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Abstract: Accounting for endmember variability is a challenging issue when unmixing hyperspectral
data. This paper models the variability that is associated with each endmember as a conical hull
defined by extremal pixels from the data set. These extremal pixels are considered as so-called
prototypal endmember spectra that have meaningful physical interpretation. Capitalizing on this
data-driven modeling, the pixels of the hyperspectral image are then described as combinations
of these prototypal endmember spectra weighted by bundling coefficients and spatial abundances.
The proposed unmixing model not only extracts and clusters the prototypal endmember spectra, but
also estimates the abundances of each endmember. The performance of the approach is illustrated
thanks to experiments conducted on simulated and real hyperspectral data and it outperforms
state-of-the-art methods.
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1. Introduction

Hyperspectral imaging records a collection of two-dimensional (2D) spatial images acquired
at several hundred wavelengths. Each pixel is associated with a reflectance or radiance spectrum
that enables a variety of materials to be uniquely identified and quantified [1]. Yet, this high spectral
resolution usually comes with a reduced spatial resolution and, as a consequence, the presence
in the image of mixed pixels (mixels), e.g., pixels at the boundary of two materials. Hence,
quantifying materials that are present in mixels is of primary importance for a full analysis of an
hyperspectral image.

Spectral unmixing (SU) aims at decomposing a mixed spectrum into a collection of pure spectra
(endmembers) and estimating their proportions (abundances) in each pixel of the image [2,3]. The linear
mixing model (LMM) is the most widely used model for SU because of its simplicity [4]. LMM assumes
that a single spectrum fully characterizes a given class of material. However, the underlying
assumption is unrealistic, because the spectral signature of a material is usually affected by illumination
variations and it suffers from intrinsic variability of the class [5,6]. The spectral variability affecting a
class of material is usually referred to as endmember variability [7,8].

To tackle this issue, a popular approach consists in assuming that a spectral library describing
this endmember variability is a priori available [9]. An optimal combination of endmember spectra
from a spectral library is selected before estimating their respective abundances. Among this family of
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approaches, multiple endmember spectral mixture analysis (MESMA) is probably the most popular
method and it has been successfully applied to many applications [10]. More recently, several
models have been developed in order to achieve better accuracy while reducing the computational
complexity of the combinatorial selection procedure. These advanced models depart from MESMA,
since they simultaneously handle all of the spectra composing the spectral library and estimates their
corresponding abundances, resorting to additional constraints, e.g., sparsity [11–13].

All of these methods provide a simple and flexible representation of endmember variability
provided that a spectral library is validated by an expert. However, such prior knowledge and the
quality of the spectral library may be difficult to assess [6]. For instance, multiple experts provide
generally different and often inconsistent description of endmember variability. To overcome this
human-based expertise, automated data-driven endmember bundle extraction methods build the
spectral library from the measured spectra directly [14–16]. Yet they require a careful tuning of
parameters that do not have any physical meaning while significantly affecting the unmixing results.

One alternative consists in designing statistical or parametric methods that do not rely on
any spectral library. Statistical methods describes the endmember variability through a probability
distribution [7,17,18]. The parametric methods explicitly the variability as a deviation of the spectral
signature from a nominal behavior [19–22]. These models have been resorted to handle spatially or
temporally varying endmember signature within a given image [20,23] or across multiple images
acquired at different time instants [24–27]. However, inference from these models is greatly impaired
by the endmember variability and it becomes too challenging to accurately account for complex
physical processes that underlie most observed variabilities.

In our previous work [28], the endmember variability was modeled as a conical hull, including all
spectra of a given endmember class. However, these spectra still need to be selected beforehand to
build a spectral library. This paper builds on and extends this promising conical hull-based model
of endmember variability to design an unmixing method that does not require the prior knowledge
of a spectral library. Instead, the proposed framework relies on a mixing model that is similar to
archetypal analysis (AA), which allows for the spectral signatures defining the endmember classes to be
automatically learned from the data, yielding a fully unsupervised unmixing method. More precisely,
the conventional formulation of AA assumes that observations are convex combinations of so-called
archetypes, themselves defined as convex combinations of the observations [29]. AA and some
variants have been already instanced in the specific context of hyperspectral image analysis [30,31].
In particular, when conducting unsupervised unmixing, the archetypes have shown to provide
physically meaningful estimates of the endmember spectral signatures [32–36]. However, very
few attempts have capitalized on the AA concept to explicitly tackle the problem of spectral
variability [37,38]. In this work, to handle spectral variability, we assume that the measured pixel
spectra are convex combinations of pixel-wise endmember spectral signatures. Capitalizing on our
past results [28] and exploiting an AA-like formulation, we define this set of endmembers signatures
as conical combinations of so-called prototypal endmembers corresponding to extremal pixels that
belong to the data set. In other words, each intra-class endmember variability is described by the
conical hull spanned by prototypal endmembers, which have the great advantage of having a clear
physical interpretation. By constraining the spectral variability to be modeled through these prototypal
endmember spectra, it combines the advantages of unsupervised methods that do not require expert
knowledge and those of spectral library-based SU methods that offer a physically sound description of
the variability. Thus, the main contributions of this paper are threefold:

1. It introduces the new assumption that endmember variability can be represented by the conical
hulls of prototypal endmember spectra.

2. It derives the resulting mixing model, which, coupled with a hierarchically structured
group-sparsity constraint, allow for the prototypal endmember spectra to be automatically
extracted and clustered from the data.
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3. It develops the associated unmixing algorithm that jointly estimates the prototypal endmembers
and the abundances within an unsupervised framework.

The structure of this paper is organized, as follows. Section 2 describes related works and their
inherent drawbacks and the newly proposed assumption for modeling endmember variability is
introduced. In Section 3, the unmixing model that incorporates the new assumption is proposed and
the estimation of its parameters is discussed in Section 4. Sections 5 and 6 show results obtained from
the experiments. Finally, Section 7 concludes the paper.

