

The methods within the first group can be regarded as the variations of FCN. Based on FCN
architecture, several post-processing technologies are developed to improve the performance of aerial
building extraction. For example, in [40], the authors designed a patch-based CNN architecture. In the
post-processing stage, they combine the low-level features of adjacent regions with CNN features to
improve the performance. Shrestha et al. [41] proposed an enhanced FCN for building extraction. This
model utilizes CRF to optimize the rough results obtained by the FCN for improving the performance of
aerial building extraction. Another method was proposed in the literature [42], which is an end-to-end
trainable gated residual refinement network (GRRNet). Through fusing the high-resolution aerial
images and the LiDAR point clouds, GRRNet improves the performance of building extraction a lot.

Besides the FCN families, some other methods are developed with the consideration of
the characteristics of the aerial images. To exactly extract the buildings from the aerial images,
the high-quality features with multi-scale and detailed information are important. Therefore, some
researchers pay their attention to feature learning. Yuan et al. [43] used a simple CNN to learn
features and aggregated feature maps of multiple layers for the building prediction. Furthermore,
the authors introduce the signed distance function to classify boundary pixels, which is useful to get fine
segmentation results. In [44], another feature learning based building extraction method was proposed,
which uses spatial residual inception (SRI) module to capture and aggregate multi-scale context
information. This model could accurately identify large buildings while preserving global features and
local detailed features. Besides the multi-scale schemes, there are some other approaches that can be
used to obtain rich features for the semantic segmentation task. For example, Liu et al. [45] proposed
their network with the encoder-decoder structure. By adding the skip connection, the information loss
caused by the usual pooling could be reduced obviously. Furthermore, the spatial pyramid pooling is
embedded in this model to ensure the rich contextual information can be learned. In [46], the authors
combined the residual connection unit, the extended sensing unit, and the pyramid aggregation
unit together to complete the building extraction task. Due to the introduction of the form filter,
the boundaries of segmented results are accurate and smooth.

3. Methodology

3.1. Overall Framework

The pipeline of our building extraction model GMEDN is shown in Figure 1. It consists of a local
and global encoder and a distilling decoder. For the local and global encoder, it is constructed by a basic
feature extraction network (VGG16), a non-local block [47], and a connection block. It aims to explore
the local and global information from the aerial images. Through mining the object-level and the
spatial context information, the diverse and abundant buildings can be fully represented. The details
of the local and global encoder are discussed in Section 3.2. For the distilling decoder, it contains
the de-convolution branch and the multi-scale branch. The de-convolution branch captures the
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fundamental information (e.g., low-level visual features and the high-level semantics) and multi-scale
branch explores multi-scale information, which are useful to segment accurately buildings with
different sizes and distribution. The details of the distilling decoder are discussed in Section 3.3.
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Figure 1. Framework of our global multi-scale encoder-decoder network (GMEDN).

There is another point we want to touch on. As shown in Figure 1, there are five convolutional
layers (i.e., convolution, max-pooling, and batch normalization) and five de-convolutional layers
(i.e., up-sampling, convolution, and dropout) in the local and global encoder and the distilling decoder,
respectively. Due to the max-pooling and the up-sampling operations, some information within
the images and feature maps would be lost. To reduce this information loss, the output of the i-th
convolutional layer and the output of the i-th de-convolutional layer are summed. The operation
mentioned above is the simple skip connection, which is widespread in semantic segmentation
networks [27,48,49].

3.2. Local and Global Encoder

Before introducing the local and global encoder, we describe the non-local block first.
The non-local block [47] is developed to obtain global information by capturing the dependencies of
all the pixels. The architecture of the non-local block is shown in Figure 2.
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Figure 2. Framework of our non-local block.

