
remote sensing  

Article

PercepPan: Towards Unsupervised Pan-Sharpening
Based on Perceptual Loss

Changsheng Zhou , Jiangshe Zhang *, Junmin Liu, Chunxia Zhang, Rongrong Fei
and Shuang Xu

The School of Mathematics and Statistics, Xi’an Jiaotong University, No.28 Xianning West Road,
Xi’an 710049, China; zhouchangsheng3@stu.xjtu.edu.cn (C.Z.); junminliu@mail.xjtu.edu.cn (J.L.);
cxzhang@mail.xjtu.edu.cn (C.Z.); feirongrong@stu.xjtu.edu.cn (R.F.); shuangxu@stu.xjtu.edu.cn (S.X.)
* Correspondence: jszhang@mail.xjtu.edu.cn

Received: 9 June 2020; Accepted: 15 July 2020; Published: 19 July 2020
����������
�������

Abstract: In the literature of pan-sharpening based on neural networks, high resolution multispectral
images as ground-truth labels generally are unavailable. To tackle the issue, a common method is to
degrade original images into a lower resolution space for supervised training under the Wald’s
protocol. In this paper, we propose an unsupervised pan-sharpening framework, referred to
as “perceptual pan-sharpening”. This novel method is based on auto-encoder and perceptual
loss, and it does not need the degradation step for training. For performance boosting, we also
suggest a novel training paradigm, called “first supervised pre-training and then unsupervised
fine-tuning”, to train the unsupervised framework. Experiments on the QuickBird dataset show
that the framework with different generator architectures could get comparable results with the
traditional supervised counterpart, and the novel training paradigm performs better than random
initialization. When generalizing to the IKONOS dataset, the unsupervised framework could still get
competitive results over the supervised ones.

Keywords: pan-sharpening; perceptual loss; auto-encoder; generative adversarial networks;
unsupervised learning

1. Introduction

Pan-sharpening is generally described as an image fusion problem aiming to generate a
high resolution multispectral (HRMS) image based on a low resolution multispectral (LRMS)
image and a panchromatic (PAN) counterpart. Classical pan-sharpening methods include
component substitution [1–3], multi-resolution analysis [4,5], and variational optimization [6,7].
Comprehensive reviews about these methods could be found in [8,9].

With the boom of deep learning, more and more researchers use neural networks to solve the
pan-sharpening problem and achieve promising results. Inspired by image super-resolution [10–13],
Masi et al. [14] construct a three-layer convolutional neural network for pan-sharpening. Differently,
Shao et al. [15] design a deep convolutional network with two branches, one of which is for LRMS
images and another for PAN images. To make full use of domain knowledge, Yang et al. [16] integrate a
special-designed structure for spectral and spatial information preservation. To improve image quality
further, Liu et al. [17] use generative adversarial networks (GAN) [18] to build a pan-sharpening
network, called PSGAN, in which a two-stream generator is designed to receive LRMS images and
PAN images simultaneously. Different from other methods [19–21], (deep) neural networks-based
methods could efficiently extract multi-level abstract features [22,23] for performance boosting with
the standard backpropagation.
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In spite of those achievements, pan-sharpening always encounters an issue in which ground-truth
HRMS images usually are unavailable for neural networks training. Unlike the remote sensing image
classification problem [24,25], it is impossible to get ground-truth HRMS images for pan-sharpening by
manual annotation. Therefore, neural networks-based methods usually follow the Wald’s protocol [26]
to take the original LRMS images as labels and degrade the original LRMS and PAN images into a
lower resolution space as input. This supervised learning manner would result in a pan-sharpening
network G′ trained in the lower resolution space. Moreover, G′ could be directly evaluated in the
original resolution space. This degradation method dominates for a long time in the literature
of pan-sharpening.

Is it necessary to train a pan-sharpening network in a lower resolution space based on the
degradation step? In this paper, we propose an unsupervised pan-sharpening framework in which a
pan-sharpening network G could be directly trained in the original resolution space. The novel method
does not need the degradation step for training anymore, and leverages an auxiliary reconstructor
network R instead. Figure 1 illustrates the difference between the traditional supervised perspective
based on the degradation step and our unsupervised perspective.

To train the unsupervised pan-sharpening framework, we suggest a novel training paradigm,
referred to as “first supervised pre-training and then unsupervised fine-tuning (SPUF)”. Generally
speaking, there are three successful training paradigms for deep neural networks. The first
one is “first unsupervised pre-training and then supervised fine-tuning (UPSF)”. The UPSF
method [27,28] usually contains a greedy layer-wise pre-training stage and outperforms random
initialization [29,30]. The second one is “end to end training (E2E)”. Thanks to the appearance
of large-scale labeled datasets [31–33], the E2E method [34–37] becomes more and more popular.
The third one is “first supervised pre-training and then supervised fine-tuning (SPSF)”. Because the
SPSF method could benefit from supervised pre-training, recently, it has been applied to many tasks,
such as object detection [38–40], semantic segmentation [41,42], super-resolution [12,43], and so on.
Comprehensive experiments show that pre-training is generally helpful to downstream tasks [44–46].
The success of pre-training, as well as the absence of HRMS images, inspires the novel SPUF paradigm
for pan-sharpening networks training.

It should be noted that this paper mainly focuses on how to train pan-sharpening networks in an
unsupervised manner without the degradation step. Instead of striving for high performance, we pay
particular attention to the following questions:

• How can the framework and loss be designed to train pan-sharpening model G directly?
• Could supervised pre-training offer gains in the SPUF training paradigm?
• Could the unsupervised perspective outperform its supervised counterpart?

The contributions of this paper could be summarized as follows:

1. A novel unsupervised learning framework “perceptual pan-sharpening (PercepPan)” is proposed,
which does not need the degradation step anymore. The framework consists of a generator,
a reconstructor, and a discriminator. The generator takes responsibility for generating HRMS
images, the reconstructor takes advantage of prior knowledge to imitate the observation model
from HRMS images to LRMS-PAN image pairs, and the discriminator extracts features from
LRMS-PAN image pairs to compute feature loss and GAN loss.

2. A perceptual loss is adopted as the objective function. The loss consists of three parts, with one
computed in pixel space, another computed in feature space and the last computed in GAN space.
The hybrid loss is beneficial for improving perceptual quality of generated HRMS images.

3. A novel training paradigm, called SPUF, is adopted to train the proposed PercepPan.
Experiments show that SPUF could usually outperform random initialization.