2. Related Works

2.1. LMM with Fixed Endmember Spectra

Let yp ∈ RL×1 denote the L-spectrum measured at the pth pixel of an hyperspectral image,
M = [m1, . . . , mK] ∈ RL×K is the matrix of the endmember spectra associated with the K endmember
classes, ap =

[
a1p, . . . , aKp

]T ∈ RK×1 is the abundance vector of the pth pixel, where akp is the
abundance fraction of the kth endmember class. The linear mixing model (LMM) assumes that the
observed spectrum of the pth pixel yp is approximated by a weighted linear combination of endmember
spectra and abundance fractions

yp = Map + np (1)

where np ∈ RL×1 represents the noise and modeling error. Abundance non-negativity constraint
(ANC) and the abundance sum-to-one constraint (ASC) are usually imposed, as follows

∀k, ∀p, akp ≥ 0, and ∀p,
K

∑
k=1

akp = 1. (2)

As discussed in the introduction, this model is known to be not sufficiently flexible to describe
endmember variability.

2.2. LMM with Pixel-Wise Endmember Spectra

Many methods have been developed to incorporate endmember variability in LMM [7,8].
State-of-the-art approaches consider endmember spectra that are spatially variable for each pixel, i.e.,

yp = Mpap + np (3)

where Mp =
[
m1p, . . . , mKp

]
can be interpreted as pixel-wise endmember spectra [39]. It is worth

noting that the model in (3) can be straightforwardly rewritten as a conventional LMM (1), i.e.,

yp = Map + ñp (4)

where ñp , np + (Mp −M)ap. This ambiguity shows that distinguishing measurement noise from
spectral variability or, more generally any other second-order effects, such as nonlinearity [40] or
adjacency effects [41], is a challenging issue. However, one may expect to correctly describe a particular
deviation from the conventional LMM if this deviation has a magnitude significantly greater than
the measurement noise level, i.e.,

∥∥(Mp −M)ap
∥∥2

2 �
∥∥np

∥∥2
2 [42]. Conversely, once the level of this

noise is larger than the magnitude of spectral variability, correctly estimating the variability becomes
much more challenging. However, hyperspectral imaging for Earth observation offers a favorable
applicative context where advanced models can be considered, since the typical signal-to-noise ratios
(SNRs) are sufficiently high. Moreover, this ambiguity can also be alleviated by imposing additional
assumptions on the components of the mixing model. In the literature, these additional assumptions
cast the resulting unmixing methods into several families discussed in what follows.
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2.2.1. Spectral Library-Free Mixing Models

A wide class of unmixing methods are unsupervised in the sense that they are not driven by any
additional prior knowledge. Among these methods, some assume that the spectral signature mkp
associated with the kth endmember class in the pth pixel can be described thanks to a statistical model.
The most popular, referred to as normal compositional model, considers the Gaussian [17,43–46]

mkp ∼ N (m̄k, Σ) (5)

where m̄k is the nominal signature associated with the kth endmember class and Σ is a covariance
matrix encoding endmember variability. In [47], the authors follow the same approach while
advocating the use of the beta distribution to enforce the endmember signatures to belong to the
set (0,1).

Other unsupervised methods elaborates on explicit parametric (i.e., deterministic) modeling of
this variability. When this latter results from illumination variation, a natural approach consists in
introducing a scaling factor, as in [19]. The pixel-wise endmember matrix is, thus, defined as

Mp = MSp (6)

where Sp = diag[s1p, . . . , sKp] gather spatially varying scaling factors. In [20], the authors model the
variability as an additive perturbation dMp around the nominal signatures

Mp = M + dMp (7)

The pixel-wise endmember spectra can also be modeled as a combination of scaling and additive
factors [21]. The aforementioned pixel-wise endmember spectra can be very flexible. Another route
followed in [48] consists in performing a linear unmixing in a particular lower-dimensional subspace
accounting for spectral variability. However, the optimization of the endmember variability terms
is challenging without any additional prior knowledge.

2.2.2. Bundle-Based Mixing Models

A wide class of methods capitalizes on the availability of a spectral library as prior knowledge.
This library includes multiple spectra, known as endmember bundles, representative of each
endmember class. This library is defined as the L× N structured matrix

E =
[

E1 E2 · · · EK

]
(8)

where the submatrix Ek =
[
e1k, . . . , eNkk

]
∈ RL×Nk defines the bundle associated with the kth

endmember class, Nk is the number of spectra representative of the kth endmember class with
N = ∑K

k=1 Nk. In particular, the well-known MESMA approach builds on this formalism to form
the pixel-wise endmember matrix Mp =

[
m1p, . . . , mKp

]
by selecting a single spectrum from each

endmember bundle Ek [10], i.e.,

∀k ∈ {1, . . . , K} , mkp ∈
{

e1k, . . . , eNkk
}

. (9)

This model imposes that the endmember variability can only be described by the spectra belonging to
the endmember bundles. When endmember variability is not fully captured by the design of these
endmember bundles, the performance of MESMA is thus expected to severely degrade.

Some unmixing models have been developed in order to overcome the problem of
MESMA [12,13,49]. Instead of considering the LMM (1), these methods rather build on the formulation

yp = Erp + np (10)
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under ASC and ASC where the vector rp ∈ RN×1 are multiple abundances allowing several spectra in
each bundles to be used to describe the mixture. By considering all spectra, endmember variability can
be described by the convex combination of each spectral signatures defining the endmember bundles.
However, these models do not impose any structure to independently describe pixel-wise endmember
spectra nor abundances of each class. In addition, due to the ASC, this representation prevents
any proper modeling of illumination variation by a scaling factor. To cope with these limitations,
the multiple endmember mixing model (MEMM) proposes decoupling the pixel-wise abundance ap

from the spectral variability modeling by explicitly introducing additional bundling coefficients Bp,
i.e., by imposing rp = Bpap [28]. Equivalently, the pixel-wise endmember matrix is then defined as
Mp = EBp and the mixing model writes

yp = EBpap + np (11)

where Bp ∈ RN×K represents bundling coefficients that are associated with the pth pixel.
Under the particular structure (8) for the building E, the bundling matrix Bp has the following
companion structure

Bp =


b1p 0N1 · · · 0N1

0N2 b2p · · · 0N2
...

...
. . .