Suppose the input and the output feature maps of the non-local block are X ∈ RH×W×C and
Z ∈ RH×W×C, where H and W represent the height and width of the input feature maps, C indicates
the number of the channels. First, the input X is convoluted by three groups of 1× 1 convolutions
with different initialized weights to get the U ∈ RH×W×C/2, V ∈ RH×W×C/2, and G ∈ RH×W×C/2.
Note that, the 1× 1 convolution has two functions [50]. First, it can enhance the non-local block’s
capacity of non-linear fitting due to the active function followed by the convolution. Second, it can
change the input data’s channels through adjusting the numbers of kernels. Here, according to the
literature [47], we set the numbers of 1 × 1 convolution kernels within each group equal to C/2.
Therefore, the sizes of the outputs (U, V, and G) are C/2, which can be regarded as the channel
reduction. Taking the U as an example, the process can be expressed as

U(i, j) = (X ∗K)(i, j) = ∑
m

∑
n

x(i + m, j + n) · k(m, n) + b, (1)

where X is the input feature maps, i and j are the coordinates of pixels of X, K denotes the convolutional
kernel, k(m, n) indicates the value of K in the coordinate (m, n), b is the convolution bias, the sign “∗”
represents the convolution operation, and the sign “·” denotes the value multiplication.

Second, to use the similarity relationship between pixels for the complex contents mining,
the non-local block constructs the similarity matrix R through U and V, and further uses R to obtain
global feature maps Y. To obtain the affinity matrix R, U and V are reshaped to UC ∈ RHW×C/2 and
VC ∈ RC/2×HW first. Then, R ∈ RHW×HW is obtained by

R = UC ×VC, (2)

where HW means the number of pixels, C/2 indicates the channels of each pixel, and the sign “×”
represents the matrix multiplication. To get the global feature Y , the similarity relationships between
pixels are assigned as weights to the feature maps G. Before that, a softmax is used to normalize the
affinity matrix R and a reshape operation is adopted to transform G into GC ∈ RHW×C/2. The process
of getting Y can be represented as the following equation,

Y = so f tmax(R)×GC, (3)
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where the sign “×” denotes matrix multiplication.
Third, the output of the non-local block Z ∈ RH×W×C can be obtained by fusing the global feature

Y and the input feature maps X. This leads that Z contains not only the initial characteristics of single
pixels but also the resemblance among all of the pixels. To complete the feature fusion, Y is transformed
into YC ∈ RH×W×C through the reshaping and 1× 1 convolution operations. This process can be
expressed as

Z = X + YC. (4)

The non-local block has several superiorities. First, since the number of channels is halved in the
first step, the non-local block is a lightweight model that would not increase the computational cost to
the original network. Second, since the input and output data have the same scale, the non-local block
is a flexible model that can be embedded after any layer. In this paper, we put the non-local block on
the top of the basic feature extraction network.

Based on the non-local block, we design our local and global encoder as follows. The local
and global encoder is divided into three blocks, i.e., basic feature extraction network, non-local
block, and connection block. First, we adopt VGG16 as the basic feature extraction network. VGG16
is a classical CNN, which contains five layers. The first, second, third layers consist of the same
components, i.e., one max-pooling, three convolutions, and one batch normalization (BN) operations.
The fourth layer contains two convolutions compared with the 1st layer. Then the 5th layer contains two
convolutions and one batch normalization (BN) operations. The sizes of the kernels of the convolutions
in VGG16 are 3× 3. The kernel sizes and the strides of max-pooling operations in VGG16 are 3× 3
and 2. Suppose the input image is I ∈ RH0×W0×C0 , the output of VGG16 block can be represented by
X ∈ RH×W×C. Here the H0, W0, and C0 represent the height, width, and a number of channels of the
input image. This process can be expressed as

X = FVGG16(I, WVGG16), (5)

where FVGG16 (·) denotes the mapping function of the VGG16 block and WVGG16 is the learnable
weights of VGG16.

Second, we embed a non-local block on the top of VGG16 so that the input of the non-local block
is X. According to the above description of the non-local block, the output of the non-local block is
Z ∈ RH×W×C. This process can be expressed as

Z = Fnon−local(X, Wnon−local), (6)

where Fnon−local (·) denotes the mapping function of the non-local block and Wnon−local represents
the learnable weights of the non-local block. Since the non-local block can capture global information
(e.g., buildings’ context within an aerial image), which can be used to distinguish the buildings from
other objects. Thus, global information is beneficial to the building extraction task.