4. Experiments show that PercepPan could cooperate with several different generators.
Experiments on the QuickBird dataset show that the unsupervised results are comparable to the
supervised ones. When generalizing to the IKONOS dataset, similar conclusions still hold.
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The rest of this paper is organized as follows. Section 2 introduces the perceptual loss in previous
works. Section 3 describes the proposed PercepPan in detail. Section 4 experimentally verifies the
effectiveness of the proposed PercepPan. Finally, Section 5 concludes this paper.

Degraded

Observed/Original

Unavailable

Traditional Our

Wald’s protocol

Loss

Figure 1. Different perspectives to train pan-sharpening models. Left: traditional supervised
perspective; Right: proposed unsupervised perspective.

2. Perceptual Loss

Basically, the proposed PercepPan is trained with perceptual loss. Perceptual loss mainly depends
on high level features extracted from (convolutional) neural networks [47] rather than image pixel
values. After introduced into image super-resolution [48], the loss has gotten more and more attention.

The most striking example of perceptual loss is for real-time style transfer and image
super-resolution in [48], where perceptual loss is computed between real and reconstructed features
by the Euclidean distance. The loss could diminish the ambiguity between high resolution images and
low resolution images to some extent.

Perceptual loss could also combine with GAN loss for better performance. In the variational
auto-encoder/generative adversarial network (VAE/GAN) [49], feature loss and GAN loss is combined
for similarity metric learning, which could be treated as an extension of perceptual loss. It also inspires
our perceptual loss for pan-sharpening. Specifically, VAE/GAN uses three different losses for training.
The first one is prior loss, KL(z = Enc(x)||zp), which constrains the latent representation z learned
from data point x to follow the same distribution as zp drawn from a prior distribution; The second
one is feature loss, ||Dis(l)(x)−Dis(l)(x̃ = Dec(z))||22, which is based on hidden representations from
the l-th layer of the discriminator in VAE/GAN; The last one is GAN loss, log(Dis(x)) + log(1−
Dis(x̃)) + log(1−Dis(xp)), which could improve image sharpness. Here, KL means Kullback–Leibler
divergence; Enc, Dec, and Dis denote the encoder, decoder, and discriminator respectively; x̃ and xp

denote generated and reconstructed images respectively.
The proposed PercepPan adopts similar loss computation to VAE/GAN but with some differences.

Specifically, PercepPan treats HRMS images as the latent representation directly, which means that the
dimensionality of the representation is higher than that of the input; Moreover, PercepPan introduces
loss computation in pixel space as an alternate to the prior loss.

Another example leveraging perceptual loss with GAN is enhanced super-resolution GAN
(ESRGAN) [50], in which residual-in-residual dense block (RRDB) is introduced as basic unit,
together with relativistic generative adversarial networks [51] and perceptual loss [48]. These tricks
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help ESRGAN with generating high resolution images with better perceptual quality and winning the
first place in the PIRM2018-SR Challenge [52]. Mathematically, ESRGAN could be simply expressed as

y = ESRGAN(x), (1)

where x and y denote low resolution (LR) and high resolution (HR) images with three channels,
respectively. Figure 2 shows the generator architecture of ESRGAN.

The proposed PercepPan also simply adopts the architecture of ESRGAN as a generator for
pan-sharpening, except for minor adaptations. Specifically, images used in PercepPan are multispectral
(MS) images, which usually have more channels/bands, such as four for IKONOS and QuickBird,
and eight for WorldView-2, so that the number of channels of filters in the first convolutional layer needs
to be changed. Moreover, PercepPan uses ESRGAN for “residual learning” rather than generating HR
images directly,

(µx, σx) = ESRGAN(x), (2)

where x denotes a MS image, and µx and σx are residuals, both of which have the same number of
channels with x. This means that the number of channels of filters in the last convolutional layer
also needs to be changed. As an example, Figure 2 also illustrates the adaptation for MS images with
four bands. These learned residual would then be fused with PAN images in a manner like style
transfer [53,54].

It should be noted that the proposed PercepPan could cooperate with different generators.
The constructed architecture above is only an example, and it is not a crucial part of PercepPan framework.
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Figure 2. The generator of ESRGAN. Contents in red boxes shows an example of adaptations when
taking as input MS image with four bands.

3. Methodology

In this section, we first describe the formula of pan-sharpening as a supervised learning problem,
and then present our unsupervised PercepPan framework.

3.1. Pan-Sharpening Formula

Given a training dataset with N samples, {(x(n), p(n), y(n))}N
n=1, where x(n) ∈ RW×H×C,

p(n) ∈ RrW×rH and y(n) ∈ RrW×rH×C denote LRMS image, PAN image, and HRMS image, respectively.
W, H, and C denote width, height, and the number of bands of an LRMS image respectively, and r is
the spatial resolution ratio between an LRMS image and a PAN image.

When the ground-truth HRMS image y(n) is known, the pan-sharpening problem could be
expressed as the following supervised learning problem:

min
G∈G

N

∑
n=1

L(ŷ(n), y(n)), (3)
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where G denotes a set of pan-sharpening models/generators; L is a loss function, such as MSELoss
(mean squared error loss) or L1Loss/MAELoss (mean absolute error loss) in pixel space; ŷ(n) denotes a
generated HRMS image from a pan-sharpening generator G ∈ G,

ŷ(n) = G(x(n), p(n)). (4)

However, the ground-truth HRMS image is unavailable in fact. In this case, the loss Equation (3)
could not be calculated, nor the generator G.

In this paper, we introduce auto-encoders [49,55] to deal with the absence of of HRMS images.
Usually, an auto-encoder consists of an encoder learning a latent representation of an input, and a
decoder (or reconstructor) reconstructing the input from the learned representation. It usually is
trained by a reconstruction loss in pixel space, and does not need any labels. For pan-sharpening,
the generator G plays the role of the encoder, and, in this case, the latent representation is exactly the
fused HRMS image ŷ(n). An extra architecture R = (Rx, Rp) is introduced to reconstruct LRMS-PAN
image pairs from ŷ(n), and, that is to say,

(x̂(n), p̂(n)) = R(ŷ(n)) = (Rx(ŷ(n)), Rp(ŷ(n))), (5)

where x̂(n) and p̂(n) denote the reconstructed LRMS and PAN images, respectively. Based on
reconstructed images, loss computation could be moved from the HRMS image space to the LRMS-PAN
image pair space. Hence, Equation (3) could be reformulated as

min
G∈G

min
R∈R

N

∑
n=1

L(x̂(n), x(n)) + L( p̂(n), p(n)), (6)

whereR stands for a set of reconstructors.
However, computing loss only in pixel space might introduce blurring, especially when MSELoss

is used [49,56]. To prevent blurring and get better perceptual quality, a hybrid loss is introduced.
Generally, loss computation could be expressed as follows:

L(M(x̂(n), p̂(n)), M(x(n), p(n))), (7)

in which M is an arbitrary function. When M is an identity function, it is equivalent to loss computation
only in pixel space,

L(M(x̂(n), p̂(n)), M(x(n), p(n))) := Lpixel(x̂(n), x(n)) + Lpixel( p̂(n), p(n)), (8)

where Lpixel is MSELoss or L1Loss. When M is more complicated for feature extracting from
LRMS-PAN image pairs, it then could be expressed as

L(M(x̂(n), p̂(n)), M(x(n), p(n))) := Lfeat(F(x̂(n), p̂(n)), F(x(n), p(n))), (9)

in which F is in place of M for clarity, and Lfeat is MSELoss or L1Loss. When M is a discriminator D of
GAN [18], the loss could be expressed as

L(M(x̂(n), p̂(n)), M(x(n), p(n))) := LGAN(D(x̂(n), p̂(n)), D(x(n), p(n))), (10)

where LGAN could be BCELoss (binary cross entropy loss). These three kinds of losses could represent
LRMS-PAN image pairs from different abstract levels.

Combining Equations (8)–(10) together, the optimization objective function for pan-sharpening
could be expressed as follows:
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min
G∈G

min
R∈R

min
D∈D

N

∑
n=1

αl(n)pixel + βl(n)feat + γl(n)GAN, (11)

where D denotes a set of discriminators,

l(n)pixel = Lpixel(x̂(n), x(n)) + Lpixel( p̂(n), p(n)) = ||x̂(n) − x(n)||1 + || p̂(n) − p(n)||1, (12)

l(n)feat = Lfeat(F(x̂(n), p̂(n)), F(x(n), p(n))) = ||F(x̂(n), p̂(n))− F(x(n), p(n))||1, (13)

l(n)GAN = LGAN(D(x̂(n), p̂(n)), D(x(n), p(n))) = log(1− D(x̂(n), p̂(n))) + log(D(x(n), p(n))), (14)

and α, β and γ are hyper-parameters controlling the importance of different loss terms. Equation (11)
could be treated as an extension of perceptual loss, which is usually used for style transfer and image
super-resolution [12,48]. This is why we call the proposed model as “perceptual pan-sharpening”,
or PercepPan for short. It is totally an unsupervised learning formula and does not need ground-truth
HRMS images at all. It should be noticed that F is implemented as a part of D in this paper rather than
an individual neural network.

Figure 3 shows the structure of our PercepPan, where G, R, and D are all implemented by neural
networks. F is a part of D, and it is split into two streams, F = (Fx, Fp), with Fx extracting features from
LRMS images and Fp extracting features from PAN images. These features would be first concatenated
together along channel axis and then processed by a VGG-style network [57].

ESRGAN

x p

ŷ

G

Rx Rp

x̂ p̂

Fx Fp

Con

VGG

R

D

Lpixel LGANLfeat

x p

x̂ p̂

ESRGAN

Rx Rp

Fx Fp

VGG

ŷ

Multispectral/panchromatic 
images and  the 
reconstructed version

ESRGAN-style generator

Reconstructor

Feature extractor

VGG-style discriminator

μ x σ x

X+
Con loss

Learned style feature

Generated high-resolution 
multispectral image

Element-wise addition 
and multiplication 
(broadcastable)

Concatenation

Figure 3. The structure of the proposed PercepPan. G, R, and D denote Generator, Reconstructor, and
Discriminator, respectively.
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3.2. Network Architecture

As shown in Figure 3, the proposed PercepPan consists of three parts:

• A generator G which takes as input a LRMS-PAN image pair (x, p) to generate a HRMS image ŷ;
• A reconstructor R which takes as input a generated HRMS image ŷ to reconstruct the

corresponding LRMS-PAN image pair, with the output denoted as x̂ and p̂, respectively;
• A discriminator D which takes as input real/reconstructed LRMS-PAN image pairs to calculate

feature loss and GAN loss.

Generator. The generator G needs to fuse spectral details from LRMS images and spatial details
from PAN images. Existing generators taking LRMS-PAN image pairs into networks directly to extract
those details [14,17], or learning residual details according to LRMS images [15,16], could play the role
of G. We also try the ESRGAN-style generator with residual learning according to PAN images,

(ŷ1, ŷ2, . . . , ŷC) = (σ1, σ2, . . . , σC)× p + (µ1, µ2, . . . , µC), (15)

where ŷc ∈ RrH×rW is the c-th band of ŷ, and σc ∈ RrH×rW and µc ∈ RrH×rW are residuals learned from
x. For simplicity, they are also denoted as σx = (σ1, σ2, . . . , σC) and µx = (µ1, µ2, . . . , µC), where the
subscript indicates that both of them are related to x. It should be noted that multiplication and
addition here are element-wise.

The residual learning is inspired by a well-known style transfer method, called “adaptive instance
normalization (AdaIN)” [54]. Specifically, x is treated as style image, and the corresponding style
features µx and σx are learned by the ESRGAN-style generator, while p is treated as content image, and
the content features µp and σp are simply assigned as zero matrix and identity matrix, respectively.

Reconstructor. The reconstructor R = (Rx, Rp) aims at reconstructing LRMS-PAN image pairs
from the generated HRMS images. It could be implemented by a neural network. Inspired by [58],
we design a shallow architecture for R to simulate the observation process about how to acquire
LRMS-PAN image pairs via satellites.

Because LRMS images are spatially degraded from the corresponding HRMS images, the first
part of the reconstructor, Rx, is treated as a combination of blurring and downsampling,

(x̂1, x̂2, . . . , x̂C) = Rx(ŷ1, ŷ2, . . . , ŷC) := (S ◦ H1(ŷ1), S ◦ H2(ŷ2), . . . , S ◦ HC(ŷC)), (16)

where x̂c ∈ RW×H and ŷc ∈ RrW×rH are the c-th spectral bands of x̂ and ŷ, respectively. Hc is a blurring
operator for the c-th spectral band, which could be implemented as a convolutional layer, and S is a
downsampling operator.