...
0NK 0NK · · · bKp

 (12)

where each vector bkp ∈ RNk×1 is the bundling coefficients associated with the kth endmember class
describing the pth pixel. To provide a compact and interpretable representation, this model is granted
with the following constraints

∀p, Bp � 0 and ‖Bp‖0 =
K

∑
k=1
‖bkp‖0 ≤ s (13)

where ‖ · ‖0 is the `0-pseudo norm s is the maximum number of spectra in Bp used to explain the pth
pixel. Thus, MEMM describes the endmember variability by a conical hull of each endmember bundle.
The conical hull enables a larger range of endmember variability to be modeled, even if the bundles
are defined by a few spectra.

2.2.3. Towards Library-Free Bundle-Based Models

Interestingly, the taxonomy of the methods conducted above shows that the unsupervised
library-free (statistical or parametric) methods do not exploit the appealing formalism of bundles to
characterize the spectral variability. Conversely, all of the aforementioned bundle-based methods
require these endmember bundles to be fully characterized before estimating the abundances. When no
prior knowledge regarding the scene of interest is available, these bundles may be manually extracted
by an expert or automatically extracted from the data [9,14,15]. However, unmixing results are
dramatically affected by the quality of this two-step process, since they are largely driven by this
preliminary extraction. To the authors’ knowledge, no existing methods have been proposed to fill the
gap between these two families of methods. As a consequence, this work attempts to reconcile both
approaches while leveraging their respective advantages. It aims at defining a new mixing model:

1. which is able to propose a bundle-driven description of the spectral variability to ensure physically
sound interpretation of this variability; and,

2. which does not require the prior knowledge of a spectral library, akin to the unsupervised methods.

The proposed model is described in the next section.
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3. Proposed Model

3.1. A New Paradigm of Endmember Variability

Recent work has shown that conical hulls generated by endmember bundles have great potential
to model endmember variability [28]. However, this method does not fully exploit the geometrical
structure of these hulls, since, under the MEMM model (11), they are allowed to be formed by any
spectra that belong to the bundles. However, the conical hull can be spanned by a set of specific spectra
in the bundle, herein referred to as prototypal endmember spectra. We propose to build on this finding
to geometrically describe the endmember variability by the conical hull defined by these prototypal
endmember spectra, as illustrated in Figure 1.

Figure 1. Endmember variability described by the conical hulls spanned by prototypal endmembers.
The three sets, depicted in red, green, and blue, are associated with the endmember bundles.

From a physical perspective, this assumption means that an endmember class has a hierarchical
structure and the endmember variability can be described by a mixture of prototypal endmember
spectra belonging to a lower hierarchy. For example, an endmember class referring to vegetation can
be defined as a mixture of several vegetated instances (e.g., dry or green vegetation). A similar concept
has been explored in [50]. Figure 2 illustrates the relevance of such modeling. It considers an initial
set of tree spectral signatures, highlights 10 prototypal spectra, and depicts generated spectra under
this conical formalism. Despite the complexity of the variability affecting the initial set of signatures,
it shows that it can be well captured and accurately described by a relevant subset defined by conical
combination of these prototypal endmembers.

Figure 2. First row: Endmember variability representing spectra of vegetation. Second row:
Endmember variability displayed by principal components.
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3.2. A New Spectral Library-Free Bundle-Based Model

The above paradigm can be embedded into a generative mixing model to describe the whole
set of pixel spectral signatures Y = [y1, . . . , yP]

T ∈ RL×P to be unmixed. In our objective of an
unsupervised unmixing method similar to the spectral library-free methods that are discussed in
Section 2.2.1, we further assume that the prototypal endmembers that are required to describe the
variability belong to the observed spectra. This property looks like the pure-pixel or near-separable
assumption underlying a wide class of endmember extraction algorithms such as N-FINDR [51],
VCA [52] and SPA [53]. However, it offers more flexibility, since the pixel-wise endmember signatures
that are actually involved in the mixtures are defined as conical combinations of these prototypal
endmembers. It follows that the proposed model generalizes (10) and (11) by replacing the a priori
chosen bundle matrix E by the whole set of pixel signatures Y, leading to

yp = YBpap + np (14)

where Bp =
[
b1p b2p . . . bKp

]
∈ RP×K gathers bundling coefficients (Note that the number of rows

of the bundling coefficient matrix Bp associated with the pth pixel is the number P of pixels, contrary
to the definition of the matrix in (11)). of the pth pixel. Such a formulation has been, for instance,
advocated in the unsupervised unmixing method in [54]. It is also intimately related to AA [29],
already advocated as a convenient way to implicitly define the endmember signatures as combinations
of the measured pixel spectra [31–36]. Satisfying the requirements stated in Section 2.2.3, it has the
great advantage of jointly performing bundle extraction, bundle clustering, and unmixing within a
unifying framework. Obviously, this newly proposed model can be still cast as a LMM with pixel-wise
endmember spectra, since it can be rewritten as

yp = YBpap + np

= [Yb1p Yb2p . . . YbKp]ap + np

= [m1p m2i . . . mKp]ap + np

= Mpap + np

(15)

When considering all the pixels, the model (14) becomes

Y = YBA + N (16)

where the P× PK-matrix B =
[

B1 B2 . . . BP

]
is the whole set of bundling coefficients (bpj) of the P

pixels. Moreover, the abundance matrix is structured, as follows

A =


a1 0K · · · 0K
0K a2 · · · 0K
...

...
. . .

...
0K 0K · · · aP

 . (17)

The key step of the proposed modeling lies in the expected particular structure of the bundling
matrices Bp. Indeed, departing from a conventional AA, the specific hierarchy that is stated in
Section 3.1 can be encoded by group sparsity-enforcing constraints imposed on the entries of these
matrices, as shown in the next paragraph.

3.3. Hierarchical Group-Sparsity

As discussed above, the pixel-wise signatures that are associated with each endmember class
are defined as the conical combinations of so-called prototypal endmembers extracted from the data.
This assumption can be formulated by imposing a two- or three-level group sparsity imposed to the
bundling matrix B, as illustrated in Figure 3. These constraints aim at selecting a few prototypal
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endmember spectra and assigning a single endmember class to each selected prototypal endmember
spectrum. They are introduced in what follows.