Third, we add a connection block on the top of the non-local block to fuse the information
from VGG16 and non-local block. It contains a 3× 3 max-pooling with 2 strides and the repeated
operations, i.e., 3× 3 convolution and dropout operations. Here, the convolution operation aims to fuse
information through the weight matrix, the dropout operation is used to avoid overfitting. Suppose
the input of connection block is Z ∈ RH×W×C, the output can be represented by En ∈ RH1×W1×C1 ,
where the H1, W1, and C1 denote the height, width, and channels of the feature maps. The connection
process can be expressed as

En = Fconnection(Z, Wconnection), (7)

where Fconnection (·) denotes the mapping function of the connection block and Wconnection represents
the learnable weights of the connection block.
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3.3. Distilling Decoder

The distilling decoder is developed to obtain the final prediction mask which has the same
size as the input image. There are two branches in the distilling decoder, i.e., a de-convolution
branch and a multi-scale branch. In the de-convolution branch, there are five de-convolutional layers,
constructed by 2 times up-sampling, 3× 3 convolution, and dropout operations. Here, the up-sampling
and convolution operations are selected to accomplish the de-convolution operation. The dropout
operation is adopted to prevent the issue of over-fitting. As shown in Figure 1, when En is input the
de-convolution branch, the output of the 1st, 2nd, 3rd, and 4th layers are D1 ∈ RH0/16×W0/16×CD1 ,
D2 ∈ RH0/8×W0/8×CD2 , D3 ∈ RH0/4×W0/4×CD3 , and D4 ∈ RH0/2×W0/2×CD4 , respectively. Furthermore,
the output of the de-convolution branch is Dec ∈ RH0×W0×Cla, where Cla denotes the number of
classes. This process can be formulated as

Dec = Fde−convolution(En, Wde−convolution), (8)

where the Fde−convolution (·) denotes the de-convolution branch and the Wde−convolution is the weights.
The output of the de-convolution branch Dec only contains fundamental information,

which is limited to describe the buildings with diverse sizes accurately. Thus, the multi-scale
branch is developed to fully explore the different scale information from the input aerial image.
Here, the convolution and up-sampling operations are adopted to unify the sizes of outputs
corresponding to the different de-convolutional layers. In detail, the 8, 4, and 2 times up-sampling
are used for the feature maps D2, D3, D4, respectively. Meanwhile, the 1× 1 convolution is applied
to reduce their dimensions to the number of classes. In this way, we get the following feature maps,
i.e., Mul1 ∈ RH0×W0×Cla, Mul2 ∈ RH0×W0×Cla, and Mul3 ∈ RH0×W0×Cla. Then, we concatenate
them with Dec to get Fin ∈ RH0×W0×4Cla, which contains fundamental information and multi-scale
information. This process is shown in the following equation

Fin = concat (Mul1, Mul2, Mul3, Dec) , (9)

where the concat (·) means that concatenates them on the channel. To reduce the channels of Fin ∈
RH0×W0×4Cla, we transform Fin ∈ RH0×W0×4Cla to out ∈ RH0×W0×Cla through a 1× 1 convolution
operation. Finally, a mask ∈ RH0×W0×1 with the values of semantic classes can be generated from
out ∈ RH0×W0×Cla using the argmax function. In this paper, the mask is a binary prediction that
denotes which pixel belongs to the building and which one to the background.

There are some points we should further explain. First, in our distilling decoder, the 3 × 3
convolution is used to learn the features from the inputs, while the 1× 1 convolution is selected to
reduce the number of dimensions through adjusting the number of convolutional kernels. Second,
since the feature maps of the first de-convolutional layer have little high-level semantic information,
we do not take them into account during the multi-scale fusion.

4. Experiments and Discussion

4.1. Datasets Introduction

In this paper, two benchmark datasets are chosen to verify our model, i.e., the Inria aerial image
labeling dataset [1] and the Massachusetts building dataset [51]. Both of them have two classes,
they are, building and non-building. The buildings in these datasets are diverse in type, various in
volume, and different in distribution. Therefore, these two datasets are suitable to validate if our
method is useful or not.

