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Abstract: Snowmelt from mountain forests is critically important for water resources and hydropower
generation. More than 75% of surface water supply originates as snowmelt in mountainous regions,
such as the western U.S. Remote sensing has the potential to measure snowpack in these areas
accurately. In this research, we combine light detection and ranging (lidar) from crewed aircraft
(currently, the most reliable way of measuring snow depth in mountain forests) and structure from
motion (SfM) remotely piloted aircraft systems (RPAS) for cost-effective multi-temporal monitoring of
snowpack in mountain forests. In sparsely forested areas, both technologies give similar snow depth
maps, with a comparable agreement with ground-based snow depth observations (RMSE ~10 cm).
In densely forested areas, airborne lidar is better able to represent snow depth than RPAS-SfM (RMSE
~10 cm vs ~10–20 cm). In addition, we find the relationship between RPAS-SfM and previous lidar
snow depth data can be used to estimate snow depth conditions outside of relatively small RPAS-SfM
monitoring plots, with RMSE’s between these observed and estimated snow depths on the order of
10–15 cm for the larger lidar coverages. This suggests that when a single airborne lidar snow survey
exists, RPAS-SfM may provide useful multi-temporal snow monitoring that can estimate basin-scale
snowpack, at a much lower cost than multiple airborne lidar surveys. Doing so requires a pre-existing
mid-winter or peak-snowpack airborne lidar snow survey, and subsequent well-designed paired SfM
and field snow surveys that accurately capture substantial snow depth variability.
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1. Introduction

Snowpack in mountain forests is a major source of water for reservoirs that provide water and
hydropower for many urban and agricultural communities [1–3]. Mountain snowpacks are affected by
many climatic, topographic and ecological variables, and are sensitive to forest disturbance such as
thinning, prescribed fires, wildfire, and tree die-off [4–13]. It is important to monitor how snowpacks
in these areas respond to changing environmental conditions in order to understand and forecast
available water resources for both natural and human consumption.

Characterization of snowpack in these mountain forests is challenging because of the large amount
of small-scale spatial variability of the snowpack, due to topographic heterogeneity and variable forest
structure [14–18]. This extreme heterogeneity makes it difficult to monitor snowpack with point snow
measurements [19]. Remote sensing of snowpack is better able to characterize this heterogeneity,
though it suffers in forested environments because trees can interfere with the remote sensing of
snowpack below the canopy [20]. Furthermore, remote sensing of snowpack is hindered by clouds
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and can be affected by sub-grid landscape heterogeneity [21,22]. Therefore, monitoring and assessing
the snowpack response to environmental changes requires multi-scale and multi-sensor monitoring
that takes advantage of field data in combination with multiple observing platforms (e.g., remotely
piloted aircraft systems (RPAS), airplanes and satellites) and payloads (e.g., visible, multispectral and
lidar sensors) [21,23,24]. These snow monitoring platforms and payloads all have advantages and
disadvantages that relate to spatial and spectral resolutions, geolocation, extent, cloud cover, wind,
reliability, timeliness, terrain accessibility, resources and training, and government regulations [25,26].

Of the remote sensing techniques for measuring snowpacks in forested environments, lidar
from crewed aircraft (hereafter, referred to as ‘airborne lidar’, or simply ‘lidar’) is one of the most
successful because it covers relatively large areas, has very high sampling rates, and has the ability
to penetrate the canopy through canopy gaps [27–30]. However, there are many costs associated
with these lidar acquisitions, and they can be time-consuming to process [31,32], making it hard to
use them for multi-temporal snow monitoring. While some groups, such as NASA’s Airborne Snow
Observatory [29] have deployed multitemporal airborne lidar surveys, such acquisitions are costly and
are not available for most sites.

Three-dimensional modelling created from multi-angle imagery from RPAS, such as quadcopter
platforms with gimballed digital cameras, offers an exciting addition to airborne lidar for snow
monitoring in heterogeneous forests [33,34]. This imagery, which is collected at multiple points along
the RPAS’s flight trajectory, is stitched together to create a 3-D representation of the landscape using
a process called structure from motion (SfM; which uses points on multiple overlapping images to
triangulate and bundle-adjust the locations of image pixels [35]). This process is able to achieve good
accuracy for snow depth and forest structure assessments [34,36–39]. In certain respects, SfM from
RPAS imagery (hereafter, referred to as ‘RPAS-SfM’ or simply ‘SfM’) offers advantages over airborne
lidar. For example, RPAS have become relatively inexpensive and easy to operate, allowing them to be
economically deployed with minimal labor [40]. However, there are still challenges associated with
RPAS monitoring of snow depth [37,41]. These include variable field site conditions (which might
include a dense canopy that obscures the snowpack), survey design, SFM processing software (which
is computationally expensive), and validation data. In addition, RPAS-SfM is generally limited to
smaller areas, due to physical limitations to RPAS flight extent (such as battery life, which limits flight
times), and there are sometimes logistical challenges with RPAS flights such as obtaining permission
before flights.