Level 1 Level 2 Level 3

B1 B2 BP
… B1 B2 BP

… B1 B2 BP
…B1 B2 BP

…

Figure 3. Hierarchical sparsity at different levels. Red squares represent active coefficients while gray
ones represents inactive coefficients.

1st level of sparsity—The hyperspectral image is assumed to only contain a few prototypal endmember
spectra. This means that only a few nonzero rows are active in the bundling matrix B. This can be
encoded by resorting to mixed `0,2-norm [55] or to a collaborative l0-pseudo norm [56,57] imposed
to B. By introducing the vector of row-wise energies

β(1) =
[

β
(1)
1 , . . . , β

(1)
P

]
with β

(1)
p =

√√√√ PK

∑
j=1

b2
pj (18)

it amounts to impose

‖B‖0,2 = ‖β(1)‖0 ≤ S1 (19)

where S1 defines the sparsity level. The set of nonnegative bundling matrices satisfying (19) is denoted
B1, i.e.,

B1 =
{

B ∈ RP×PK
+ | ‖B‖0,2 ≤ S1

}
. (20)

2nd level of sparsity—at a higher level of the hierarchy, each prototypal endmember spectrum should
be associated to a single endmember class. This means that, at most, one group of coefficients belonging
to the kth endmember class should be active in the pth row denoted bp of the bundling matrix
B (p = 1, . . . , P). This can be expressed as a set of P group-sparsity constraints, each associated with
each row of B. More formally, let partition {1, . . . , PK} into K non-overlapping groups G(2,1), . . . ,G(2,K)

where G(2,k) gathers the indexes (note that here G(2,k) = {k + p|p = 0, . . . , P− 1}) of the P columns
of B associated with the kth endmember class. For each row bp of B, we define the vector of
endmember-wise energies

β(2,p) =
[

β
(2,p)
1 , . . . , β

(2,p)
K

]
with β

(2,p)
k =

√
∑

j∈G(2,k)

b2
pj.

Imposing that a given prototypal endmember characterizes a single endmember class is
formulated as

∀p ∈ {1, . . . , P} , ‖β(2,p)‖0 ≤ S2 (21)

with S2 = 1. The subset of B1 of bundling matrices whose the P rows jointly satisfy the constraints (21)
is denoted B2, i.e.,

B2 =
{

B ∈ B1 | ∀p = 1, . . . , P, ‖β(2,p)‖0,2 ≤ S2

}
. (22)

3rd level of sparsity (optional)—at this stage of the hierarchy, for a given endmember class
k ∈ {1, . . . , K}, the pixel-wise endmember spectra mkp for all pixels p = 1, . . . , P are defined by
combinations of the same set of prototypal signatures. At a 3rd level of the hierarchy, one may want to
impose further sparsity. In the most general case, this can be achieved by considering the constraint



Remote Sens. 2020, 12, 2326 9 of 23

‖B‖0 ≤ S3 (23)

where S3 is the number of non-zeros values in the whole matrix B. Note that a more structured sparsity
could be also imposed, for instance, joint sparsity over a group of pixels [58]. The subset of B2 of
bundling matrices satisfying the constraints (23) is denoted B3, i.e.,

B3 = {B ∈ B2 | ‖B‖0 ≤ S3} . (24)

This three-level hierarchical sparsity structure shows that groups of coefficients in each hierarchy
are non-overlapping and can be interpreted as a tree-structured sparsity [59]. In addition, to reach
interpretable and physically meaningful abundance fractions, the conventional ASC and ANC will
be complemented by an `0-pseudo-norm sparsity constraint, i.e., In the sequel, the set of abundance
vectors satisfying the ASC and ANC (2) is denoted A.

3.4. Further Relationships with Existing Models

The proposed model (16) can be related to several existing models recently proposed in the
literature. First, by denoting R = BA, the model in (16) can be rewritten as

Y = YR + N (25)

where R directly stands for the abundances of prototypal endmember spectra. When this matrix is
granted with an `2,1-norm group sparse regularization, this leads to the group lasso with unit sum
and positivity (GLUP) model proposed in [54]. More generally, promoting sparsity over the rows
of R is generally referred to as nonnegative sparse regression with self-dictionary and it has been
extensively studied in the context of hyperspectral unmixing [57,60,61]. Without imposing further
structure on R, akin the 2nd level of sparsity introduced in the previous section, these methods merely
extract redundant prototypal endmember spectra when endmember variability is present. Moreover,
the proposed model generalizes these approaches by describing endmember variability thanks to the
conical hull of prototypal endmember spectra rather than their convex hull.

Besides, when the proposed model considers a common P× K bundling matrix for all pixels, i.e.,
B1 = . . . = BP , B̄, it can be rewritten as

Y = YB̄A + N (26)

where YB̄ = M can be interpreted as fixed endmember spectra. If only ANC and ASC are considered,
this model is equivalent to the robust constrained matrix factorization [36]. When the sum-to-one
constraint is additionally imposed for each column of B̄, it yields the conventional AA [31–36].
This shows that the proposed model generalizes these two families of method by allowing for
pixel-wise bundling coefficients that lead to a pixel-wise description of endmember variability.

4. HSNMF Unmixing Algorithm

We now propose to build on the model introduced in Section 3.2 that is associated with the
hierarchical sparsity constraints detailed in Section 3.3 to derive an unmixing algorithm, referred to
hierarchical sparse nonnegative matrix factorization (HSNMF). The associated optimization problem
can be formulated as the following non-convex minimization problem

min
B,A

1
2
‖Y− YBA‖2

F + ıB3 (B) + λa

P

∑
p=1

∥∥ap
∥∥

0 + ıAP (A) (27)

where ı· (·) denotes the indicator function on the corresponding set and λa adjusts the level of
abundance sparsity. Solving this optimization problem is challenging, since the associated constraints
and penalizations involve nonconvex non-smooth functions. Section 4.1 introduces an iterative
algorithm converging to a critical point of the objective function (27). Because the problem is
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non-convex, the resulting estimates highly depends on the initialization of the parameters of interest A
and B. Thus, Section 4.2 proposes a dedicated initialization step. The whole process of the unmixing
procedure is represented as a flowchart in Figure 4.
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Figure 4. Flowchart of the overall unmixing procedure. The hierarchical sparse nonnegative
matrix factorization (HSNMF) algorithm is introduced in Section 4.1 (see also Algorithm 1) and
the initialization step is detailed in Section 4.2 (see also Algorithm 2) .