The Inria dataset contains 360 aerial Red-Green-Blue (RGB) images collected from ten cities and
covers areas with 810 km2. Each city has 36 images, which are numbered 1 to 36. These images
cover different urban settlements, from densely populated areas to sparsely populated forested towns.
The sizes of these aerial images are 5000× 5000, and their spatial resolution is 0.3 m. In this dataset,
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only 180 images (corresponding to five cities, i.e., Austin, Chicago, Kitsap, Western Tyrol, and Vienna)
and their ground truth are published. Some examples, including images and their ground truth, are
shown in Figure 3. Suggested by the authors who released this dataset [1], 31 images are selected
randomly from each released city to construct the training set and the rest of the images are used to be
the testing set in the following experiments.

Austin Chicago Kitsap

ViennaTyrol_w

Figure 3. Examples and their ground truth of the Inria dataset. Left: Image, Right: Ground truth.

The Massachusetts dataset consists of 151 aerial RGB images and corresponding semantic labels.
This dataset is collected from the Boston area and covers roughly 340 km2. The size of each image
is 1500× 1500 and the resolution is 1 m. The whole dataset is randomly divided into a training set
of 141 images and a testing set of 10 images. The types of buildings within this dataset are diverse,
including individual houses, garages from urban and suburban areas, etc. Figure 4 exhibits two
examples with their ground truth.

Figure 4. Examples and their ground truth of the Massachusetts dataset. Left: Image, Right: Ground truth.

4.2. Experimental Settings

All of the experiments are carried out on an HP-Z840-Work station with Xeon (R) CPU E5-2630,
GeForce GTX 1080, and 64 RAM. Our GMEDN is trained by the Adam optimizer with the sparse
softmax cross-entropy loss function. Here, the parameters of Adam optimizer are set as follows,
β1 = 0.9, β2 = 0.999, ε = 1× 10−8. In addition, we use a schedule decay of 0.004, a dropout rate
of 0.5 and a small learning rate of 2× 10−4 to complete the training. We initialize the weights of
the encoder (parts of VGG16) with pre-trained weights via ImageNet [52]. Other weights of our
model are initialized with a Glorot uniform initializer that draws samples from a uniform distribution.
The optimization is stopped at 40 epochs, and the early stopping scheme is adopted to avoid overfitting.
Note that, due to the limitations of the GPU memory, original images are cropped into 256× 256 image
patches in this paper. For the Inria dataset, the non-overlapped grid scheme is selected to generate
the image patches. For the Massachusetts dataset, we use grids with a stride size of 156 to augment
limited training patches.

To evaluate the effectiveness of our model numerically, two assessment criteria are selected, they
are, overall accuracy (OA) and the intersection of union (IoU). OA is the ratio of the number of correctly
predicted pixels to the total number of pixels in all test sets, which is defined as,
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OA =
N (correct _pixels)

N (total_pixels)
, (10)

where N (correct _pixels) is the number of correctly predicted pixels, and N (total_pixels) is the
number of the total number of testing pixels. IoU measures the correlation between prediction and
target label, which is widely used in binary semantic segmentation tasks [6,53]. Here, IoU is defined as,

IoU(A, B) =
area (A ∩ B)
area (A ∪ B)

, (11)

where A is the prediction and B is the target label. IoU equals 0 means A and B do not overlap and 1
means that A and B are the same.

4.3. Performance of GMEDN

4.3.1. Building Extraction Examples

The building extraction results of our GMEDN model are exhibited and studied in this section.
For the Inria dataset, five images are selected from the published cities to accomplish the building

extraction, and the results are exhibited in Figure 5. For each block, the original image, the ground truth
map, and the results of our model are located in the top, middle, and bottom. From the observation
of these images, we can find that our method can extract the diverse buildings positively. Taking the
Chicago city as an example, although the buildings are dense in distribution and diverse in shape,
our extraction result is similar to the ground truth map, in which the location of buildings is accurate
and the boundaries of buildings are smooth. Taking the Kitsap city as another example, although the
buildings are distributed sparsely and irregularly, our model can also obtain the promising extraction
results compared with the ground truth. These encouraging results prove that our GMEDN is useful
for the Inria dataset.

