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Abstract: Over the past decade, using Interferometric Synthetic Aperture Radar (InSAR)
remote sensing technology for ground displacement detection has become very successful.
However, during the acquisition stage, microwave signals reflected from the ground and received
by the satellite are contaminated, for example, due to undesirable material reflectance and
atmospheric factors, and there is no clean ground truth to discriminate these noises, which adversely
affect InSAR phase computation. Accurate InSAR phase filtering and coherence estimation are crucial
for subsequent processing steps. Current methods require expert supervision and expensive runtime
to evaluate the quality of intermediate outputs, limiting the usability and scalability in practical
applications, such as wide area ground displacement monitoring and predication. We propose a deep
convolutional neural network based model DeepInSAR to intelligently solve both phase filtering and
coherence estimation problems. We demonstrate our model’s performance using simulated and real
data. A teacher-student framework is introduced to handle the issue of missing clean InSAR ground
truth. Quantitative and qualitative evaluations show that our teacher-student approach requires
less input but can achieve better results than its stack-based teacher method even on new unseen
data. The proposed DeepInSAR also outperforms three other top non-stack based methods in time
efficiency without human supervision.

Keywords: interferometric synthetic aperture radar (InSAR); deep learning; CNN; denseNet; phase
noise reduction; coherence estimation

1. Introduction

Synthetic Aperture Radar (SAR) is a remote sensing technology, which uses active microwaves to
capture ground surface characteristics. An Interferometric SAR (InSAR) image a.k.a interferogram
is created from two temporally separated single look complex (SLC) SAR images via the point-wise
product of one SLC image with the complex conjugate of the other SLC image. Thus each pixel in an
interferogram indicates phase difference between two co-registered SLC images. The phase difference
encodes useful information including deformation of the earth’s surface and topographical signals,
and has been successfully used to obtain the digital elevation model (DEM). InSAR final products are
widely used for civil engineering; topography mapping; infrastructure; oil/gas mining; natural hazards
monitoring and elevation change detection. In any SAR system, as the satellite circumnavigates earth,
SAR sensor launches millions of radar signals toward the earth in the form of microwaves. The SAR
image is represented as a SLC image, which is generated based on radar information echoed back from
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the ground. However, different ground surface compositions have strong impact on these radar signals.
Some are reflected away from the satellite, some are absorbed by non-reflective materials and some are
reflected back to the satellite. Signal reflections can be noisy resulting in SAR images with strong speckle
noise. Furthermore, temporal and spatial variations between two SLC acquisitions, cause decorrelation,
which also affects the interferometric phase [1]. Noisy SAR images make the interferometric phase
filtering step on their output InSAR image more challenging. It is important to point out that the quality
of estimated interferogram has direct importance to the whole processing pipeline. The phase noise
will affect all subsequent stages from phase-unwrapping operation to the motion signal modelling [2].
Therefore, restoration of interferometric phase image becomes a fundamental and crucial step to
ensure measurement accuracy in remote sensing. In this regard, the coherence map of interferogram
is a crucial indicator showing reliability of the interferometric phase [3]. Thus, interferometric phase
filtering and coherence estimation are the main focus in this work.

In recent decades, numerous filtering methods have been proposed. BoxCar is a well-known
method because it is straightforward. It simply performs a moving average to estimate the variation of
local pixel pattern. In Reference [4], the authors show that this average process is a maximum-likelihood
(ML) estimator for interferometric phase and coherence when all involved processes are stationary.
Unfortunately, InSAR images are inherently non-stationary because of changing topography and
ground displacement. While BoxCar filter can be useful in a flat area, it is not suitable for areas with
high slope. In addition, BoxCar outputs are unsatisfactory due to its strong smoothing behaviour
caused by simple averaging. In addition to significant phase and coherence estimation error, it is
vulnerable to loss of both spatial resolution and fine details. Other classical filters, such as median filter,
2-D Gaussian filter and multi-look processing, also have similar limitations. Consequently, researchers
started addressing the problem of non-stationary filtering for interferometric phase. Generally
speaking, their methods can be categorized into two groups according to whether the filtering is
done with or without domain transformation.

Lee filter [5] is a classical method working in the original spatial domain. It adopts local
fringe morphology modelling with anisotropic filter, which reduces the noise via local statistics
and an adaptive window. The authors of Reference [6] introduced an extension of Lee’s method
by using a minimum mean squared error estimator to exclude singular pixels within a selected
direction. Another statistical optimization framework is proposed in Reference [7], which applies
Bayesian estimation in the filtering process. Some adaptive methods are proposed in References
[8,9]. Vasile et al. designed an intensity-driven adaptive-neighbourhood method for denoising
interferometric phase images [8]. Yu et al. used a low-pass filter along local fringe orientation with
an adaptive-contoured-window [9]. In Reference [10] Wang et al. pointed out phase fringe and noise
frequency distribution are different, and hence noise can be detected without destroying the fringe
signal. There are also some works which estimate maximum posterior probability, as filtered phase
image can be obtained by modelling image prior as a Markov Random Field (MRF) [7,11]. However,
how to choose appropriate properties as image prior is still an open problem.

Goldstein filter [12] is the first frequency domain method with Fourier transformation. One of
its extensions [13] proposed a technique to preserve the signal in low noise (high coherence) areas by
estimating dominant component from local power spectrum of the signal, which also adapts to the
local direction of fringes. Other improvements to the Goldstein and Baran filters have been proposed
by researchers, who tried to obtain more accurate coherence estimation and overcome the original
method’s under-filtering issue on low coherent regions [14,15]. A joint method, which uses modified
Goldstein and simplified Lee filter, is invented in Reference [16]. This filter particularly focuses on
interferometric phase denoising under high dense fringes and low coherent situation. In Reference [17],
the authors pointed out that filtering with adaptive multi-resolution technique is also necessary
because of different sizes and shapes of the interferogram. It improves the filtering quality on fringes
via better frequency estimation and invalid estimation correction. In Reference [18], the authors first
proposed a wavelet domain filter in complex domain (WInPF) based on a complex phase noise model.
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They proved that phase information and noise can be more easily separated in the wavelet domain.
The success of WInPF was of a great importance to lots of subsequent work. Reference [2] applied
wavelet packets based Wiener filter to further separate phase information in the wavelet packet domain,
it achieves superior performance compared to the WInPF filter. In Reference [19], Bian and Mercer
proposed undecimated wavelet transform by treating image filtering as an estimation problem. Overall,
wavelet-domain filters seem to better preserve a good spatial resolution than other methods and have
high computational efficiency. Xu et al. [20] introduced a joint denoising filter via simultaneous
regularization in the wavelet domain. Phase discontinuities are well preserved through this joint
sparse constraint and iterations.