Due to their strengths for monitoring snowpack, both airborne lidar and RPAS-SfM technologies
have been extensively used for snowpack monitoring (e.g., References [20,27,29,30,34,36,37,40,42–50]).
However, these studies do not include a strategy for combining smaller-area RPAS-SfM measurements
with larger-area airborne lidar measurements for multitemporal snowpack monitoring, especially at
basin-scales. This combination is natural because the strengths of each technology are complementary
to the other. For example, airborne lidar provides consistent accuracy and larger spatial extents, which
are more appropriate for hydrological applications, such as water supply monitoring and Land Surface
Model evaluation. However, the cost (in terms of both money and processing time) can be quite high.
Meanwhile, RPAS-SfM allows for increased temporal frequency and on-demand data acquisitions with
rapid processing times at a much lower monetary cost over limited spatial domains.

In this research, we show how RPAS-SfM and airborne lidar can be used in a complementary
fashion to attain regular snowpack monitoring data that can lead to seasonal large area snow depth
and snow water equivalent (SWE) fields in complex forested environments. We investigate (1) how
well SfM is able to characterize snowpack for a variety of forest cover and topographic conditions using
a rich dataset of field-based and airborne lidar measurements; (2) how can multi-temporal SfM data be
combined with existing airborne lidar snow data to achieve multi-temporal estimates of snow amount
and distribution outside of spatially-limited SfM plots; and (3), what is the accuracy of these estimates
at different times of the year and under different forest and terrain conditions. We use extensive field
data collected from 11 surveys from 2017–2020 for four study plots along Arizona’s Mogollon Rim,
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representing the diverse forest and snowpack conditions in the region. All surveys have multi-angle
aerial photography acquisitions from a RPAS paired with precisely geolocated ground-based snow
surveys, while seven of these surveys are coincident with acquisitions of high point density airborne
lidar. The combination of the RPAS surveys with the airborne lidar and ground surveys provides an
unprecedented opportunity not only to evaluate the performance of the SfM remote sensing under a
variety of forest and snowpack conditions, but also to explore opportunities to combine all of these
measurements for cost-effective, high quality multi-temporal snowpack monitoring in mountain forests.

2. Materials and Methods

2.1. Field Data

Data in this study come from four intensively studied snow-research plots near the Mogollon
Rim, a mid- to high-elevation (~2000–3000 m) forested region in central Arizona (AZ; Figure 1). Two
“montane” plots, located ~50 km east of Show Low, AZ, are in close proximity to each other at a
high-elevation (~2800 m) field site. These plots have low to moderate relief slopes and contain a
mixture of burned (from a 2011 wildfire [51]) and live mixed conifer forests and montane grasslands.
One plot (the “montane meadow” plot) contains large snow variability, due to heterogeneous forest
conditions (i.e., tree stands separated by meadows). In contrast, the other (the “montane valley” plot)
contains large snow variability due mostly to heterogeneous topography (i.e., north- vs. south-facing
slopes). A “dense forest” plot, located ~20 km north of Payson, AZ, has gentle slopes and is densely
forested, primarily with Ponderosa Pine (pinus ponderosa) trees. Finally, ~10 km to the north of the
dense forest plot, is another plot (called the “thinning comparison” plot) that is located along with the
transition between recently thinned and unthinned ponderosa pine forest patches near Clints Well, AZ.
The dense forest and thinning comparison plots have shallower snowpack than the montane plots.
These four plots span a range of forest densities, tree heights, and topographic conditions (Table 1),
allowing us to evaluate the performance of snow measurement with SfM and airborne lidar under a
variety of forest conditions.

Table 1. Topographic, canopy cover/height and sampling information for each SfM survey.

Survey Area 1

(ha)
Slope 2

(%)
Canopy

Cover (%)

Canopy Height (m) # Sample
Locations 3 Lidar

Mean Median Max

Montane Meadow (1 February 2017) 5.9 7.4 12.9 3.4 0.1 33.4 94 Y
Montane Meadow (5 March 2018) 12.2 8.1 11.3 3.1 0.1 34.0 58 N
Montane Meadow (4 March 2019) 9.5 7.9 8.9 2.5 0.1 34.0 108 Y
Montane Meadow (4 March 2020) 11.6 8.1 10.3 2.9 0.1 34.0 38 N

Montane Valley (5 March 2018) 6.8 8.4 16.2 4.3 0.1 34.5 37 N
Montane Valley (4 March 2019) 6.9 8.2 12.8 3.8 0.1 34.7 37 Y
Montane Valley (4 March 2020) 7.4 7.9 13.1 3.9 0.1 34.7 22 N
Dense Forest (1 February 2017) 4.0 3.9 47.0 11.2 12.2 37.3 70 Y