(a)

(b)

(c)

Figure 5. Building extraction results of our GMEDN model. Five images are randomly selected from
the Inria dataset. They belong to Austin, Chicago, Kitsap, Tyrol_w, and Vienna cities respectively.
(a) Original image, (b) Ground truth, (c) Prediction.
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For the Massachusetts dataset, two images are chosen randomly to complete the building
extraction by our model. The results are shown in Figure 6. As mentioned in Section 4.1, the resolution
of these two images is 1m. Thus, compared with the images from the Inria dataset, the buildings
within these aerial images are smaller in size but larger in volume, which increases the difficulty of
extraction. Even so, through observing the extraction maps, we can easily find that the proposed
method still achieves good performance. The buildings under the shadows of obstacles (such as trees,
roads) are segmented well. These good visualization results indicate that our GMEDN is effective in
the building extraction task.

(a) (b) (c)

Figure 6. Building extraction results of our GMEDN model. Two images are randomly selected from
the Massachusetts dataset. (a) Original image, (b) Ground truth, (c) Prediction.

4.3.2. Comparisons with Different Methods

To further validate our method, we compare our GMEDN with the following four
popular methods.

• Fully convolutional network (FCN). This may be the first general-purpose semantic segmentation
network was proposed in 2015 [27]. The network consists of a common classification CNN
(e.g., AlextNet [54] and VGG16 [29]) and several de-convolution layers. The CNN aims to learn
the high-level features from the images while the deconvolution layers are used to predict the
dense labels for pixels. Compared with the traditional methods, its cracking performance attracts
scholars’ attention successfully.

• Deep convolutional segmentation network (SegNet). SegNet was introduced in the literature [55],
which is an encoder-decoder model. SegNet first selects VGG16 as the encoder for extracting
the semantic features. Then, a symmetrical network is established to be the decoder for
transforming the low-resolution feature maps into the full input resolution maps and obtaining
the segmentation results. Furthermore, a non-linear up-sampling scheme is developed to reduce
the difficulty of the model training and generate the sparse decoder maps for the final prediction.

• U-Net with pyramid pooling layers (UNetPPL). The UNetPPL model was introduced in [56] for
segmenting the buildings from high-resolution aerial images. By adding the pyramid pooling
layers (PPL) in the U-Net [48], not only the shapes but also the global context information of the
buildings can be explored, which ensures the segmentation performance.

• Symmetric fully convolutional network with discrete wavelet transform (FCNDWT). Taking the
properties of aerial images into account, the FCNDWT model [49] fuses the deep features with
the textural features to explore the objects from both spatial and spectral aspects. Furthermore,
by introducing DWT into the network, FCNDWT is able to leverage the frequency information to
analyze the images.
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Note that, all of the comparisons are accomplished by ourselves, and their experimental settings
are equal to ours for the sake of fairness.

The OA and IoU scores of different methods counted by the Inria dataset are displayed in Table 1.
It is obvious that the proposed GMEDN performs best. Among all of the comparisons, the performance
of FCN is the weakest. This is because that FCN is a general-purpose semantic segmentation model
which does not consider the specific characteristics of aerial images. Compared with FCN, SegNet
performs better since its sufficient de-convolution layers and the specific up-smapling scheme. Due to
the multi-scale aggregation scheme, the behavior of UNetPPL is stronger than that of FCN and
SegNet. However, its performance is still not as good as DWTFCN since the UNetPPL model
does not take the textural features into account, which are beneficial to explore the objects from
the complex background. Although the results obtained by the different compared methods are
acceptable, our model outperforms others obviously. For the overall scenario, the proposed GMEDN
achieves 76.69% in IoU and 96.43% in OA. Compared with other comparisons, the improvements in
IoU created by our GMEDN are 4.36% (FCN), 3.86% (SegNet), 3.36% (UNetPPL), and 1.39% (FCNDWT).
The enhancements in OA produced by our GMEDN are 0.8% (FCN), 0.68% (SegNet), 0.59% (UNetPPL),
and 0.26% (FCNDWT). For the scenario of different cities, our method is still superior to other methods.
Taking the Austin city as an example, the improvements in IoU/OA achieved by our model are
4.09%/0.63% (FCN), 2.07%/0.35% (SegNet), 0.49%/0.06% (UNetPPL), and 2.19%/0.34% (FCNDWT).
These encouraging results demonstrate that our model is useful for the building extraction task.

Table 1. IoU and OA scores of different methods counted by the Inria dataset (%).