Because the PAN image generally covers all the wavelengths of the MS image spectral bands
(see Section 4.1 for more detail), the PAN image could be approximated by a linear combination of
the HRMS image bands [59], and, in other words, the second part of the reconstructor, Rp, could be
defined as

p̂ = Rp(ŷ) :=
C

∑
c=1

wcŷc, (17)

where ŷc ∈ RW×H is the c-th spectral band of ŷ and wc is the corresponding weight. The linear map
could be implemented by a 1× 1 convolution.

Discriminator. The discriminator D is responsible for computing feature loss and GAN loss.
Feature loss computation needs LRMS-PAN image pairs as input. To receive different kinds of

images simultaneously, D contains two input branches, F = (Fx, Fp), with Fx for LRMS images and Fp

for PAN images. Extracted features would then be fused together.
To compute GAN loss, D further sends these features into a VGG-style neural network [57].

For each input, the VGG-style architecture outputs a scalar, which represents the probability that the
input feature is from the real data rather than the generated one.
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3.3. Initialization

Initialization is crucial to training neural networks [60]. The most common strategy is random
initialization according to a specific probability distribution [34,35]. Another strategy is pre-training
initialization, where weights from a pre-trained network are used. The latter one has been leveraged
by more and more works recently [38,50].

To initialize the generator G, both random initialization and pre-training initialization are
used. For random initialization, a Gaussian distribution is used [61], denoted as Random style.
For pre-training initialization, two pre-trained neural networks are used (https://github.com/xinntao/
BasicSR), with one called PSNR style, which is trained with pixel loss, and the other called ESRGAN
style, which is fine-tuned with GAN loss based on the former.

To initialize the reconstructor R = (Rx, Rp), we develop a novel initialization strategy, called prior
initialization, in which specific satellite characteristics are used. On the one hand, blurring operators
H1, H2, . . . , HC in Rx are commonly implemented as Gaussian filters, of which weights are derived
from the Nyquist cutoff frequencies of satellites [62,63]. On the other hand, the linear weights in Rp

could be calculated from normalized spectral response curves of satellites [58,64]. These characteristics
parameters comprise the piror knowledge for initialization, and are shown in Table 1 for reference.
This prior knowledge plays a similar role of a regularization term, which helps to reduce the uncertainty
of ŷ.

To initialize the discriminator D, a common random initialization is enough [50], and again,
a Gaussian distribution is used [61].

Table 1. Nyquist cutoff frequencies (Nyquist) and linear weights (Weight) of different satellites for
each spectral band.

Satellite Item Blue Green Red Near Infrared

QuickBird Nyquist 0.34 0.32 0.30 0.22
Weight 0.1139 0.2315 0.2308 0.4239

IKONOS Nyquist 0.26 0.28 0.29 0.28
Weight 0.1071 0.2646 0.2696 0.3587

3.4. Training Strategy

Different parts of the proposed PercepPan need to be trained differently.
When training G, all of the losses would take effect. As Equation (11) shows, G is affected by all

three kinds of losses. An individual pixel loss would result in blurring [49] while the combination of
feature loss and GAN loss might introduce undesired artifacts [50]. The hybrid of three losses might
diminish their drawbacks and lead to a better G.

When training D, only GAN loss would take effect. The reason is that pixel loss is computed
before D so that it does not affect D at all, and feature loss would make D collapse to 0 easily in
practice [49]. Therefore, D is trained by the GAN loss alone.

However, R is fixed during training. An ideal R could reflect the quality of its input faithfully
by the quality of its output. When the output is terrible, the input generally is terrible as well, like
the generator G. In this case, error signal is triggered only by G and the signal could help to train G
properly. However, when R is terrible, it could output terrible reconstructions even if G is good enough.
In this case, error signals might lead G in a wrong way. Because R is constructed and initialized by
prior knowledge, it could be supposed that R is good enough and it is not necessary to train R further.
Therefore, the final objective function of the proposed PercepPan for unsupervised pan-sharpening
with perceptual loss is

min
G∈G

min
D∈D

N

∑
n=1

αl(n)pixel + βl(n)feat + γl(n)GAN. (18)

https://github.com/xinntao/BasicSR
https://github.com/xinntao/BasicSR
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Another issue is how to balance the training procedure of G and D [65,66]. Inspired by a two
time-scale update rule for training GAN [67], we use individual learning rates for G and D separately
to balance the procedure. Intuitively, imagine that G and D are two learners, and error signals are
knowledge that they have to learn. In general, different learners should have different learning
capabilities, which could be controlled by learning rate. A great learning rate means a strong learning
capability and a small one means a weak capability. In experiments, G and D would be trained with
different learning rates.

3.5. Datasets and Algorithms

MS-PAN image pairs from satellites are big in size and coordinate-aligned. They usually are
first cropped into small patches with proper size to construct datasets. The constructed datasets are
summarized in Table 2.

The first dataset, the full-scale dataset, is composed of these cropped patches. Compared with
the original MS-PAN image pairs, these patches become smaller only in size but preserve the original
spatial resolution. These patches are treated as LRMS-PAN image pairs, i.e., input to our PercepPan
with the SPUF training paradigm. Models trained on this dataset are then assessed by no-reference
indices. The related training algorithm is shown in Algorithm 1.

Algorithm 1 Full-scale SPUF training algorithm.

Require: Full-scale training dataset, number of training iterations Iter, batch size bs, learning rates ηG
and ηD, hyper-parameters α, β and γ.

1: Initializing G, R and D
2: for i← 1, 2, . . . , Iter do
3: Sampling a mini-batch of image pairs, {x(n), p(n)}bs

n=1, from full-scale training dataset

4: Computing loss lG = ∑bs
n=1 αl(n)pixel + βl(n)feat + γl(n)GAN

5: Computing Gradient gG = ∇GlG
6: Updating weights wG ← wG − ηG ·Adam(wG, gG)

7: Sampling a mini-batch of image pairs, {x(n), p(n)}bs
n=1, from full-scale training dataset

8: Computing loss lD = ∑bs
n=1 l(n)GAN

9: Computing Gradient gD = ∇DlD
10: Updating weights wD ← wD − ηD ·Adam(wD, gD)
11: end for

The second dataset, the reduced-scale dataset, is constructed under the Wald’s protocol [26] as
tradition. The original MS-PAN image pairs are first cropped into small patches, and then are degraded
by blurring and downsampling. These degraded patches are treated as LRMS-PAN image pairs, i.e.,
input to our PercepPan with the SPSF training paradigm. The original non-degraded MS patches
would be treated as the ground-truth HRMS images, both for loss computation and full-reference
image quality assessment. This training procedure is similar to the full-scale one and is shown in
Algorithm 2. It should be noted that, for the SPSF training, the reconstructor R should be removed,
and the discriminator should be adjusted according to HRMS images. These changes make Algorithm 2
save a little more time than Algorithm 1, with about 0.510 s versus 0.525 s for each iteration in our
experiments.