The idea of non-local filtering is to explore more information from the data itself. In general,
images contain repetitive structures such as corners and lines. Those redundant patterns in
an image could be analyzed and explored to improve filtering performance. In recent years,
many studies deploy non-local techniques for SAR data filtering from amplitude images
de-specking [21–23] to interferometric phase denoising [3,24–27], and InSAR stack multi-temporal
processing [28,29]. Compared to the aforementioned methods, non-local based methods always
achieve state-of-the-art results. Non-local filtering adapts estimation to the local signal behaviour
to deal with non-stationary images like previous approaches, but it also takes consideration of the
entire image according to the image self-similarity property. The first non-local method applied
to interferometric phase filtering was proposed by Deledalle et al. in Reference [21]. Both image
intensities and interferometric phase information are used to build a non-local means model with
a probability criterion for estimating pixels. NL-InSAR [3] is the first InSAR application to use a
non-local approach for the joint estimation of the reflectivity, interferometric phase and coherence
map from an interferogram. In Reference [24,30], researchers achieve better results on textural fine
details preservation by combining non-local filtering with pyramidal representation and singular
value decomposition. A unified framework (NL-SAR) is proposed in Reference [27] as an extension of
NL-InSAR, where an adaptive procedure is carried out to handle very high resolution images. It is
able to obtain the best non-local estimation with good quality on radar structures and discontinuities
reconstruction. Recently, works on extending and modifying existing image restoration algorithms to
suit interferometric phase domain achieve very promising performance. In Reference [10], a modified
patch-based locally optimal Wiener (PLOW) method is proposed for interferometric phase filtering
that achieves on par and better results than non-local means. Another famous algorithm, non-local
block-matching 3D (BM3D) also inspired researchers to propose InSAR-BM3D [26], which delivered
state-of-the-art results for InSAR phase filtering. The method is not proposed to do coherence
estimation specifically. InSAR-BM3D computes the maximum likelihood estimates of coherence
via stack-wise averages. Then the estimated coherence is used to determine the threshold at the
collaborative filtering step. Hence, the performance is likely affected by the accuracy of the coherence
estimation, which highly depends on how stationary of the whole stack is.

Milestone works using Convolutional Neural Network (CNN) have shown their ability
to outperform almost all conventional algorithms on different visual related tasks including
image restoration. There are also some recent SAR based studies benefited from CNN, including
the Fuzzy superpixels based Semi-supervised Similarity-constrained CNN (FS-SCNN) model [31],
which uses an ensemble learning technique to achieve superior prediction on PolSAR images
classification task. Ma et al. [32] proposed an attention-based graph CNN to improve the SAR
segmentation results. In Reference [33], DeepLabv3+ [34], a well-known image semantic segmentation
CNN model, is adopted for oil spill identification on SAR images. A direct automatic target recognition
(D-ATR) deep CNN based model is proposed in Reference [35] to obtain high accuracy and fast
processing for target recognition that outperforms all other conventional methods. These works
benefit from CNNs as superior feature extractors on SAR images. Anantrasirichai et al. [36] employ
CNNs in the InSAR phase to volcano deformation monitoring via transfer learning from optical
images. In this work, we propose our DeepInSAR architecture, which is a new deep learning-based
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model for SAR interferometric phase restoration and coherence estimation. The model is empowered
by a set of state-of-the-art deep learning techniques, relying on suitable phase-oriented solutions.
We aim to design a more effective joint phase filter and coherence estimator, by learning from the
pre-generated training data. We pre-processed InSAR data into a single tensor to do a multi-modal
fusion analysis of both phase and amplitude information. A densely connected feature extractor
is used to achieve multi-scale feature extraction and fusion. Two subsequent fully connected CNN
perform phase filtering and coherence estimation from extracted features respectively. InSAR phase
noise can be considered as zero-mean additive noise. So, we adopt the residual learning strategy,
which has been proven by in the literature as effective for removing such type of noise [37]. Meanwhile,
pre-activation and bottleneck [38], as well as batch normalization techniques [39], are used to enhance
training efficiency and boost the model’s performance. The remainder of the paper is organized
as follows. In Section 2, we briefly define our interferometric phase noise model and describe our
proposed DeepInSAR architecture in detail, as well as our experimental setup. Section 3 presents
quantitative and qualitative comparison with the performances of three other established methods for
both simulated and real data. Result analysis is presented in Section 4. Conclusion and future work
are given in Section 5.

2. Materials and Methods

2.1. Phase Noise Model

Similar to the classical additive degradation mode in natural image restoration problem,
an interferometric phase can also be characterized by:

θy = θx + v, (1)

which has been validated in Reference [5]. θy denotes the noisy observation, θx is clean phase
component and v is the noise with zero mean and σ standard deviation, θx and σ are independent
of each other. It follows a similar definition in the natural image analysis that clean signals are
independent from noise signals. Unfortunately, it is not feasible to directly use natural image
processing algorithms in interferometric phase domain, because of branch cuts. According to the SAR
interferometric phase calculation, the range of interferometric phase is within [−π, π), which means
that wrapped phase value could jump from negative to positive or positive to negative π, and they
could represent high-frequency motion signals that should be well preserved. Therefore, in this work,
we follow the strategy in Reference [10,18] to process the interferometric phase in the complex domain.
In other words, the phase noise model could be represented by real and imaginary channels, which are
continuous values:

yReal = cos(θy) = Qcos(θx) + vr = QxReal + vr

yImag = sin(θy) = Qsin(θx) + vi = QxImag + vi.
(2)

The noisy phase observation θy is decomposed into two components yReal and yImag. vr and vi
are zero-mean additive noise in the real and imaginary parts, and they are independent from the
underlying clean phase signals θx. As analyzed in Reference [10] Q is a quality indicator, which is
monotonically changing with coherence level. We designed our filtering network based on the above
complex phase model. During training, the network learns to filter both real and imaginary parts and
then the estimated clean phase θ̃x could be reconstructed from filtered x̃Real and x̃Imag as:

θ̃x = arctan
(

x̃Imag

x̃Real

)
. (3)
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2.2. The Proposed DeepInSAR

In this section, we describe our proposed DeepInSAR in detail. The main goal is to establish and
validate the idea of using deep learning method to automate and accelerate both interferometric
phase filtering and coherence estimation, which are conducted separately in most of existing
approaches. Recently, deep learning studies especially CNNs have been dominating various fields
of vision-related tasks. Generally, their excellent performance can be attributed to their powerful
feature classification and ability to learn image priors during the training stage. The reasons why
we choose to use CNN for InSAR filtering and coherence estimation are (1) CNN is effective for
capturing spatial feature characterization with a lot of trained parameters, (2) many achievements
in deep learning can be borrowed to benefit better training and generalization, as well as to speed
up and improve the output data quality, and (3) powerful GPUs could speed up CNN training and
runtime inference. Deep CNN is well suited to be deployed on modern GPUs for parallel computation.
All these advantages make deep learning techniques promising for InSAR phase filtering and coherence
estimation, where real-time processing and high-quality outcome of large resolution radar images
are required.

Figure 1 illustrates the architecture of the proposed DeepInSAR network. At a high-level,
our deep model includes multiple modules for handling different subtasks. The amplitudes and
their interferometric phases of two SLC SAR images are combined by concatenating into a single tensor
during a preprocessing step. The output is subsequently fed into a densely connected feature extractor.
Dense connectivity helps extract useful features under different scales and composite multi-scale
features are suitable for different end tasks [40]. Two feature to image transformations are achieved by
sub-networks performing—(1) phase filtering using residual learning strategy [37] and (2) coherence
estimation. The model is expected to learn optimal discriminative functions, mapping from noisy
observations to both latent clean phase signals and coherence, by a feed-forward neural network.