Methods Austin Chicago Kitsap Tyrol_w Vienna Overall

IoU

GMEDN 80.53 70.42 68.47 75.29 80.72 76.69
FCN 76.44 67.28 66.05 71.25 75.43 72.33

SegNet 78.46 68.37 60.29 59.61 78.37 72.83
UNetPPL 80.04 67.40 64.83 61.61 78.87 73.33
FCNDWT 78.34 69.99 65.41 73.19 79.70 75.30

OA

GMEDN 97.19 92.86 99.30 98.05 94.54 96.43
FCN 96.56 91.90 99.24 97.44 93.01 95.63

SegNet 96.84 92.28 99.15 96.73 93.76 95.75
UNetPPL 97.13 91.96 99.23 97.00 93.90 95.84
FCNDWT 96.85 92.70 99.22 97.86 94.26 96.17

The IoU and OA scores of different models counted by the Massachusetts dataset are summarized
in Table 2. Similar to the Inria dataset’s results, our GMEDN still gets the best performance among all
of the methods. The gains of our GMEDN in IoU/OA are 3.89%/1.12% (FCN), 6.96%/1.22% (SegNet),
4.74%/0.8% (UNetPPL), and 2.43%/0.48% (FCNDWT). Besides the above conclusion, a notable
observation is that there is a distinct performance gap between GMEDN and other methods in
IoU. The reasons behind this are summarized as follows. First, the details of buildings (e.g., shapes
and edges) can be grasped by the backbone network. Second, through adding the non-local block,
the global information can be further obtained which can be used to distinguish the objects from
the complex background. Third, the multi-scale scheme can help our GMEDN model to capture the
buildings with diverse sizes.

Table 2. IoU and OA scores of different methods counted by the Massachusetts dataset (%).

GMEDN FCN SegNet UNetPPL FCNDWT

OA 93.78 92.66 92.56 92.98 93.30
IoU 70.39 66.50 63.43 65.65 67.96

Apart from the numerical results, we also exhibit the building extraction results visually. Due to
the space limitations, rather than showing the whole images’ results, the extraction results of the image
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patches with the size of 256× 256 are displayed. We select some image patches from the Inria dataset
and the Massachusetts dataset randomly, and their building extraction masks are shown in Figures 7
and 8.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Predictions of some patches of different methods on the Inria dataset. (a) Original image,
(b) Ground truth, (c) GMEDN, (d) FCN, (e) SegNet, (f) UNetPPL, (g) FCNDWT.

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Predictions of some patches of different methods on the Massachusetts dataset. (a) Original
image, (b) Ground truth, (c) GMEDN, (d) FCN, (e) SegNet, (f) UNetPPL, (g) FCNDWT.
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Through observing those results, the following issues can be discovered. First, FCN and SegNet
have smooth boundary prediction, and they perform well on the small buildings. Second, UNetPPL
could extract more diverse buildings since the PPL model can learn the multi-scale information from
aerial images. Third, FCNDWT achieves the good behavior on the building locations and boundaries
as the intension frequency information is fused. Compared with the comparisons, the maps generated
by our GMEDN have clear boundaries and precise locations. These positive visual extraction results
prove the effectiveness of our method again.

4.4. Ablation Study

As mentioned in Section 3, GMEDN can be divided into four sub-models, including basic
encoder-decoder network (i.e., VGG16, de-convolution branch, and skip connection), non-local block,
connection block, and the multi-scale block. To study their contributions to the building extraction
task, we design four networks to complete the building extraction respectively, they are,

• Net 1: Basic encoder-decoder network;
• Net 2: Basic encoder-decoder network + non-local block;
• Net 3: Basic encoder-decoder network + non-local block + connection block;
• Net 4: Basic encoder-decoder network + non-local block + connection block + multi-scale block.

Note that, the experimental settings of the networks in this section are the same as mentioned in
Section 4.2.