4.1. PALM Algorithm

We propose resorting to the proximal alternating linearized minimization (PALM), which provides
a sequence of iterates that converge to a critical point of the objective function [62]. PALM iteratively
updates the parameters A and B by alternatively conducting a gradient descent step and then
conducting a proximal step associated with the corresponding constraints. The HSNMF algorithm is
summarized in Algorithm 1, whose main steps are detailed in what follows.

Algorithm 1 HSNMF algorithm

1: Input: observation matrix Y, sparsity levels λa, S1, S2 = 0 and S3 (optional)

2: Initialization: t = 0, A(0), B(0)

3: while no convergence do

4: B(t+1) ← proxB
L(t)

B

(B(t) − 1
L(t)

B

∇B f (B(t), A(t)))

5: for p = 1, . . . , P do

6: a(t+1)
p ← proxg

L(t)
A /λa

(
a(t)p − 1

L(t)
A

∇A f (B(t+1), a(t)p )

)
7: end for

8: t← t + 1

9: end while

10: Output: Â = A(t), B̂ = B(t)
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4.1.1. Updating B

The updating rule for B is

B(t+1) ∈ proxB3

L(t)
B

(
B(t) − 1

L(t)
B

∇B f
(

B(t), A(t)
))

(28)

where f (·, ·) is the unconstrained objective function in (27), and its gradient is given by

∇B f (B(t), A(t)) = YTYBAAT − YTYAT

and L(t)
B = ‖YTY‖F‖AAT‖. The proximal step consists in a projection onto the set of constraints B3.

The hierarchical structure of these constraints allow for this proximal mapping to be decomposed
(see [59,63] for more details).

4.1.2. Updating A

As in [28], the P columns ap (p = 1, . . . , P) of the abundance matrix A can be updated
independently according to the following rule

a(t+1)
p ∈ proxg

L(t)
A /λa

(
a(t)p −

1

L(t)
A

∇ap f (B(t+1), a(t)p )

)

with

∇ap f (B(t+1), a(t)p ) = BTYTYBap − BTYTyp,

g(·) = ıA (·) + λa ‖·‖0 and L(t)
A = ‖BTYTYB‖. The proximal step can be conducted while using the

approach presented in [64].

4.2. Initialization and Computational Cost Reduction

The aforementioned optimization approach may raise two crucial issue. First, the optimization
can be computationally expensive due to the size of Y. Indeed, without any pre-processing,
the self-dictionary approach imposes that the dimension of B corresponds to the number of pixels P.
Instead of solving (27), one strategy that is advocated in [54] is to crudely prune the observation matrix
to solve

min
B,A

1
2
‖Y− YωBA‖2

F + ıB3 (B) + ıAP (A) (29)

where Yω denotes a column subset of Y indexed by ω ⊂ {1, . . . , P}.
Moreover, because the minimization problem is highly non-convex, the reached solution depends

on the initialization. In what follows, we provide recipes to conduct relevant initialization of the
matrices B and A and to reduce the overall computational complexity. First, capitalizing on the relation
between the proposed model and the one recalled in (25), we propose to solve

min
R

1
2
‖Y− YR‖2

F s.t. R � 0 and ‖R‖2,0 ≤ S1 (30)

by resorting to well-established methods already proposed in the literature problem [54,57,61,65].
This pre-processing extracts candidate prototypal endmember spectra gathered in the submatrix
Ỹ ∈ RL×S1 and estimates the corresponding abundances R̃ ∈ RS1×P. Finally, the whole initialization
process, as summarized in Algorithm 2, follows the four steps detailed below.
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(i) Extraction of Ỹ—candidate prototypal endmember spectra Ỹ are extracted by solving (30).
In this work, we resort to the XRAY algorithm [65] since it works on the conical hull and is able to
manage rather large dimensional settings. Again, if the number of pixels defining the observation
matrix Y is still too large, pruning strategies should be employed, as in [54,61].

(ii) Definition of the bundles—to build consistent bundles, the S1 extracted prototypal
endmembers undergo a clustering step, i.e., they should be assigned a class label cs ∈ {1, . . . , K}
(s = 1, . . . , S1) such that cs = k if the prototypal endmember ỹs is associated with the k endmember
class. In this study, the hierarchical clustering based on rank-two NMF (H2NMF) [66] has been used
since it has shown to outperform conventional clustering methods (e.g., spherical k-means) with a
reasonable computational cost.

(iii) Initialization of A—the abundance matrix is initialized as

A(0) = GR̃ (31)

where G ∈ RK×S1 is a grouping matrix that computes the sum of multiple abundances in R̃ with
respect to the endmember bundles identified in the previous step. More precisely, the elements gks of
G (k = 1, . . . , K, s = 1, . . . , S1) are defined thanks to the class vector c = [c1, . . . , cS1 ] as

gks =

{
1 if cs = k,

0 otherwise
(32)

(iv) Initialization of B—finally, the bundling coefficient matrices B1, . . . , BP are initialized through
a normalization procedure, i.e.,

∀p, ∀k, b(0)
kp = (gk � r̃p)� a(0)kp (33)

where � and � are element-wise multiplication and division and gk ∈ RS1 is the kth row of G.