Figure 1. The architecture of the proposed Deep Interferometric Synthetic Aperture Radar (DeepInSAR)
network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for
each Convolutional Neural Network (CNN) layer

2.2.1. Prepossessing of Radar Data

Referring to our noise model in Equation (2), we propose to fully utilize all the information from
two SLCs rather than only analyzing interferometric phase. As shown in the Preprocessing Module in
Figure 1, the raw input contains two noisy co-registered SLC SAR images S1 and S2. Interferometric
phase image I is calculated as:

I = (AS1 � AS2)ej(ϕS2−ϕS1) = AIej∆ϕ, (4)
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where A is amplitude and ϕ is phase. In fact, the phases in SLC images look like random noise from
one pixel to another because each pixel is a complicated function of scattering features located on the
ground surface. However, interferometric phase ∆ϕ represents phase-difference fringes illustrating
changes in distance between ground and satellite antenna, which are valuable information needed
for InSAR related applications, but they are often contaminated by noise. Intuitively, we want
to incorporate amplitude images, because they usually show recognizable patterns like buildings,
mountains, and valleys, which are useful spatial characterizations and hence informative for denoising
and coherence estimation. For phase filtering, our proposed DeepInSAR aims to learn a mapping
function Foc : observation 7→ clean. As shown in Equation (2), Foc can include noisy yRea1, yImag and
Q as observations. In this work, we further use two SLC’s amplitude value to replace the Q in the
observations, because we learn from Reference [41] that coherence magnitude |γ| can be approximated
based on two SLC’s amplitude:

|γ| = |∑M
m=1 ∑N

n=1 AS1(m, n)AS2(m, n)|√
∑M

m=1 ∑N
n=1 |AS1(m, n)|2 ∑M

m=1 ∑N
n=1 |AS2(m, n)|2

, (5)

where M, N represent estimator window size. This widely used coherence estimator shows a potential
mapping (AS1, AS2) 7→ |γ|. Moreover, As mentioned in Section 2, Q is related to |γ|. Here we
hypothesize that there is a mapping chain (AS1, AS2) 7→ |γ| 7→ Q. Hence, instead of using any
handcrafted sampling estimator to estimate Q. We proposed to use a deep model to approximate
the mapping function Foc, in a simplified end-to-end manner by treating both SLC amplitudes
together with interferometric phase as input observation to the network. Theoretically, sufficient and
well-reasoned input would help the model learn a proper mapping function to estimate latent clean
signals more precisely. The same should also support estimating the quality of signals (coherence).

Unfortunately, in real-world SAR image, the range of amplitude values could be extremely broad,
that is, from 0 to 1 × 106, and the scale of the values also varies across different target sites and types
of radar sensor. This is one of the reasons why learning-based studies are not pursued for SAR analysis
because using uncontrolled amplitude values to train a deep discriminative model is not effective.
In general, the learning-based method requires each input dimension to have a similar distribution
with low and controlled variance, which has been suggested by many deep learning studies [37,42].
Unnormalized input data can lead to an awkward loss function topology and place more emphasis on
certain parameter gradients resulting in a poor training. Hence, for a CNN layer, all the input pixels
should be in the same scale. The amplitude values in raw SAR images are not suitable as input data
for a deep model. In this work, we introduce an adaptive method to normalize all amplitude values to
lie between 0 to 1. The model saturates potential outliers as well as keeps most dynamic changes in
the original image without destroying or cutting off any essential ground characteristics.

Knowing that if data roughly follows a normal distribution, the standard Z score of each data point
can be calculated as the position of a raw score in terms of its distance from the mean, when measured
in standard deviation units [43]. However, SAR amplitude values follow Rayleigh distribution [44]
with potential extremes in the distribution tail. Hence, the mean is not statistically robust in our
case, and it is easily influenced by outliers. In this study, we apply a modified Z score [45] which
estimates Z score based on Median Absolute Deviation (MAD). The MAD value of SLC amplitude A
is calculated as:

MAD = median(|Ai − Ã|), (6)

where Ã is the median of the data. Next, we transform the data into the modified Z score domain:

Amz
i =

0.6745 ∗ (Ai − Ã)

MAD
. (7)
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Amz represents each pixel’s modified Z score and 0.6745 is the 0.75th quartile of the standard
normal distribution, to which the MAD converges. For outlier detection, researchers commonly use
absolute values of modified Z scores to threshold the data, where data points with |Z| score greater than
3.5 are potential outliers and are ignored [45]. In Figure 2, there are 6 SLC amplitude images selected
from three real-world datasets captured by TerraSAR-X in StripMap mode [46], with 2 SLCs taken at
different time for each stack. By observing their raw amplitude values and histograms as shown in
the 1st and 2nd rows of Figure 2, data points are close to Rayleigh distribution as mentioned above.
So simply cutting off according to the modified Z score might cause loss of information located on
the right tail of high amplitude values. Although logarithm transformation could help us visualize
the images better, there is no fixed base number for all images because they might differ by order of
magnitude. In our proposed normalization method, we adopt modified Z score as a transformation
function to force all values to be close to 0 first and then all potential outliers will be far from 0 and
greater than 3.5. To give a standard input data distribution for training the neural network, we apply a
hyperbolic tangent tanh non-linear function as:

Â =
1
2
(tanh(

Amz

7
) + 1) (8)

to bind all input amplitudes with a controlled variance. A good property of hyperbolic tangent
tanh(x) function is that the input value between −1 to 1 will be enhanced and others will be saturated.
In our case, we divide Amz by 7 (two times of 3.5) to make the majority of data points lie between
−1 to 1. Then ground characteristics could be potentially enhanced after tanh operations. Secondly,
data points with relatively high amplitude are still kept on the right tail, and for those extremely high
values, likely outliers, are saturated close to 1. Note that, we further normalize the transformed data to
the range [0 ,1], because we use a Rectified Linear Unit (ReLU) activation for introducing nonlinearity
in the CNN to learn complex features. Non-negative input is recommended to avoid saturated neuron
at an early training stage when using ReLU activation in the early layers [47]. As shown in the 3rd
row in Figure 2, after our proposed data normalization, all amplitude values lie in the range 0 to 1
are properly delivered without losing and breaking essential details. One can also observe this in the
4th row of Figure 2. The final observation o is a tensor [yreal , yimag, ÂS1, ÂS2], and is the input to the
proposed DeepInSAR.

2.2.2. Filtering with Residual Learning

Residual learning is designed for solving performance degradation problem on very deep neural
networks [48]. In our interferometric phase filtering, we apply a similar idea but without using
too many skip-connections within the network. We only create identity shortcuts for predicting the
residuals of both real and imaginary channels. Instead of directly outputting the estimated clean
components, the proposed model is trained to predict residuals. The model implicitly filters the
latent clean signals with hidden operations within the deep neural network. For each of the real and
imaginary channels, we have the loss function below:

L(Wfe, Wreal) =
1
2
||Rreal(o; Wfe, Wreal)

− (yreal − xreal)||2F

L(Wfe, Wimag) =
1
2
||Rimag(o; Wfe, Wimag)

− (yimag − ximag)||2F,

(9)

where Wfe , Wreal and Wimag are the trainable parameters in the model corresponding to feature
extractor, real and imaginary channels respectively. For both real and imaginary channels filtering,
during the training iterations, our model aims to learn a residual mappingR(o) ≈ y− y−v

Q according
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to our noise model (Equation (1)). Then the clean components can simply be reversed by x = y−R(o).
(y, x) represents noise-free training sample (patch) pairs. Residual mapping is much easier to learn
than the original unreferenced mapping. It has been shown to output excellent results in many
low-level vision image inverse restoration problems such as image super-resolution [49] and image
denoising [37]. To the best of our knowledge, we are the first to use residual learning and CNN to do
InSAR phase filtering. The model now learns a residual mappingR : observations 7→ residuals on real
and imaginary channels respectively. Furthermore, it is known that phase noise variance σ2

θ could be
approximated by coherence magnitude |γ| [41]:

σ2
θ =

π2

3
− πarcsin(|γ|) + arcsin2(|γ|)− Li2(|γ|2)

2
, (10)

where Li2 is Euler’s dilogarithm. Our input tensor for phase filtering includes two SLCs’ amplitudes,
which correlated to coherence magnitude. Hence, our designed observation input is well-reasoned for
predicting phase residuals.