The results of these networks counted on two datasets are shown in Figure 9, where Figure 9a
shows the OA scores and Figure 9b displays the IoU scores. The first six groups of bars are the
results of the Inria dataset and the last group of bars is the results of the Massachusetts dataset.
From the observation of Figure 9, we can find the performance of different networks is proportional
to the numbers of sub-models. In detail, the behavior of Net1 is the weakest among all compared
networks since it only consists of a basic encoder-decoder network. After adding the non-local
block, the performance of Net 2 is stronger than that of Net 1, which proves the usefulness of the
non-local block. Due to the fusion scheme, Net 3 outperforms the Net 1 and Net 2 which confirms the
contribution of the connection block. Integrating all sub-models, Net 4 achieves the best performance.
Furthermore, the performance gap between Net 4 and other networks is distinct. The results discussed
above demonstrate that each sub-model can make a positive contribution to our GMEDN model.
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Figure 9. Ablation study of our GMEDN. (a) Results in OA, (b) Results in IoU.
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4.5. Robust Study of Non-Local Block

In this section, the robustness of the non-local block is studied. To this end, we vary the position
of the non-local block. Here, to study the influence of the non-local block to GMEDN, we construct
three models by changing the non-local block’s positions, i.e.,

• Model 1: Embedding the non-local block after the third layer of VGG16;
• Model 2: Embedding the non-local block after the fourth layer of VGG16;
• Model 3: Embedding the non-local block after the fifth layer of VGG16.

To get the segmentation results, three models are trained with the experimental settings discussed
in Section 4.2. The OA and IoU scores counted on the Inria and Massachusetts datasets are exhibited
in Figure 10, in which the first six sets of bars correspond to the Inria dataset while the last set of bars
corresponds to the Massachusetts dataset. It is easy to find that the performance differences between
the three models are small. Taking the Vienna city within the Inria dataset as an example, three models’
OA scores are 94.43%, 94.32%, and 94.54%, while their IoU scores are 80.47%, 80.02%, and 80.72%.
This indicates that our GMEDN is not sensitive to the non-local block.
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Figure 10. Robust study of non-local block. (a) Results in OA, (b) Results in IoU.

4.6. Running Time

Here, we discuss the time costs of our GEMDN from the training and inference aspects.
As mentioned in Section 4.2, the input data is the 256× 256 aerial image patches that are cropped
from the original aerial images. The volumes of the training sets are 1805 and 360 for the Inria and
Massachusetts datasets. The training times of the two datasets are 5.71h and 5.23h, respectively. For the
inference, the time cost of predicting one patch is 0.26s. Therefore, we need 98.7s to segment an aerial
image (5000× 5000) from the Inria dataset, and 9.36s to complete the building extraction from an aerial
image (1500× 1500) of the Massachusetts dataset.

5. Conclusions

With the consideration of the characteristics of aerial images, a simple yet useful method (GMEDN)
is proposed in this paper for building extraction based on the encoder-decoder framework with a
skip connection.

1. To extract the local and global information from the aerial images for fully describing the buildings
with various shapes, a local and global encoder is developed. It consists of a VGG16, a non-local
block, and a connection block. VGG16 is used to learn the local information through several
convolutional layers, the non-local block aims at learning global information from the similarities
of all pixels, and the connection block further integrates local and global information.
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2. To explore the fundamental and multi-scale information from the aerial images for capturing
the buildings with different sizes, a distilling decoder is developed. It contains a de-convolution
branch and a multi-scale branch. The de-convolution branch focuses on learning the
buildings’ representation (low- and high-level visual features) under different scales by several
de-convolutional layers, and the multi-scale branch aims at fusing them to improve the
discrimination of the prediction mask.

3. To reduce the information loss caused by the max-pooling (encoder) and the up-sampling
(decoder) operations, the simple skip connection is added between the local and global encoder
and the distilling decoder.

The introduced GMEDN can accomplish the building extraction in an end-to-end manner, and its
superiorities are confirmed by the encouraging experimental results counted on two aerial image
datasets. Compared with some existing methods, for the Inria dataset, the minimum enhancements
obtained by GMEDN are 0.26% in and 1.39% in IOU. For the Massachusetts dataset, the minimum
gains achieved by GMEDN are 0.48% in OA and 2.43% in IOU.

Although GMEDN achieves positive results in building extraction tasks, it is not a lightweight
network which limits its practicability in many realistic scenarios. To address this issue, we will pay
our attention to developing the light model for the building extraction task in the future.
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