Algorithm 2 Initialization

1: Input: observation matrix Y, number K of endmember classes
2: % initialization of the prototypal endmembers
3:
(
Ỹ, R̃

)
← XRAY(Y, K)

4: % definition of the bundles
5: c← H2NMF(Ỹ, K)
6: % initialization of the abundance matrix
7: A(0) = G(c)R̃
8: % initialization of the bundling coefficient matrix
9: for k = 1, . . . , K do

10: for p = 1, . . . , P do
11: b(0)

kp = (gk � r̃p)� a(0)kp
12: end for
13: end for
14: Output: A(0), B(0)

This initialization procedure has the advantage to provide prototypal endmember spectra Ỹ,
whose number is much smaller than the whole set of observed spectra Y. Moreover, by exploiting
the estimated clustering defined by the vector c of endmember class, only bundling coefficients that
are related to Ỹ can be used for unmixing. The other coefficients associated with spectra in Y not
identified as prototypal endmembers by XRAY can be fixed to 0 before solving the problem (27),
explicitly ensuring the two first levels of sparsity. As a consequence, this optimization problem can be
split into P optimization problems that can be solved independently for each pixel, i.e.,
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min
Bp ,ap

1
2
‖ỸBpap − yp‖2

F + ı‖Bp‖0≤s
(
Bp
)
+ ıBp�0

(
Bp
)
+ λa

∥∥ap
∥∥

0 + ıA
(
ap
)

(34)

By interpreting Ỹ as endmember bundles, this problem can be easily related to the MEMM
model (11) for which an efficient unmixing algorithm has been proposed in [28]. This finding leads
to the following important remarks: (i) the proposed method generalizes MEMM by incorporating
automatic endmember bundle extraction and (ii) the MEMM algorithm can be resorted to solve the
problem that is based on prototypal endmember spectra extracted beforehand. The performance of
this strategy is assessed in the next sections thanks to the experiments conducted on synthetic and
real data.

5. Experiments Using Simulated Data

First, the performance of proposed HSNMF method has been evaluated using two simulated data
sets and compared to state-of-the-art methods. These two synthetic hyperspectral images are available
online at http://dobigeon.perso.enseeiht.fr/data/HS/2020_HSNMF/datasets.zip.

5.1. Simulated Data Sets

SIM1—the first data set, referred to as SIM1, has been generated from K = 10 spectra extracted
by XRAY from the USGS spectral library. For each endmember class, N = 3 prototypal endmember
spectra have been generated using the approach proposed in [25] such that endmember variability of
each class was moderate and does not overlap each other. A set of P = 1000 mixed spectra has been
generated using the following five steps. First, the number Kp of endmember classes actually involved
in the pth pixel has been fixed as Kp = 1 + up where up is randomly drawn according to the Poisson
distribubtion P(1). Second, for each pixel, a random combination of Kp endmember classes has been
selected. Third, pixel-wise endmember spectra has been generated from the conical hull formed by the
prototypal endmember spectra for each class. Forth, the abundances of the selected endmember classes
have been randomly generated while using a uniform distribution to jointly ensure ANC and ASC.
Finally, the observed spectra have been generated following the LMM as the weighted combination of
the generated pixel-wise endmember spectra, corrupted by an additive white Gaussian noise with
SNR = 30 dB. An experimental scenario with a lower SNR (i.e., SNR = 20 dB) is considered in the
online Supplementary Materials.

SIM2—the second data set, referred to as SIM2, considered spatial information has been generated
from K = 4 spectra. Compared to SIM1, the number of endmember class has been reduced to allow
for larger amounts of endmember variability within each class. In each class, N = 30 prototypal
endmember spectra and pixel-wise endmember spectra have been generated similarly as SIM1.
The corresponding K = 4 abundance maps of P = 1000 pixels have been randomly generated
as in [14] to provide spatially consistent areas, as illustrated in Figure 5. The linearly mixed spectra
have been corrupted by an additive white Gaussian noise with SNR = 30 dB. An experimental scenario
with a lower SNR (i.e., SNR = 20 dB) is considered in the online Supplementary Materials.

Figure 5. Synthetically generated abundances of 4 endmember classes.

5.2. Compared Methods

The following unmixing strategies have been compared with the proposed method.

http://dobigeon.perso.enseeiht.fr/data/HS/2020_HSNMF/datasets.zip
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(i) C-SUnSAL [67]—the constrained sparse unmixing by variable splitting and augmented
Lagrangian (C-SUnSAL) can be considered as a state-of-the-art fully constrained least squares algorithm
to conduct unmixing under ASC and ANC. The method has been included for comparison to assess
the impact of neglecting spatial variability.

(ii) ELMM [19]—the extended linear mixing model (ELMM) models endmember variability as a
scaling factor with a unique signature in each endmember class. It has been included in this comparison
to evaluate the advantage of the conical hull to model pixel-wise variability.

(iii) MEMMs [28]—as for ELMM, the multiple endmember mixing model uses a single spectrum
within each class. It can be interpreted as a less flexible counterpart of the proposed method since it
also imposes sparsity for the selection of endmember classes.

(iv) EBE [15]—the automated endmember bundle extraction method (EBE) iteratively extracts
endmember spectra from different subsets of randomly selected pixels and clusters them as endmember
bundles. In this study, EBE has been complemented with fractional lasso (FL)-based unmixing [12] and
MEMM, denoted as EBE-FL and EBE-MEMM, respectively, since they have shown to outperform other
existing methods [12,28]. Note that the original implementation of EBE uses a k-means clustering.
To provide fair comparison, the clustering step has been conducted while using H2NMF, as for the
proposed method. EBE has been included for comparison to show the interest of considering conical
hull to model pixel-wise variability.

The endmember spectra required by C-SUnSAL, ELMM, and MEMMs have been extracted by
SVMAX [68]. The algorithmic parameters of ELMM, MEMMs, MEMM, FL, and HSNMF have been
empirically adjusted for each simulation to reach the best result. Note that, in this study, only a single
parameter controls the sparsity of endmember classes for MEMMs, MEMM, and HSNMF. For ELMM,
the TV-based spatial regularization has only been considered for SIM2. For FL, an `1,q-norm with
q = 0.1 has been considered to promote a higher level of sparsity when selecting the endmember
classes. For EBE, the number of subsets has been chosen in {10, 20, . . . , 50} and the percentage of
randomly selected pixels in each subset has been chosen in {20, 40, . . . , 100}. For HSNMF, the number
S1 of candidate prototypal endmembers has been determined in the set {50, 100, . . . , 200}, the optional
3rd level of sparsity has been omitted, avoiding to adjust S3 and the parameter adjusting the abundance
sparsity has been set to λa = 0.1. A detailed analysis of the impact of these parameters is conducted in
the online Supplementary Materials.