Figure 2. Before and after preprocessing: amplitude images selected from three real-world site datasets.
From left to right, it shows Site-A (1st and 2nd columns), Site-B (3rd and 4th columns), Site-C
(5th and 6th columns) with two samples for each dataset. (1st row) Raw amplitude images after
log transformation for better visualization, (2nd row) their corresponding histograms in log, (3rd row)
histograms after proposed normalization and (4th row) corresponding normalized images.

2.2.3. Coherence Estimation

Coherence map is estimated from two co-registered SAR images and is usually used as an
indicator of phase quality. Demarcation of image regions based on the degree of contamination
(“coherence”) is an important component of the InSAR processing pipeline. 0 coherence denotes
complete decorrelation. On the other hand, successful and accurate deformation is measurable with
high coherence. Lower quality of interferometry corresponds to decreasing coherence level and
increasing level of noise on the phase. Interferometric fringes can only be observed where image
coherence prevails. Filtered output is usually combined with coherence map for further processing,
because coherence map could tell how much useful signals are potentially within this area. Some of
the filtering studies also require coherence map in the filtering process. However, most of them use
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Maximum Likelihood (ML) estimator (Equation (5)) or its extensions, which are usually significantly
biased when using small window sizes. These methods can lose resolution and increase computational
cost with large window sizes. Generally speaking, an area on the ground is treated as coherent, when it
appears to have similar surface characterization within all images under analysis. However, between
two SAR acquisitions, subareas will decorrelate if the land surface is disturbed. Therefore, CNN is
a very good candidate to handle this spatial and non-local based analysis, especially on our input o,
where almost all necessary information is available for learning the features and capturing mapping
functions. During training, the model can learn to capture prior knowledge on all training samples
and represent the knowledge as network weights. Intuitively, our method takes a more reliable and
robust non-local analysis compared to conventional non-stack based work, which only considers one
interferogram. It is also more time efficient than stack-based method because there is no requirement
for doing heavy runtime analysis after training is done. In our model, we have a separate module in the
proposed DeepInSAR for coherence estimation by using the same features extracted from observations
o as shown in Figure 3. Because coherence lies in the range [0,1], we calculate sigmoid cross entropy
loss, given logits obtained from last convolution layer’s output c = Foh(o; Wfe, Wcoh):

L(Wfe, Wcoh) = z ∗ −log(σ(c)) + (1− z) ∗ −log(1− σ(c))

where σ(c) =
ec

ec + 1
.

(11)

z is the reference coherence map that can be pre-calculated by any existing coherence estimator in
order to generate training dataset for real images.

2.2.4. Shared Feature Extractor with Dense Connectivity

Natural images exhibit repetitive patterns, such as geometric and photometric similarities,
which provide cues to improve the filtering performance. This concept is also valid for InSAR
interferometric phase and SAR amplitude images. However, it should be noted that though,
CNNs perform well for visual related tasks, it is known that as CNNs become increasingly deep,
both input and gradient information can vanish and “wash out.” Recent work ResNet [48,50] have
addressed this problem by building shorter connections between layers close to the input and those
close to the output. By doing this, CNNs can be substantially deep but still have accurate performance
as well as efficient training. We adopt a dense connected CNN introduced in Reference [40] as a
shared feature extractor before the real-imaginary filter and coherence estimator. In the single-look
interferometric phase, the latent noise level is related to the coherence magnitude [41]. A shared
feature extractor for both phase filter and coherence estimation modules is expected to capture this
relationship in latent space because weights in the feature extractor Wfe are updated based on the
gradient feedback back-propagated from both phase residual prediction and coherence estimation as
shown in Figure 3. During training, the model can encode non-local image prior by updating network
parameters according to both phase filter and coherence estimator loss. After training, the model
can directly produce filtering and coherence output with a learned discriminative network function
without any runtime non-local analysis.

Furthermore, because of the dense connectivity, our feature extractor follows multi-supervision
that learns to extract common feature parameters for all related subsequent tasks [39]. In case
of dense connectivity, each layer in the feature extractor is connected to every other layer in a
feed-forward manner. During gradient back-propagation, each layer’s weight is updated based
on all subsequent layers’ gradients [40]. As shown in Figure 1, features extracted by each layer
in the feature extractor module of DeepInSAR are based on all preceding layers’ output. At the
same time, its own output is passed to all subsequent layers as input. In our network, all feature maps
extracted at different depth levels are passed to both phase filter and coherence estimator as a single
concatenated tensor. Note that, as per deep CNNs’ working mechanism, early layers extract most
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detailed and low complexity features with a small perceptual field. With increasing depth, later layers
in the feature extractor start extracting high level and complex features with a larger perceptual field.
Therefore, a densely connected CNN feature extractor allows each sub-module to perform its own
task with multi-scale and multi-complexity features. The proposed DeepInSAR also achieves a deep
supervision by allowing each layer in the feature extractor to have direct access to the gradients from
both sub-modules. Dense connectivity guarantees the model to get better feature propagation and
enables feature reuse and fusion, which is really important for InSAR phase filtering and coherence
estimation. In real-world images, ground data sites contain very different scale level characteristics.
That is why most existing methods require user-defined window sizes to extract image characteristics.
Therefore, all these methods suffer from the inability to choose a generic optimal window size, and fail
to automatically generalize to different data sites. In our case, we use a dense CNN based feature
extractor to intelligently select the best multi-level features for subsequent modules. The experiments
in Section 4 show that our model is capable of generalizing on phase filtering and coherence estimation
for different scale features in one image, as well as performing effectively on new site images.

Figure 3. Information and Gradient flow between modules.

2.2.5. Teacher-Student Framework

Based on our findings, the main reason why deep learning techniques have not been pursued
widely in InSAR filtering and coherence estimation so far is the lack of ground truth image data
(reference without noise) for training such models. For training our proposed DeepInSAR model,
we need image pairs as described in Section 3. However, there is no ground truth for real-world
InSAR images. Therefore we introduce a teacher-student framework to make it feasible to train
DeepInSAR for real-world images. From the literature, stack-based methods, like PtSel [51], always give
reliable results. PtSel is an industry level algorithm for coherence estimation and interferometric phase
filtering, which searches similar pixels across a stack of interferograms in both spatial and temporal
domains. There are three key steps of PtSel algorithm (Figure 4) to generate the coherence map for a
stack of interferograms. Next, the filtering process is replacing each interferograms’ pixel data by the
weighted mean of the phase values of its neighbouring pixels, where the weight is the PtSel generated
coherence value. Despite the accuracy of stack-based methods, it requires historic SLCs and intensive
online parallel searching using a high-end GPU farm, which limits its ability to be integrated into a
time-critical InSAR processing chain. The stack-based methods have to wait for several months to
collect sufficient data before it can start processing a new site. Although existing stack or non-stack
based methods are powerful, most of them require human expert to ensure intermediate output quality
because they are incapable of automatically detecting and removing all possible real-world noise
patterns from InSAR data.
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Figure 4. Illustration of the PtSel method describing the three key steps in order [51].