Table 2. Difference between full-scale and reduced-scale datasets.

Dataset Training Paradigm HRMS Patches LRMS Patches PAN Patches Training Type Quality Assessment

Full-scale SPUF None Original MS patches Original PAN patches Unsupervised No-reference
Reduced-scale SPSF Original MS patches Degraded MS patches Degraded PAN patches Supervised Full-reference
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Algorithm 2 Reduced-scale SPSF training algorithm.

Require: Reduced-scale training dataset, number of training iterations Iter, batch size bs, learning
rates ηG and ηD, hyper-parameters α, β and γ.

1: Initializing G and D
2: for i← 1, 2, . . . , Iter do
3: Sampling a mini-batch of image pairs, {x(n), p(n)}bs

n=1, from reduced-scale training dataset

4: Computing loss lG = ∑bs
n=1 αl(n)pixel + βl(n)feat + γl(n)GAN

5: Computing Gradient gG = ∇GlG
6: Updating weights wG ← wG − ηG ·Adam(wG, gG)

7: Sampling a mini-batch of image pairs, {x(n), p(n)}bs
n=1, from reduced-scale training dataset

8: Computing loss lD = ∑bs
n=1 l(n)GAN

9: Computing Gradient gD = ∇DlD
10: Updating weights wD ← wD − ηD ·Adam(wD, gD)
11: end for

4. Experiments

In this section, the proposed PercepPan with different training strategies is evaluated on different
datasets. It is also compared with other deep learning methods for pan-sharpening.

4.1. Experiment Settings

Datasets. Images come from two different satellites, QuickBird and IKONOS. Table 3 summarizes
spectral and spatial information about these two satellites [68,69]:

• The QuickBird bundle product is composed of two kinds of images, with one MS image at
2.8 m resolution and another PAN images at 0.7 m resolution, and the pixel is recorded in 11 bits.
The images used in this paper come from the area of Sha Tin, Hong Kong, China, with geographic
coordinates N(22◦19′58′′, 22◦36′0′′) E(114◦6′1′′, 114◦16′19′′), and the image of this area is shown
in Figure 4. The whole size is 7364 × 7713 for MS images, and 29,456 × 30,852 for PAN images.

• The IKONOS bundle product is composed of two kinds of images as well, with one MS image at
4 m resolution and another PAN image at 1 m resolution, and again pixel is recorded in 11 bits.
The images used in this paper come from the area of Wenchuan, Sichuan, China, with geographic
coordinates N(30◦59′0′′, 31◦6′0′′) E(103◦12′36′′, 103◦17′48′′). Due to the license issue, the image of
this area is not shown here. The whole size is 2066× 3236 for MS image, and 8264× 12,944 for
PAN image.

As described in Section 3.5, MS-PAN image pairs are first cropped (and/or degraded) into small
patches, and then these patches are randomly split into three groups for training, validation, and test
with proportion 6:2:2. Dataset information is summarized in Table 4. It should be noticed that the scale
factor is r = 4 in this paper, which is consistent with the rate of spatial resolution between MS and
PAN images from either QuickBird or IKONOS.

Other Generators. Only neural network-based methods are used as the generator G.
These methods are PNN [14], RSIFNN [15], PanNet [16], and PSGAN [17]. These methods are
trained in a supervised manner with preferable settings from the corresponding papers but on our
reduced-scale dataset, and then generalized onto the full-scale dataset directly. Classical methods,
such as [1,4,7], are not taken into consideration.



Remote Sens. 2020, 12, 2318 11 of 22

Figure 4. Territorial framework of the investigated area from a QuickBird satellite.

Hyper-parameters. As stated in Section 3.3, the ESRGAN-style generator G is initialized by one
of Random style, PSNR style, and ESRGAN style. The hyper-parameters in Equation (11) are given
in advance, (α, β, γ) ∈ {(1, 0, 0), (0, 1, 0.01), (1, 1, 0.01)}, in which (1, 0, 0) means only pixel loss takes
effect, (0, 1, 0.01) means feature loss and GAN loss take effect, and (1, 1, 0.01) means all of three losses
take effect at the same time. It should be noticed that 0.01 is used to make the GAN loss have the same
order of magnitude with the other two losses in an early training stage. The batch size is assigned to
be 4, and the number of iterations for training is 5000. The whole network is trained by Adam [70].
Inspired by two time scale update rule [67], learning rates ηG and ηD are chosen individually from
1× 10−4 and 1× 10−5.

All experiments are implemented on the deep learning framework, PyTorch [71] with version
4.0. All codes run on an Nvidia GTX 1080Ti GPU and an Intel Core i7 6700 CPU. The code is already
available at our GitHub homepage (https://github.com/wasaCheney/PercepPan).

Table 3. Spectral and spatial resolution of QuickBird and IKONOS.

Satellite
Wave Length (nm) Spatial Resolution (m)

Blue Green Red Near Infrared Panchromatic Multispectral Panchromatic

QuickBird 450–520 520–600 630-690 780–900 450–900 2.8 0.7
IKONOS 445–516 506–595 632–698 757–853 450–900 4 1

4.2. Image Quality Assessment

The proposed PercepPan together with other method is evaluated by common quality assessment
indices, including full-reference indices for reduced-scale experiments, such as spectral angle mapper
(SAM) [72], peak signal-to-noise ratio (PSNR), spatial correlation coefficient (SCC) [73], universal image
quality index (Q-index) [74], structure similarity (SSIM) [75], and erreur relative global adimensionnelle

https://github.com/wasaCheney/PercepPan
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de synthèse (ERGAS) [76]; and no-reference indices for full-scale experiments, Dλ, Ds, and QNR [77].
For convenience, we simply describe them here for reference. Denote a generated image by
Î ∈ RH×W×C, and the corresponding ground-truth image by I ∈ RH×W×C, where H, W, C are height,
width, and number of channels, respectively.

Table 4. Details of datasets.