5.3. Performance Criterion

Four criteria are considered for quantitative validation of the methods. The performance in
term of abundance estimation has been evaluated thanks to the root mean square error (RMSE) used.
RMSE has been defined as

RMSE =

√√√√ 1
PK

P

∑
p=1

K

∑
k=1

(akp − âkp)
2. (35)

where akp and âkp are the true and estimated abundance that are associated with the kth endmember
class at the pth pixel. The reconstruction error (RE) has been used to quantify the model fitting

RE =

√√√√ 1
PL

P

∑
p=1

∥∥yp − ŷp
∥∥2

2. (36)

where yp and ŷp are the actual and reconstructed spectrum of the pth pixel. The spectral angle mapper
(SAM) averaged over the P pixels has been computed to evaluate the estimation of the pixel-wise
endmember spectra

SAM =
1

PK

P

∑
p=1

K

∑
k=1

acos

(
mT

kpm̂kp

‖mkp‖2‖m̂kp‖2

)
. (37)
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where mkp and m̂kp are the reference and estimated pixel-wise endmember spectra of the kth class at
the pth pixel. Note that C-SUnSAL uses fixed endmember spectra for all pixels. The Jaccard distance
(JD) has been used in order to validate whether the compared methods can select a correct combination
of endmember classes. It is defined as

JD ≡ 1
P

P

∑
p=1

|Sp ∩ Ŝp|
|Sp ∪ Ŝp|

(38)

where S and Ŝ are the true and estimated support sets (i.e., indexes of nonzero values) of the pth pixel,
|X | represents the total number of elements in the set X . Finally, the methods have been compared
with respect to their computational times.

5.4. Results

Table 1 shows the performance with respect to the different criteria for data set SIM1.
The performance of C-SUnSAL is worse than other methods, as expected because the method fails to
incorporate endmember variability. ELMM performs poorly in terms of RMSE and JD, as compared
with other methods that incorporate endmember variability. This can be explained by the fact that
ELMM does not take advantage of the sparsity characterizing endmember classes. On the other hand,
ELMM produces the lowest RE, since it exploits the higher degree of freedom by allowing for an
overestimated number of endmember classes for unmixing each pixel. MEMMs performed better
than ELMM and as well as the EBE-based methods in terms of RMSE and JD. The sparsity-promoting
regularization used in MEMMs leads to more accurate estimates of abundances than ELMM. However,
the estimated pixel-wise endmember spectra are much worse than the EBE-based methods and HSNMF.
This shows that a simple scaling factor is not sufficient for accurately describing endmember variability.
HSNMF performs better than the EBE-based methods in terms of RMSE, SAM, and JD, and produced
comparable results in term of reconstruction. The results obtained on SIM1 show that the performance
of HSNMF is comparable with the EBE-based methods when the number of endmember classes is
large and endmember variability is relatively limited.

Table 1. SIM1—quantitative results (best values in bold).

C-SUnSAL ELMM MEMMs EBE-FL EBE-MEMM HSNMF

RMSE 0.0724 0.0408 0.0218 0.0378 0.0154 0.0105
RE 0.0220 0.0093 0.0205 0.0116 0.0106 0.0107

SAM 0.0174 0.0141 0.0173 0.0092 0.0086 0.0081
JD 0.6671 0.647 0.1109 0.6219 0.0905 0.0729

Time 0.0646 97.0853 2.5008 5.3933 11.0964 71.18

The SIM2 data set is more challenging than SIM1, because a larger amount of endmember
variability is present in each endmember class. In such a case, abundances estimated by simple
nonnegativity and sum-to-one constraints (C-SUnSAL) show large errors, as shown in Table 2.
ELMM and MEMMs perform better than C-SUnSAL and show that scaling endmember spectra
is able to describe a large part of endmember variability. Unlike SIM1, EBE does not produce accurate
endmember bundles. This leads to poor estimates of abundances and pixel-wise endmember spectra
(large values of RMSE, RE, and SAM). HSNMF outperforms other compared methods. This shows that
the assumption that endmember variability is well described by the conical hull when a large amount
of endmember variability affects the observations.
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Table 2. SIM2—quantitative results (best values in bold).

C-SUnSAL ELMM MEMMs EBE-FL EBE-MEMM HSNMF

RMSE 0.2001 0.1588 0.1183 0.1822 0.1134 0.027
RE 0.0410 0.0193 0.0328 0.0462 0.0295 0.0127

SAM 0.0506 0.0404 0.0502 0.0483 0.0442 0.0159
JD 0.5247 0.5027 0.1660 0.5059 0.1680 0.0584

Time 0.2563 206.3764 21.4221 4.4775 73.3072 599.6684

Finally, the computational times of all methods are discussed. C-SUnSAL is the fastest, at the
price of a poor unmixing performance. HSNMF has an overall computationally complexity that was
comparable to ELMM, but it is shown to be more expensive than other compared methods.

6. Experiments Using Real Data

In this experiments, HSNMF has been evaluated using two real hyperspectral images and
compared with the methods considered in Section 5.2. These two real hyperspectral images are
available online at http://dobigeon.perso.enseeiht.fr/data/HS/2020_HSNMF/datasets.zip.

6.1. Real Datasets

6.1.1. MUESLI Image

The first hyperspectral image, referred to as MUESLI image, was acquired in June 2016 over the
city of Saint-André, France. In the experiments that were reported in this paper, the image acquired by
the VNIR sensor has been used, providing images with a spatial resolution of 1m and composed of
L = 140 spectral bands after removing bands affected by noise. In the imaged scene, K = 4 endmember
classes (i.e., tree, crop soil, bare soil and grass) are present. In the red-green-blue (RGB) composition
that is depicted in Figure 6(left), the white and dark green homogeneous regions are identified as
crop soil and tree, respectively. In these regions, only a single endmember class is more likely to be
present. Light green and brown regions show grass and bare soil, respectively, with pure and mixed
pixels. Abundance estimation can be qualitatively evaluated thanks to these simple homogeneous
regions. For each endmember class, pixel-wise endmember variability is expected to be present
because of illumination variations. This image is used to compare different strategies of endmember
variability modeling.

Figure 6. Real hyperspectral images: (left) MUESLI image and (right) Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) image.