We introduce a deep neural network to replace the manual pre-processing, that is, feature
extraction; and post-processing, that is, quality inspection, with a single intelligent trainable model.
Similar to training an object classification neural network model, a large human labeled dataset is
required in our approach. Human thus acts as a teacher to teach the model how to classify objects by
providing human labeled data. For InSAR phase restoration and coherence estimation, we adopt the
PtSel method to create filtered phase images for reference, coherence maps with human tuning and
full stack processing to make sure the results are sufficiently reliable. The detail of the PtSel algorithm
and its GPU implementation can be found at References [51,52]. In our approach, PtSel with expert
supervision becomes the teacher of the proposed DeepInSAR model, which is a student. We are able to
demonstrate that, after training, (1) the student DeepInSAR can generate on par or even better results
than its teacher method—PtSel, using the same test data sets, (2) our model only requires feed-forward
inference on a single pair of SLCs, while PtSel requires more than thirty SLCs; and (3) our model can
output filtering and coherence results after a one pass computation, while PtSel requires back and
forward tuning processes and needs the phase unwrapping step, which is time consuming.

2.3. Experimental Setup

We compared our method with a number of other non-stack based methods, which can also
perform both phase filtering and coherence estimation. They are (1) BoxCar filter, (2) NL-SAR [27]
and (3) NL-InSAR [3]. We used publicly available implementations of these methods found in https:
//github.com/gbaier/despeckCL. Note that all parameters were set, when applicable, as suggested
by the authors of the original papers, or else chosen to optimize the performance. We implemented
the proposed DeepInSAR using Tensroflow-GPU 1.10; the code is available at: https://github.com/
Lucklyric/DeepInSAR. In order to maximize the randomness of the training patch samples, for a
given training dataset, the model was trained on randomly extracted image patches with a size of
128 × 128 on the fly [53]. Network parameters were updated using Adam optimizer with a batch size
of 64 and 0.001 initial learning rate. The model was trained on two NVIDIA 1080 GPUs for 6 hours
with 1.6× 105 iterations. To fairly compare the computational time, we executed all methods on the
same GPU with an i7-8700K processor and 32 GB RAM. It is worth noting that we built and trained
our model using common hyper-parameter settings in our experimental setup because the work
presented in this paper is mainly for validating the feasibility of using deep learning techniques to do
InSAR phase filtering and coherence estimation. It is expected that more extensive hyper-parameter
tuning will further improve the performance of our proposed deep model based on the findings in
References [40,49]. We conducted our experiments using both simulated and real-world data to assess
the effectiveness and robustness of the proposed model. In this section, we also discuss learning
capacity and generalization ability, which are essential criteria for evaluating a learning model.

https://github.com/gbaier/despeckCL
https://github.com/gbaier/despeckCL
https://github.com/Lucklyric/DeepInSAR
https://github.com/Lucklyric/DeepInSAR
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3. Results

3.1. Results on Simulation Data

In this section, we present quantitative results using simulated data. Simulated data allows
us to evaluate the filtered quality in a controlled environment by comparing with the simulated
ground truth. Ground truth is treated as an optimal teacher for training our proposed DeepInSAR;
we can objectively demonstrate our model’s capability to learn proper phase filtering and coherence
estimation for new simulated testing images, with ground truth available. The simulation strategy is
similar to the work for generating the interferometric phase in Reference [26]. Instead of synthesizing a
limited known patterns, the additional advantage is to extend the simulation for randomly generated
irregular motion signals, ground reflective phenomena, as well as non-stationary noisy conditions.
We designed a synthetic InSAR generator to randomly simulate a pair of SLC SAR images with the
following procedure:

• Generate first SLC image S1 with 0 phase value. The amplitude value grows from 0.1 to 1 from the
left-most column in the image to the right column following a Rayleigh distribution. This leads to
a linearly growing of coherence from left to right.

• Generate second SLC image S2 by adding random Gaussian bubbles as synthetic motion signals
to the phase. The amplitude value is equal to S1’s amplitude value.

• Add random low-value amplitude bands (less than 0.3) on S1 and S2 to simulate stripe-like low
amplitude incoherence areas.

• Generate noisy SLCs Snoisy
1 and Snoisy

2 by adding independent additive Gaussian noise v to both
real and imaginary channels of S1 and S2.

• Calculate clean and noisy interferometric phase I and Inoisy.
• Calculate ground truth coherence using clean amplitude, phase, and the standard deviation of

base noise v.

Our simulated image generator includes a set of parameters for controlling the complexity of
the interferometric phase at different distortion levels. We generated 18 different configurations,
by combining (1) three base Additive White Gaussian Noise (AWGN) levels of v (S1, S2, S3), (2) three
fringe frequency levels of phase fringes (F1, F2, F3), and (3) with or without low amplitude strips
(S, NS). For example, the dataset, which has a relatively high level of base noise, and low fringe
frequency with low amplitude stripes, is denoted by S3-F1-S. Sample images are shown in the first
column of Figure 5. We generated 100 samples with 1000 × 1000 image resolution under each
configuration. Half of them were used for training and the rest were for testing. In this experiment, in
order to assess the learning capacity and generalization ability of our proposed DeepInSAR model,
a single model was trained on all 18 datasets with the noise-free ground truth images (teacher).
Because all amplitude stripes and motion signals are randomly generated, all images between training
and testing datasets were distinct. Figure 5 shows randomly selected samples from our simulation
dataset. Our data generator is inspired by the noise simulation strategy described in Reference [54].
Basically, we simulate speckle noise by adding uncorrelated zero-mean Gaussian random variables
to the real and imaginary parts of both synthetic SLCs before multiplying them for interferogram
generation. To get the ground truth coherence for the simulated interferogram, we make an empirical
mapping to it from the standard deviation of those random variables and the ground truth amplitude.
This is because increasing the noise will decrease the coherence, and decreasing the amplitude will
also decrease the coherence. In this case, each pixel in the generated interferogram is composed
of 4 zero-mean Gaussian random variables with identical standard deviation. The source code of
our simulator and full resolution simulated samples used in the experiments are available online at
https://github.com/Lucklyric/InSAR-Simulator.

https://github.com/Lucklyric/InSAR-Simulator
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Figure 5. We use S#-F#-S or S#-F#-NS to name simulation datasets generated using different distortion
scenarios: S# denotes Gaussian level of base noise S; F# denotes frequency level of phase fringes F;
S and NS mean with or without low amplitude strips respectively. (From left to right) A set of simulated
images are selected from S1-F3-NS, S2-F2-NS, and S3-F1-S datasets. First row shows simulated
ground truth with clean interferometric phase [−π,π), second row is the noisy interferometric phase
[−π,π)—(Blue: −π; Red: +π), and third row is coherence (Black: 0; White: 1).