Satellite Dataset Type
Patch Size

#Training #Validation #Test
Multispectral Panchromatic

QuickBird Full-scale

64× 64 256× 256

13,494 4498 4499
Reduced-scale 820 274 274

IKONOS Full-scale 1574 525 525
Reduced-scale 90 30 30

• SAM is a measurement of spectral distortion. Denote Îi,j, Ii,j ∈ RC as vectors at (i, j) pixel position
of Î and I, respectively, then

SAM( Î, I) =
1

HW

H

∑
i=1

W

∑
j=1

arccos
< Îi,j, Ii,j >

|| Îi,j||||Ii,j||
,

where < ·, · > is the inner product operator.
• PSNR is a commonly used image quality assessment method,

PSNR( Î, I) = 10 log10

( MAXI

RMSE( Î, I)

)2
, (19)

where MAXI is the maximum possible pixel value of I, and RMSE(·, ·) stands for the root of mean
squared error. It is the same below.

• SCC is a spatial quality index. Denote Îc, Ic ∈ RH×W as the c-th band of Î and I, respectively.
Then,

SCC( Î, I) =
1
C

C

∑
c=1

Cov( Îc, Ic)

σ( Îc)σ(Ic)
, (20)

where Cov(·, ·) is the covariance and σ(·) is the standard deviation. It is the same below.
• Q-index gathers image luminance, contrast, and structure for quality assessment. After dividing

Îc and Ic into B patches pairs {( p̂(i)c , p(i)c )}
B
i=1, Q-index is computed as follows:

Q( Î, I) =
1
C

C

∑
c=1

1
B

B

∑
i=1

2µ( p̂(i)c )µ(p(i)c )

µ2( p̂(i)c ) + µ2(p(i)c )

2σ( p̂(i)c )σ(p(i)c )

σ2( p̂(i)c ) + σ2(p(i)c )

Cov( p̂(i)c , p(i)c )

σ( p̂(i)c )σ(p(i)c )
, (21)

where µ(·) stands for mean value. It is the same below.
• SSIM is a famous image quality assessment method and it is an extension of Q-index,

SSIM( Î, I) = 1
C ∑C

c=1
1
B ∑B

i=1
2µ( p̂(i)c )µ(p(i)c )+c1

µ2( p̂(i)c )+µ2(p(i)c )+c1

2σ( p̂(i)c )σ(p(i)c )+c2

σ2( p̂(i)c )+σ2(p(i)c )+c2

Cov( p̂(i)c ,p(i)c )+c3

σ( p̂(i)c )σ(p(i)c )+c3
, (22)

where c1 = (0.01MAXI)
2, c2 = (0.03MAXI)

2, and c3 = c2/2.
• ERGAS is another common method of image quality assessment. Denote the spatial resolution

ratio between MS images and the corresponding PAN images by r. Then,
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ERGAS( Î, I) = 100× r×

√√√√ 1
C

C

∑
c=1

(RMSE( Îc, Ic)

µ(Ic)

)2

. (23)

• QNR is a no-reference method for image quality assessment. It consists of a spectral distortion
index Dλ, and a spatial distortion index Ds. Here, denote an LRMS image with C spectral bands
as ILRMS, the corresponding generated HRMS image as IHRMS, PAN image with only one spectral
band as IPAN, and its degraded counterpart as ILRPAN, then

Dλ =
( 2

C(C− 1)

C

∑
c=1

C

∑
c′>c
|Q(IHRMS

c , IHRMS
c′ )−Q(ILRMS

c , ILRMS
c′ )|u

) 1
u

, (24)

Ds =
( 1

C

C

∑
c=1
|Q(IHRMS

c , IPAN)−Q(ILRMS
c , ILRPAN)|v

) 1
v
, (25)

QNR = (1− Dλ)
a(1− Ds)

b, (26)

where u = v = 1 and a = b = 1 usually.

Figure 5 shows the score trend of different indexes with respect to the level of noise. We choose
two additive noises, Gaussian noise (gauss) and Laplace noise (laplace), which would result in spectral
distortion and spatial distortion, as well as two multiplicative noises, average blur (avg_blur), and
Gaussian blur (gauss_blur), which would result in spatial distortion only. As the figure shows,
among full-reference indexes (the first and second rows), all of them are sensitive to the additive noises,
but only Q-indexes are sensitive to the multiplicative noise; among no-reference indexes (the third
row), Dλ is more sensitive to the additive noise but hardly sensitive to the multiplicative noises as its
expression shows, while DS and QNR are sensitive to both kinds of noise. Please refer to Figure A1 in
Appendix A for noised images.

In summary, different indexes react differently to the level of noises, so it is necessary to
assess the quality of images by combinations of different indexes. More general, assessment scores
could not reflect the quality of images perfectly, so visual analysis is also necessary, especially for
full-scale experiments.

4.3. Model Evaluation with Different Settings

Table 5 shows results of the proposed PercepPan with the ESRGAN-style generator on the
QuickBird dataset. In the table, “Random” means that G is initialized by a Gaussian distribution [61],
“PSNR”, and “ESRGAN” mean G is initialized by pre-trained models [50]. “Reduced-scale” means
networks are trained and evaluated on the reduced-scale dataset, results before “/” in “Full-scale”
columns mean networks are trained on the reduced-scale dataset but evaluated on the full-scale dataset
as tradition, and results after “/” in “Full-scale” columns mean networks are trained and evaluated on
the full-scale dataset directly.

First of all, results on the “Reduced-scale” columns show that supervised pre-training initialization
(“PSNR” and “ESRGAN” rows) generally performs better than random initialization (“Random” rows)
on the pan-sharpening problem. When taking into consideration hyper-parameters (α, β, γ), in most
cases, hybrid loss ((0, 1, 0.01) and (1, 1, 0.01) rows) performs better than pixel loss ((1, 0, 0) rows),
which suggests that hybrid loss is more suitable for pan-sharpening problem than pixel loss. As for
learning rate, when only pixel loss is used, ηG = 1× 10−4 works better than ηG = 1× 10−5, but, when
hybrid loss is used, (ηG, ηD) = (1× 10−4, 1× 10−5) is more preferable.

As tradition, models trained on the reduced-scale dataset are then evaluated on the full-scale
dataset (results before “/” in “Full-scale” columns). Again, pre-training initialization generally
performs better than random initialization. Hybrid loss outperforms pixel loss especially on Ds and
QNR indices. Learning rate (ηG, ηD) = (1× 10−4, 1× 10−5) still cooperates better with hybrid loss.
All of these conclusions are consistent with those on the reduced-scale dataset.
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Figure 5. The score trend of different indexes with respect to the level of noise. On the x-axis, a greater
number means a higher noise level.