6.1.2. AVIRIS Image

The second image, referred to as AVIRIS image, was acquired over Moffett Field, CA, USA, by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). It is composed of L = 178 spectral
bands after noisy bands were removed. In the scene depicted in Figure 6(right) as a RGB image,
K = 3 endmember classes (i.e., vegetation, soil, and water) can be identified. Each region shows a
homogeneous pattern and the boundaries of the regions can be considered as mixed pixels. In addition,
previous studies exhibit nonlinearly mixed pixels [69,70]. In such case, nonlinearly mixed pixels
may be wrongly identified as prototypal endmembers and they are discarded in a preprocessing step

http://dobigeon.perso.enseeiht.fr/data/HS/2020_HSNMF/datasets.zip
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(see Section 6.2). This image was used to test whether the proposed method can perform as well as the
others even when facing to nonlinearly mixtures.

6.2. Initialization

Endmember spectra required by C-SUnSAL, ELMM, and MEMMs have been extracted by SVMAX
and their parameters were empirically determined. Specifically, the maximum number of prototypal
endmember spectra and the parameters required for EBE have been adjusted, so that the clustering step
produce relevant bundles. The parameters controlling the abundance sparsity have been adjusted to
produce abundance maps that are consistent with the prior knowledge obtained from the RGB images.
Extracting and clustering endmember bundles or prototypal endmember spectra are challenging
procedures when analyzing real images. In the MUESLI image, the spectra with low magnitudes have
been removed, since they are likely identified as shadow. Similarly, in the AVIRIS image, the spectra
with low magnitudes have been classified as “water” beforehand. With such pre-processing, correct
clusters are obtained for each image. In addition, the robust principal component analysis (RPCA) [71]
has been conducted in order to identify and remove nonlinearly mixed pixels from the AVIRIS image.

6.3. Results

For both MUESLI and AVIRIS images, the extracted endmember spectra, endmember bundles,
prototypal endmember spectra, and pixel-wise endmember spectra exhibit similar patterns, as shown in
Figures 7 and 8.The single set of endmember spectra corresponds to one of the instances of endmember
bundles or prototypal endmembers. The endmember bundles extracted by EBE includes a larger
number of endmember spectra for each class and a denser distribution than the prototypal endmember
spectra. The overall endmember variabilities that are captured by EBE and the prototypal endmember
spectra are similar, despite some noticeable differences. The pixel-wise endmember spectra estimated
by HSNMF show much larger amounts of endmember variability than those captured by EBE and the
prototypal endmember spectra. This showed that HSNMF is able to capture pixel-wise illumination
changes and to generate a scaled endmember spectrum for each pixel from the prototypal endmember
spectra. The abundance maps show clear differences between the compared methods for the MUESLI,
as shown in Figure 9. C-SUnSAL is very sensitive to the illumination variations, especially in crop soil
area, because it is unable to account for endmember variability. ELMM seems to be less sensitive to the
illumination variations than C-SUnSAL. However, it tends to overestimate the number of endmember
classes for each pixel. MEMMs produce sparser abundance maps than C-SUnSAL and ELMM, but
it fails to estimate accurate abundances of tree. EBE-FL shows spatially homogeneous abundance
maps and does not capture the mixed pixels composed of grass and bare soil. Although EBE-MEMM
shows similar abundance maps than HSNMF, abundance maps of crop soil are “noisy”. HSNMF
estimates abundance maps that are consistent with the spatial distributions of the endmember classes
in Figure 6 (left). This shows that the conical hull derived by the prototypal endmember spectra
is able to provide accurate estimates of endmember variability. For the AVIRIS image, the overall
spatial distributions in the abundance maps of all methods are similar, as depicted in Figure 10.
However, the abundances estimated by C-SUnSAL, ELMM, and MEMMs underestimate the presence
of vegetation and soil. This shows that a single endmember spectrum within each class could lead
to underestimated abundances, especially for the pure pixels. On the other hand, the abundances
produced by EBE-FL, EBE-MEMM and HSNMF are visually more consistent with the regions of
vegetation and soil in the RGB image. Modeling pixel-wise endmember spectra by bundles or
prototypal endmember spectra leads to more accurate abundances when compared to methods that
are based on fixed endmember spectra.



Remote Sens. 2020, 12, 2326 18 of 23

Figure 7. MUESLI image—1st row: endmember spectra extracted by SVMAX. 2nd row: endmember
bundles extracted by EBE. 3rd row: prototypal endmember spectra. 4th row: pixel-wise endmember
spectra estimated by HSNMF.
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Figure 8. AVIRIS image—1st row: endmember spectra extracted by SVMAX. 2nd row: endmember
bundles extracted by EBE. 3rd row: prototypal endmember spectra. 4th row: pixel-wise endmember
spectra estimated by HSNMF.

C-SUnSAL ELMM MEMMs

0 0.5 1

EBE-FL EBE-MEMM HSNMF

Figure 9. MUESLI image—estimated abundance maps. From top to bottom: tree, crop soil, grass and
bare soil.
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C-SUnSAL ELMM MEMMs EBE-FL EBE-MEMM HSNMF

0 0.5 1

Figure 10. AVIRIS image—estimated abundance maps. From top to bottom: tree, crop soil, grass and
bare soil.

7. Conclusions

This paper proposed a new paradigm for describing endmember variability when conducting
hyperspectral unmixing. It assumed that the data simplex is described by the conical hulls of
prototypal endmember spectra. Under this assumption, HSNMF introduced hierarchical sparsity
and jointly conducted the extraction and clustering of prototypal endmember spectra within a single
framework. As a result, HSNMF produced a reliable estimation of pixel-wise endmember spectra.
The proposed strategy was tested thanks to experiments conducted on simulated and real data.
HSNMF outperformed other methods for simulated data, especially when the amount of endmember
variability was large. The results on real data also showed that HSNMF lead to results that are in
agreement with those of state-of-the-art methods. This tended to demonstrate that the conical hull of
prototypal endmember spectra was a useful concept to describe endmember variability. Future work
includes the improvement of the initialization step (extraction and clustering of prototypal endmember
spectra) to further reduce the computational burden of the method.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2326/
s1, Figure S1: Sensitivity analysis of the proposed HSNMF w.r.t. the parameters λa and S1, Table S1: SIM1
(SNR = 20 dB)—Quantitative results (best values in bold), Table S2: SIM2 (SNR = 20 dB)—Quantitative results
(best values in bold).
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