Visual comparisons with BoxCar, NL-InSAR, NL-SAR, and our proposed DeepInSAR methods
are presented in Figure 6. Each two rows show the phase filtering and coherence estimation of the three
images in Figure 5 respectively, where (a–d) are filtering outputs and (e–h) are coherence estimations
of S1-F3-NS, (i–l) are filtering outputs and (m–p) are coherence estimations of S2-F2-NS, and (q–t) are
filtering outputs and (u–x) are coherence estimations of S3-F1-NS. Visual inspection on the filtered
outputs compared to ground truth clean phase images in Figure 5 shows that our model can preserve
phase structural details better than other methods for increasing base noise levels (Figure 6q–t) and
frequency of fringes (Figure 6a–d). As we can observe, all methods work fairly well on low-level noise
(S1) and low-level fringe frequency (F1) cases. However, with increasing distortion level, all other
methods perform rather poorly. The BoxCar filter loses resolution and produces noticeably squiggly
artifacts (Figure 6j,r). In particular, when distortion is with high base noise (S3) and high fringe
frequency (F3), our model only loses insignificant detail especially in relatively low coherent regions
on the left (Figure 6a,q). Although NL-InSAR can guarantee strong noise suppression with detail
preservation on high frequency fringes (Figure 6c), it over-smooths the image when phase distortion
level keeps increasing (2nd row of Figure 5); fringe structures are washed out when both distortion
level and fringe frequency are high (Figure 6k). For coherence estimation, our proposed DeepInSAR
is most matched to ground truth (Coherence row in Figure 5). BoxCar and NL-SAR tend to output
low coherence on fast moving areas (Figure 6f,h). NL-InSAR and NL-SAR fail to compute correct
coherence around low amplitude strips (Figure 6w,x). NL-InSAR also shows inaccurate coherence
estimation between the phase jumps (Figure 6h,p).
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Figure 6. Examples of filtering and coherence estimation results on sample simulation images shown in
Figure 5. (a–d) are filtering outputs and (e–h) are coherence estimations of S1-F3-NS, (i–l) are filtering
outputs and (m–p) are coherence estimations of S2-F2-NS, and (q–t) are filtering outputs and (u–x)
are coherence estimations of S3-F1-NS. Visual inspection on filtered outputs from different methods
compared to ground truth phase images are given in Figure 5, 1st row. It can be seen that our model can
preserve structural details better than others for increasing base noise levels and frequency of fringes
(5th row). Our proposed method’s coherence estimation is most matched to ground truth (Figure 5,
3rd row), while other methods tend to predict inaccurate results on areas with highly dense fringes or
low amplitude stripes.
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We also use objective assessment to evaluate the performance of our method. Our test datasets
include 18 × 50 = 900 simulated images with noisy and ground truth phase images, as well as
corresponding coherence indices. The results obtained from BoxCar, NL-InSAR, NL-SAR and our
proposed DeepInSAR are compared. We computed both Root Mean Square Error (RMSE) in radians
(Table 1), and mean Structural Similarity Map (SSIM) between the filtered phase image and noise-free
ground truth to quantitatively evaluate the filtering performance (Table 2). RMSE and mean SSIM
are also used to assess coherence estimation (Tables 3 and 4). Numerical results further confirm our
observations that the proposed DeepInSAR significantly outperforms all other methods on most of
the 18 different distortion levels. From the simplest (S1-F1-NS) to the most challenging (S3-F3-S)
simulation task, all methods have decreasing the performance on both phase filtering and coherence
estimation. However, the proposed DeepInSAR has the lest performance degradation and consistently
gives better results than the other methods with a total mean of RMSE (radians) 0.8536 and mean SSIM
score 0.8666 for phase filtering. The statistical analysis proves that our proposed model can effectively
remove the noise and at the same time maintain the structural information effectively. The accuracy of
our coherence measurement also shows superior performance with a total mean of phase RMSE 0.2167
and mean SSIM score 0.7984. Coherence computations in all other methods are biased as the data
complexity increases, especially when they deal with dense phase fringes (F3) and low amplitudes
strips (S).

Table 1. Phase Root Mean Square Error (RMSE) (radians) on 18 different types of Simulation dataset.
S denotes Gaussian level of base noise and F represents phase fringes frequency. S and NS mean with
and without low amplitude strips respectively. Values with bold fonts indicate the best performance.

Phase RMSE (Radians)

Sim Configuration Methods
BoxCar NL-SAR NL-InSAR Proposed

S1

S
F1 0.7469 0.8401 0.8373 0.6939

F2 1.0697 1.2012 0.9572 0.7422

F3 1.0699 1.2054 1.0354 0.7890

NS
F1 0.6675 0.7751 0.7088 0.6570

F2 0.9906 1.1015 0.8284 0.6938

F3 0.9623 1.1348 0.9138 0.7261

S2

S
F1 0.8409 0.8782 0.9105 0.8091

F2 1.1252 1.2319 1.0859 0.8854

F3 1.2096 1.2801 1.1890 0.9593

NS
F1 0.7863 0.8199 0.8256 0.7715

F2 1.0567 1.1687 0.9854 0.8297

F3 1.1251 1.2186 1.0855 0.8785

S3

S
F1 0.9542 0.9332 0.9648 0.9370

F2 1.1920 1.2657 1.1883 1.0239

F3 1.3080 1.3430 1.2940 1.1156

NS
F1 0.8886 0.8672 0.8976 0.8709

F2 1.1307 1.2203 1.1159 0.9555

F3 1.2398 1.2927 1.2120 1.0259

Average 1.0202 1.0988 1.0020 0.8536
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Table 2. Phase mean Structural Similarity Map (SSIM) on 18 different types of Simulation dataset.
S denotes Gaussian level of base noise and F represents phase fringes frequency. S and NS mean with
and without low amplitude strips respectively. Values with bold fonts indicate the best performance.

Phase SSIM

Sim Configuration Methods
BoxCar NL-SAR NL-InSAR Proposed

S1

S
F1 0.9424 0.8897 0.8566 0.9511

F2 0.7372 0.6266 0.7723 0.9333

F3 0.6937 0.5989 0.6888 0.9015

NS
F1 0.9665 0.8923 0.9505 0.9585

F2 0.8075 0.7413 0.8887 0.9493

F3 0.7999 0.7074 0.8117 0.9303

S2

S
F1 0.8898 0.8590 0.8358 0.9122

F2 0.6624 0.5681 0.6746 0.8647

F3 0.5150 0.4684 0.5202 0.7976

NS
F1 0.9221 0.8902 0.9023 0.9312

F2 0.7357 0.6577 0.7825 0.8966

F3 0.6152 0.5647 0.6398 0.8527

S3

S
F1 0.8026 0.8168 0.7939 0.8349

F2 0.5717 0.4989 0.5748 0.7670

F3 0.3747 0.3555 0.3919 0.6675

NS
F1 0.8570 0.8722 0.8508 0.8824

F2 0.6463 0.5736 0.6621 0.8211

F3 0.4612 0.4375 0.4938 0.7463

Average 0.7223 0.6677 0.7273 0.8666

Table 3. Coherence RMSE on 18 different types of Simulation dataset. S denotes Gaussian level of base
noise and F represents phase fringes frequency. S and NS mean with and without low amplitude strips
respectively. Values with bold fonts indicate the best performance. Values with bold fonts indicate the
best performance.

Coherence RMSE

Sim Configuration Methods
BoxCar NL-SAR NL-InSAR Proposed

S1

S
F1 0.4360 0.4532 0.3827 0.2125

F2 0.5418 0.6356 0.3526 0.1838

F3 0.5321 0.6251 0.3639 0.1850

NS
F1 0.2119 0.3472 0.1436 0.2045

F2 0.5458 0.6515 0.1907 0.1633

F3 0.5444 0.6494 0.2565 0.1564

S2

S
F1 0.4284 0.4522 0.4136 0.2688

F2 0.4887 0.5564 0.3802 0.2699

F3 0.4784 0.5463 0.3869 0.2774

NS
F1 0.2052 0.3303 0.1878 0.2011

F2 0.4768 0.5664 0.2749 0.2038

F3 0.4766 0.5600 0.3175 0.2166

S3

S
F1 0.3780 0.3988 0.3834 0.2549

F2 0.4251 0.4836 0.3726 0.2553

F3 0.4244 0.4678 0.3805 0.2591

NS
F1 0.2052 0.2522 0.2086 0.1920

F2 0.4117 0.4904 0.3116 0.1955

F3 0.4207 0.4817 0.3419 0.1998

Average 0.4240 0.4971 0.3139 0.2167
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Table 4. Coherence mean SSIM on 18 different types of Simulation dataset. S denotes Gaussian level of
base noise and F represents phase fringes frequency. S and NS mean with and without low amplitude
strips respectively. Values with bold fonts indicate the best performance.