Finally, models are trained and evaluated on the full-scale dataset (results after “/” in “Full-scale”
columns). Again, similar conclusions to the above could be drawn. Moreover, when compared with
traditional perspective (results before “/” in “Full-scale” columns), these unsupervised results are
greater apparently. It indicates that unsupervised training directly on the full-scale dataset is more
suitable for pan-sharpening.

In summary, these results suggest that pre-training initialization, hybrid loss together with
(ηG, ηD) = (1× 10−4, 1× 10−5) learning rate are preferable for the pan-sharpening problem both on
the reduced-scale and full-scale datasets. Furthermore, it is better to directly train networks on the
full-scale dataset.

These results indicate that the answers to our second and third questions are both positive; that is
to say, pre-training could offer gains in the SPUF training paradigm and the proposed unsupervised
perspective is superior to the traditional supervised perspective.

4.4. Generalization: Generator

As stated above, any neural network-based pan-sharpening generator could play the role of G in
the proposed PercepPan framework.

In this part, four compared pan-sharpening models are employed as the generator G in the
unsupervised framework with (α, β, γ) = (1, 1, 0.01) and (ηG, ηD) = (1× 10−4, 1× 10−5). As a
comparison, these models are also trained in a supervised manner with recommended settings from
the corresponding papers, and all of them use random initialization. Table 6 shows the comparison
results on the QuickBird dataset.
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Table 5. Quality assessment of the proposed PercepPan under different settings on QuickBird dataset.
“—” means the corresponding entry is invalid and the best value of each index is shown in parentheses.

Initialization
Hyper-Parameter Reduced-Scale Full-Scale

α β γ ηG ηD SAM (0) PSNR (∞) SCC (1) Q-index (1) SSIM (1) ERGAS (0) Dλ (0) Ds (0) QNR (1)

Random

1 0 0 1× 10−4 — 0.121 33.494 0.656 0.381 0.891 4.938 0.148/0.160 0.225/0.151 0.660/0.714
1× 10−5 — 0.125 33.051 0.631 0.347 0.871 5.113 0.136/0.151 0.299/0.180 0.605/0.697

0 1 0.01
1× 10−4 1× 10−4 0.137 31.505 0.731 0.441 0.888 10.035 0.167/0.135 0.176/0.145 0.686/0.740
1× 10−4 1× 10−5 0.118 35.023 0.745 0.495 0.919 6.641 0.156/0.158 0.164/0.101 0.705/0.756
1× 10−5 1× 10−4 0.131 32.830 0.674 0.424 0.904 6.034 0.191/0.137 0.162/0.144 0.678/0.738

1 1 0.01
1× 10−4 1× 10−4 0.098 35.628 0.704 0.424 0.909 4.179 0.192/0.152 0.186/0.141 0.658/0.729
1× 10−4 1× 10−5 0.107 35.651 0.748 0.453 0.912 4.009 0.131/0.118 0.129/0.168 0.756/0.734
1× 10−5 1× 10−4 0.124 34.128 0.701 0.425 0.902 5.197 0.173/0.141 0.174/0.153 0.684/0.727

PSNR

1 0 0 1× 10−4 — 0.116 34.505 0.806 0.459 0.902 4.400 0.155/0.142 0.237/0.148 0.644/0.731
1× 10−5 — 0.213 29.682 0.607 0.371 0.872 8.544 0.246/0.147 0.262/0.129 0.556/0.743

0 1 0.01
1× 10−4 1× 10−4 0.112 34.213 0.755 0.467 0.921 8.800 0.146/0.147 0.139/0.114 0.735/0.756
1× 10−4 1× 10−5 0.087 36.491 0.783 0.504 0.925 6.471 0.132/0.131 0.133/0.130 0.752/0.756
1× 10−5 1× 10−4 0.122 34.336 0.748 0.464 0.919 8.066 0.149/0.157 0.152/0.164 0.721/0.704

1 1 0.01
1× 10−4 1× 10−4 0.109 35.969 0.765 0.471 0.917 4.309 0.170/0.131 0.177/0.116 0.683/0.768
1× 10−4 1× 10−5 0.108 36.080 0.814 0.473 0.935 4.190 0.128/0.138 0.140/0.117 0.750/0.762
1× 10−5 1× 10−4 0.120 35.444 0.771 0.461 0.916 4.090 0.143/0.125 0.152/0.127 0.727/0.764

ESRGAN

1 0 0 1× 10−4 — 0.118 33.949 0.676 0.400 0.897 4.596 0.151/0.162 0.230/0.161 0.654/0.703
1× 10−5 — 0.121 33.036 0.619 0.328 0.872 5.084 0.123/0.144 0.262/0.148 0.647/0.730

0 1 0.01
1× 10−4 1× 10−4 0.128 30.959 0.744 0.452 0.900 9.092 0.143/0.130 0.143/0.127 0.734/0.760
1× 10−4 1× 10−5 0.104 35.753 0.762 0.487 0.922 6.866 0.174/0.119 0.168/0.129 0.687/0.768
1× 10−5 1× 10−4 0.130 33.509 0.686 0.419 0.907 5.613 0.179/0.152 0.139/0.110 0.707/0.754

1 1 0.01
1× 10−4 1× 10−4 0.108 35.107 0.684 0.429 0.912 5.003 0.148/0.122 0.149/0.139 0.725/0.756
1× 10−4 1× 10−5 0.081 36.525 0.761 0.451 0.926 3.479 0.132/0.151 0.128/0.111 0.757/0.754
1× 10−5 1× 10−4 0.117 34.322 0.656 0.416 0.915 4.907 0.186/0.123 0.188/0.127 0.660/0.766

Notes: bold value in a column means the better combination of hyper-parameters with a specific
initialization method.

When trained and evaluated on the reduced-scale dataset (“Reduced-scale” columns), all of these
models work as well as the PercepPan with an ESRGAN-style generator. Specifically, on indices of
SAM, PSNR, and SCC, these new generators outperform the ESRGAN-style generator, while on indices
of Q-index, SSIM, and ERGAS, the opposite holds.

When trained on the reduced-scale dataset but evaluated on the full-scale dataset (results before
“/” in “Full-scale” columns), these models outperform the PercepPan with ESRGAN-style generator.
According to the QNR index, RSIFNN, PanNet, and PSGAN are better than the best results of the
PercePan with the ESRGAN-style generator, that is, 0.805, 0.794, and 0.779 versus 0.757 (with ESRGAN
initialization, (α, β, γ) = (1, 1, 0.01) and (ηG, ηD) = (1× 10−4, 1× 10−5) in Table 5). However,
it should be noticed that this paper aims at an unsupervised perspective for pan-sharpening rather
than struggling for high assessment scores under the traditional perspective.