Coherence SSIM

Sim Configuration Methods
BoxCar NL-SAR NL-InSAR Proposed

S1

S
F1 0.5598 0.5444 0.7150 0.9056

F2 0.4580 0.2859 0.5979 0.9007

F3 0.3180 0.1280 0.4455 0.9104

NS
F1 0.6695 0.7234 0.9497 0.9069

F2 0.5134 0.4225 0.6767 0.9040

F3 0.3524 0.2859 0.4318 0.8977

S2

S
F1 0.3621 0.5057 0.6257 0.7349

F2 0.3100 0.2860 0.4596 0.7649

F3 0.2340 0.1967 0.2930 0.7508

NS
F1 0.3061 0.7688 0.8752 0.7864

F2 0.2422 0.3986 0.4855 0.7584

F3 0.1756 0.1931 0.1853 0.7994

S3

S
F1 0.2555 0.5082 0.5734 0.6908

F2 0.2311 0.2952 0.4029 0.7323

F3 0.1840 0.1728 0.2275 0.7072

NS
F1 0.1782 0.8209 0.8195 0.7475

F2 0.1524 0.3910 0.4391 0.7119

F3 0.1246 0.1552 0.1416 0.7617

Average 0.3126 0.3935 0.5192 0.7984

3.2. Results on Real Data

Real complex features and noise patterns cannot be fully replicated by simulation data. However,
we can conclude from simulation data experiments that if we can give the model close to clean
reference data for teaching DeepInSAR, the model can learn latent mapping from training samples.
As mentioned in Section 2.2.5 , we use PtSel with expert supervision to generate clean reference phases
and coherence maps for three real-world datasets captured by TerraSAR-X in StripMap mode [46]:
(1) Site-A—27 SLCs, (2) Site-B—37 SLCs, and (3) Site-C—103 SLCs. We used a cropped version of
these datasets with size 1000 × 1000 pixels. For coherence estimation, because the window-based
PtSel coherence estimator is biased [51], we applied binary thresholding 0.5 on PtSel’s coherence
output to transform the original regression problem into a classification task. During the inference
step, we use coherence estimator’s sigmoid output as the confidence level to represent final coherence
magnitude. To demonstrate the generalization ability of the proposed DeepInSAR on real word InSAR
data, we trained the model using images from two sites and tested its robustness on the third site.
Three representative interferograms selected from each of the three real datasets are shown in Figure 7.
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Site_A Site_B Site_C

Figure 7. Three representative noisy interferograms (Phase) selected from each of the three real datasets;
Blue: −π; Red: +π.

Filtered phases and estimated coherence obtained using BoxCar, NL-InSAR, NL-SAR, PtSel,
and our trained DeepInSAR are shown in Figures 8–10, which are the outputs of three real sites given
in Figure 7. We use qualitative comparison because we do not have noise-free real images for quantity
evaluation. The BoxCar filter tends to blur fringe edges in all the visual samples, mainly because
of its low-pass behaviour and it under-filters near incoherent areas, which can be easily observed
when zooming in. In Figure 8, there appears minor loss of resolution in thin strips (when zoomed
in) for the proposed compared to PtSel (stack-based) but is still much better than all other methods
that use a single interferogram. NL-InSAR has more stripping artifacts that cause streaks in the
phase along incoherence boundaries, which also shown up in its coherence output (Figure 9). It also
results in artifacts that follow the benches rather than the fringe lines (Figure 10). NL-SAR can
significantly remove the noise, but it also yields over-filtering that breaks some fringes and also
merges small scale signals with neighbouring fringes (Figure 8). Overall, though non-local based
NL-SAR and NL-InSAR can provide as sharp and visually appealing filtered phase as DeepInSAR
on high coherence areas, in medium and low coherence areas, they tend to flatten the phase and
create artifacts in highly noisy areas (Figure 8). Both methods have lower overall variance and less
blurring than the BoxCar filter, though NL-InSAR has high variance in the estimates between the
coherence/amplitude boundaries with streaky artifacts. Our proposed DeepInSAR shows a good
balance between noise removal and structural preservation. Regarding to coherence estimation, the
proposed DeepInSAR consistently gives better contrast and less spurious high coherence points within
the low coherence areas in all the visual samples. It would be easier to be used as the weighting
mask for the subsequent InSAR processing e.t. phase unwrapping, compared to other methods.
In NL-SAR’s and NL-InSAR’s coherence outputs, there are also artifacts showing high coherence
dots in low coherent areas. The limitation is caused by NL-InSAR’s numerical instability algorithm
and preferential treatment of amplitude, when the amplitude similarities disagree with the phase
similarities. Explanation of NL-InSAR’s weakness is also discussed in Reference [55,56]. Comparing
to these non-stack based methods, our DeepInSAR offers both strong noise suppression and detail
preservation as well as gives clear high contrast coherence estimation. It performs on par and even
better than its stack-based teacher method—PtSel. PtSel’s coherence estimation is biased toward low
coherence in the dynamic areas (Figures 8 and 10), because it requires the target remaining stable over
a long period of time [51].
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Figure 8. Filtered images and coherence maps generated by the reference methods and proposed
DeepInSAR trained model for a Site-A image.
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Figure 9. Filtered images and coherence maps generated by the reference methods and proposed
DeepInSAR trained model for a Site-B image.
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Figure 10. Filtered images and coherence maps generated by the reference methods and proposed
DeepInSAR trained model for a Site-C image.

4. Discussion

The High-level fringe frequency indicates fast-moving areas on the ground. These areas usually
introduce many phase jumps (−π to +π) in the wrapped interferogram. As aforementioned, structural
information is one of the most important information that any phase filtering method should preserve.
This is because the performance of subsequent InSAR processing, for example, phase unwrapping, is
heavily affected by the distorted fringe structure. Many gradient-based phase-unwrapping methods
reply on the phase gradients and derivatives, which are types of structural information [10]. As an
effective InSAR phase filter, it should preserve the structural details as much as possible [16], and our
proposed method demonstrates this capability. For such evaluation, SSIM is a better metric comparing
to RMSE for assessing how much structure information has been preserved after filtering. The mean
SSIM score (Table 2) indicates that our method preserves excellent details even on highly dense
fringes (F3), where all reference methods show decreasing performance as the fringe density increases.
Our model shows more noticeable improvement under the SSIM metric than the RMSE metric. It is
because RMSE estimates absolute errors and the SSIM provides scores, which focus on the structural
similarity. If a filter is over-filtering or breaking the boundary between phase jumps, it may only show
insignificant RMSE changes, but will introduce a significant SSIM degradation. Furthermore, if a filter
fails to fully suppress the noise signals, the residual noise in the output image will also be reflected
more sensitively by SSIM score as in the natural image [57]. This is also the main reason why we
use the SSIM metric in the comparisons. Note that, the structural information of coherence is not
as important as the filtered phase, because the coherence values are mostly used as a thresholding
or weighting metric for subsequent processing. However, we still added SSIM metric for coherence
estimation to enrich the experimental analysis. Table 4 shows that the proposed DeepInSAR can predict
coherence map most matched to the ground truth. It demonstrates why our method can give high
contrast and clear boundaries between extremely low and high coherence areas in both simulation and
real site outputs. We believe that a method which can precisely recover the structural information in
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coherence map must also benefit the subsequent processing with a more detailed and precise coherence
indication.

Moreover, in Figure 7, we used three very different real site interferogram examples. Similarly,
all test simulation data were generated randomly as described in Section 3.1. Both quantitative
and qualitative results confirm that our trained DeepInSAR model generalizes well to new InSAR
data without any human supervision or parameter adjustment, which is required by other methods.
As an example, when we adjusted the searching window size to a smaller size, NL-SAR and NL-InSAR
were able to filter well on those highly dense fringes, but facing under-filtering problem on slow
motion areas. During the experiments, we had to manually tune the set of parameters for the
reference methods in order to get reasonable results. Their coherence estimators also have similar
limitations. In comparison, our proposed model’s coherence output is closest to the ground truth in
all different distortion cases. For instance, all three referenced methods tend to give better results
when using (1) a small window size on highly dense fringe areas but (2) need a large window size
on low frequency motion. There is no fixed size, which works for all 18 simulated distortion levels.
However, we show that our learning based DeepInSAR works well for all 18 simulated datasets with a
single trained model. It has successfully learned the mapping from noisy observations (18 different
distortions) to latent clean signals and coherence magnitudes, when we give it proper training samples
to explore. Using densely connected feature extractor gives DeepInSAR the ability to intelligently
handle multi-scale signal characteristics with a single model. Since the simulated signal patterns are
random, therefore simulated motion patterns, noise conditions and low reflective strips, are irregular
among all training and testing images. The evaluation output from the test dataset shows that our
trained model does not suffer from the over-fitting issue and only shows a small generalization error,
which however has not affected its better performance. It learns well from the teacher and the model
can be generalized to new InSAR data. From the operational point of view, NL-InSAR has large amount
of artifacts that it produces in the phase and coherence. There are many instances where it does a good
job, but in an industrial setting reliability is more important. NL-SAR is better in terms of reliability,
but much worse in terms of resolution and is therefore also not an efficient option. The proposed
DeepInSAR balances well on noise reduction and fringe preservation. At the same time, it gives a high
level of bi-modality in the coherence estimates between the incoherence and coherent pixels.

Furthermore, besides the superior performance compared to other non-stack methods, under a
teacher-student framework, DeepInSAR can achieve results comparable to or better than its teacher
method with a learned discriminating neural network. The PtSel algorithm (teacher) has several
limitations—(1) It relies on temporal information, which means that non-local linear motion can
make it hard to pick a neighbourhood suitable for all interferograms, causing under-filtering in
these areas. As a result, the algorithm has to wait for many more days of sufficient data before starting
the process; (2) It has bias toward filtering results—PtSel looks for similar nearby pixels to perform
filtering. If it does not find enough of such pixels, then the filtering is toward averaging, giving
worse result compared to another pixel which can find lot of similar neighbours. PtSel’s filtering and
coherence output is regarded as state-of-the-art in the literature, but it fails to give optimal output
across the test input image because of its biased adaptive kernel estimation. On the other hand,
the proposed DeepInSAR successfully distills the knowledge from training samples and generalizes
the model to new unseen InSAR images with a simple feed-forward inference, without any human
expert supervision, or intensive online searching on a stack of interferograms as required by PtSel.
Our proposed DeepInSAR model captures coherence in the fast-moving areas even better than PtSel
and produces excellent delineation in the coherence with better contrast, which helps subsequent
stages in the InSAR processing pipeline, that is, when thresholding and weighting are required
on the estimated coherence in the phase unwrapping stage. With respect to the average running
time (T) in seconds, as seen from Table 5, the proposed method requires significant less running
time than other non-stack methods because only feed-forward computation is needed after training.
After testing different parameter settings (e.g., number of iterations and patch size), reference methods
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sometimes get better results after running for a longer time. However, it is not always the case, which
means that these methods have limited potential of full automation without human intervention.
The proposed method shows better results with much faster processing time. It is worth mentioning
that PtSel outputs used for training and visual comparison are generated using a Titan XP GPU farm.
This is because PtSel requires high-end GPUs for intensive parallel searching on a stack of SLCs
(>30). In comparison, our method can run on a consumer level system, and perform filtering and
coherence estimation using only two SLCs. Taking filtering, coherence performance and flexibility
into consideration, the proposed DeepInSAR is very competitive and suitable for real-world InSAR
applications.

Table 5. Running time T (in seconds) of different methods with image size 1000 × 1000.

BoxCar NL-SAR NL-InSAR Proposed

T (s) 1.16 12.77 19.36 0.46

Lastly, it is worth mentioning that, in this work, our InSAR simulator is mainly designed for
quantitative evaluation and analysis, because there is no ground truth data for real-world images.
The proposed simulator can generate randomly composite irregular motion signals, ground reflective
phenomena, as well as non-stationary noise conditions with different controlled configurations. It is
an ideal scenario for objectively assess our proposed DeepInSAR’s learning capacity and ability of
generalization. However, as a data-driven technique, when we want to apply the proposed DeepInSAR
framework on real-world InSAR data, we need to make sure the training data distribution is similar to
real-world scenarios. Existing simulator is designed to give controlled experimental environments
for quantitative analysis, but it is still not able to fully replicate the real-world complex features and
noise patterns. That is also the reason why we propose the teacher-student framework, which has
been validated to be useful for adapting the proposed DeepInSAR to a real-world phase filtering
and coherence estimation pipeline. This is also one of the contributions we would like to highlight.
We show the potential benefits in the InSAR industry that the proposed DeepInSAR framework has
the ability to transform conventional methods, which might require higher computational resources,
more input observations, and human supervision, into a differentiable deep neural network model by
learning from their outputs. In future work, we plan to investigate a Generative Adversarial Network
(GAN) [58] based InSAR simulator for generating more realistic synthetic data. We believe that it will
certainly confirm the operationalization aspect of the proposed DeepInSAR.

5. Conclusions

In this paper, we propose a learning-based DeepInSAR framework to address two important
research issues: InSAR phase filtering and coherence estimation, in a single process. Our model
works well when using either simulated or real data, under different synthetic distortion and real
noisy pattern levels. To quantitatively assess the proposed method, we designed an InSAR simulator,
which can generate motions and noise patterns randomly. The proposed DeepInSAR outperforms
existing non-stack based methods for both tasks by giving the most matched filtered phase and
coherence map comparing to the ground truth data. SSIM scores (0.8666 for phase filtering and
0.7986 for coherence estimation) also show superior DeepInSAR performance that can preserve well
the phase fringe structure after filtering, and at the same time gives sharp and clear coherence map.
Numerical results show that the proposed DeepInSAR can generalize well on new unseen images
once it has been trained, and thus can be applied in various real-world InSAR applications. We also
presented a teacher-student training strategy, which allows the proposed DeepInSAR to augment,
automate and accelerate existing un-differentiable methods using a differentiable deep neural network.
Our trained model can obtain the same or better filtering and coherence estimation results only on
a single pair of SLC images compared to its teacher algorithm, which requires a stack of SLCs(>30),
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achieving significantly higher computational efficiency. Comparing to other non-stack based methods,
our model gives most robust results on both filtering and coherence estimation (1) without any human
supervision and (2) with real-time performance. In addition, the proposed DeepInSAR gives a high
level of bi-modality coherence estimation that nicely distinguishes the incoherence and coherent pixels,
which benefits the subsequent phase unwrapping. To the best of our knowledge, the proposed
DeepInSAR is the first work that uses deep neural network to perform InSAR filtering and coherence
estimation jointly using both amplitude and phase information of only two co-registered SLC SAR
images. In future work, we will investigate how well the proposed DeepInSAR framework can benefit
subsequent InSAR analytic stages along the processing pipeline.
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