When trained and evaluated on the full-scale dataset (results after “/” in “Full-scale” columns),
these models also outperform the PercepPan with the ESRGAN-style generator. However, what is
more important is that these unsupervised results are greater than the supervised ones (results before
“/” in “Full-scale” columns). This means our unsupervised perspective could improve these models
performance, and, that is to say, the unsupervised perspective for pan-sharpening is effective.

In summary, the proposed framework could cooperate well with different generators.
Results show that the unsupervised perspective is comparable with the traditional supervised one.
For perceptual intuition, Figure 6 shows the fused results of two randomly selected samples from the
test set, with the top two rows corresponding to one sample and the bottom two rows to another one.
For each sample, the first row shows the supervised results and the second row shows the unsupervised
results. In each image, the top-left box shows the zoom-in version of a selected location for a detailed
comparison. It could be seen that the perceptual quality of our unsupervised manner is better than the
corresponding supervised one, especially with PNN (the second column) as the generator.

4.5. Generalization: Dataset

How about generalizing the proposed unsupervised perspective onto another dataset? In this
part, we evaluate those trained models on a new dataset, the IKONOS dataset. Compared with the
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QuickBird dataset, the dataset has different characteristics as Tables 1 and 3 show, and it is also much
smaller as Table 4 shows.

Table 6. Quality assessment of different methods under supervised/unsupervised manner on the
QuickBird dataset. The best value of each index is shown in parentheses.

Methods
Reduced-Scale Full-Scale

SAM (0) PSNR (∞) SCC (1) Q-Index (1) SSIM (1) ERGAS (0) Dλ (0) Ds (0) QNR (1)

PNN [14] 0.108 35.225 0.814 0.217 0.871 3.861 0.158/0.122 0.183/0.149 0.688/0.747
RSIFNN [15] 0.081 37.898 0.835 0.445 0.913 6.282 0.081/0.068 0.125/0.129 0.805/0.812
PanNet [16] 0.081 37.910 0.835 0.444 0.912 6.279 0.104/0.072 0.112/0.130 0.794/0.808
PSGAN [17] 0.105 35.458 0.740 0.463 0.922 4.127 0.123/0.131 0.112/0.095 0.779/0.787

PercePan 0.081 36.525 0.761 0.451 0.926 3.479 0.132/0.151 0.128/0.111 0.757/0.754

Notes: bold value in a "A/B" form means the better result between supervised and unsupervised methods.

Figure 6. Fused results of two randomly selected samples from the QuickBird test set. From left to
right are the original LRMS/PAN images, results of PNN, RSIFNN, PanNet, PSGAN, and PercepPan
with the ESRGAN generator, respectively.

The generalization result is shown in Table 7. Among so many trained models of the PercepPan
with ESRGAN-style generator, only the one with ESRGAN initialization, (α, β, γ) = (1, 1, 0.01) and
(ηG, ηD) = (1× 10−4, 1× 10−5) is used because it performs pretty well on the QuickBird dataset.

Results show that, both on the reduced-scale dataset and the full-scale dataset, all trained models
work indeed but perform worse to some extent. This phenomenon might be caused by the different
characteristics between the IKONOS satellite and QuickBird satellite. Moreover, it could still be
observed that the proposed unsupervised perspective outperforms the traditional one when evaluated
on the full-scale dataset, but the superiority is mainly caused by the spatial index Ds, which needs
further study.

For perceptual intuition, Figure 7 shows the fused results of two randomly selected samples
from the test set, with the top two rows corresponding to one sample and the bottom two rows to
another one. For each sample, the first row shows the supervised results and the second row shows the
unsupervised results. In each image, the top-left box shows the zoom-in version of a selected location
for detailed comparison. Overall, the generalization results are worse than those on the QuickBird
dataset, and the conclusion is consistent with the quantitative scores. Moreover, our unsupervised
results still outperform the supervised results, especially with PNN (the second column) and PSGAN
(the fifth column) as the generator.



Remote Sens. 2020, 12, 2318 17 of 22

Table 7. Generalization performance of the different methods on the IKONOS dataset. The best value
of each index is shown in parentheses.

Methods
Reduced-Scale Full-Scale

SAM (0) PSNR (∞) SCC (1) Q-Index (1) SSIM (1) ERGAS (0) Dλ (0) Ds (0) QNR (1)

PNN [14] 0.437 28.804 0.676 0.223 0.784 8.939 0.182/0.112 0.284/0.234 0.585/0.679
RSIFNN [15] 0.352 31.898 0.721 0.366 0.919 11.758 0.055/0.097 0.192/0.136 0.764/0.781
PanNet [16] 0.357 30.969 0.701 0.326 0.901 11.088 0.096/0.109 0.218/0.130 0.708/0.774
PSGAN [17] 0.292 28.065 0.609 0.455 0.751 9.813 0.146/0.153 0.224/0.162 0.663/0.710
PercepPan 0.314 30.836 0.696 0.252 0.797 8.639 0.171/0.185 0.202/0.188 0.660/0.662

Notes: bold value in a "A/B" form means the better result between supervised and unsupervised methods.

Figure 7. Fused results of two randomly selected samples from the IKONOS test set. From left to right
are the original LRMS/PAN images, results of PNN, RSIFNN, PanNet, PSGAN, and the PercepPan
with the ESRGAN generator, respectively.

5. Conclusions

The pan-sharpening problem always encounters an issue that high resolution multispectral
images are unavailable. Traditional methods follow Wald’s protocol to degrade original images for
network training in a supervised manner.

In this paper, we find that the degradation step is not necessary for network training, and propose
an unsupervised pan-sharpening framework PercepPan by combining auto-encoder and perceptual
loss. The novel framework could work not only on reduced-scale datasets in a traditional supervised
manner, but also on full-scale datasets in an unsupervised manner. Experiments on the QuickBird
dataset show that the unsupervised framework cooperates well with different pan-sharpening
generators, and the unsupervised results are comparable with the supervised counterparts. When
generalizing to the IKONOS dataset, the unsupervised framework is still competitive.

However, it is still far from completely unsupervised pan-sharpening. As experiments show,
without pre-training initialization, the proposed PercepPan performs bad. Moreover, the reconstructor
needs to be initialized according to a certain satellite, which might worsen its generalization
performance. Both of these issues are worthy of further consideration.
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Appendix A

Figure A1. Noised images and the corresponding image quality assessment scores. Greater level value
means stronger noise.
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