Dense Forest (7 March 2017) 5.1 3.6 49.1 11.5 12.9 29.7 70 Y
Dense Forest (4 March 2019) 9.5 4.4 44.8 10.8 11.6 30.4 79 Y

Thinning Comparison (4 March 2019) 17.0 3.1 32.7 9.0 8.4 41.5 105 Y
1 Area refers to the size of the SfM-generated snow maps. 2 Slope, canopy cover, and canopy height are computed
from 2019 airborne lidar data [52]; 3 Sample locations refers to the number of individual locations where snow depth
is sampled.
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Figure 1. Locations of the four study plots (a – overview, b – montane meadow and montane valley 
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airborne lidar data [52].At these field sites, we collected rich snowpack datasets, including a variety 
of airborne and ground-measured snowpack data that are ideal for creating and evaluating high-
quality SfM models. Snow surveys for these plots consisted of multi-angle RPAS imagery, airborne 
lidar, and ground measurements of snow depth and SWE. In total, there were 11 snow surveys (Table 
1), with the most surveys occurring at the montane plots (as this area is important for snowpack 
monitoring for local water supply managers), with fewer surveys occurring at the dense forest and 
thinning comparison plots. All surveys included RPAS flights to acquire aerial imagery (using a DJI 
Phantom 3 Pro drone with a 12 megapixel camera—for 2017 surveys—and a DJI Phantom 4 Pro drone 
with a 20 megapixel camera—for 2018–2020 surveys) to generate snow-on 3-D models of the study 
plots using SfM (see Section 3). All RPAS flights occurred on clear, sunny days between 10:00 AM and 
2:00 PM to minimize the length of shadows. For the flights in 2017, the RPAS was controlled manually 
with a combination of nadir and oblique (~30% nadir) imagery along back and forth flight lines 
spanning each domain. For the flights in 2018-2020, flight planning software called Altizure® was 
used to collect the imagery in a regular flight pattern (using back and forth flight lines) with a set of 
nadir imagery, as well as two sets of oblique images (with 75% overlap for all imagery). All flights 
occurred at ~75 m above ground level with horizontal velocities of ~5–7 m/s resulting in ~4 cm and 

Figure 1. Locations of the four study plots (a—overview, b—montane meadow and montane valley
plots, c—dense forest plot, d—thinning comparison plot). Canopy cover data are derived from 2019
airborne lidar data [52]. At these field sites, we collected rich snowpack datasets, including a variety of
airborne and ground-measured snowpack data that are ideal for creating and evaluating high-quality
SfM models. Snow surveys for these plots consisted of multi-angle RPAS imagery, airborne lidar, and
ground measurements of snow depth and SWE. In total, there were 11 snow surveys (Table 1), with the
most surveys occurring at the montane plots (as this area is important for snowpack monitoring for local
water supply managers), with fewer surveys occurring at the dense forest and thinning comparison
plots. All surveys included RPAS flights to acquire aerial imagery (using a DJI Phantom 3 Pro drone
with a 12 megapixel camera—for 2017 surveys—and a DJI Phantom 4 Pro drone with a 20 megapixel
camera—for 2018–2020 surveys) to generate snow-on 3-D models of the study plots using SfM (see
Section 3). All RPAS flights occurred on clear, sunny days between 10:00 AM and 2:00 PM to minimize
the length of shadows. For the flights in 2017, the RPAS was controlled manually with a combination of
nadir and oblique (~30% nadir) imagery along back and forth flight lines spanning each domain. For
the flights in 2018-2020, flight planning software called Altizure® was used to collect the imagery in a
regular flight pattern (using back and forth flight lines) with a set of nadir imagery, as well as two sets
of oblique images (with 75% overlap for all imagery). All flights occurred at ~75 m above ground level
with horizontal velocities of ~5–7 m/s resulting in ~4 cm and ~2.1 cm spatial resolution on the ground
for the Phantom 3 and Phantom 4 systems, respectively. The cameras used automatic exposure settings.
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These surveys also included ground measurements of snow depth and snow density. A majority
of these measurements were collected by more than 25 employees and volunteers from five public and
private partner entities (see Acknowledgements) along carefully pre-marked snow survey transects
with precisely geolocated (using a differential GPS) endpoints to enable the precise geolocation of
snow measurements in order to relate them to the airborne data. Following the sampling methodology
described in Reference [53], five snow depth samples were taken every 5 m along the transects in
a star pattern to ensure spatial representativeness of the snow depth samples, and snow density
was sampled every 10–20 m along the transects. There were also some additional measurements
along transects (also positioned with a differential GPS) where snow depth is monitored using remote
cameras for temporal snowpack monitoring (however, this study only uses the snow depth data,
as well as manual measurements of snow density along these transects for the survey dates in Table 1).
Not all dates had identical ground surveys for each study plot, depending on logistical considerations
(e.g., available workers). Overall, individual surveys included ground measurements from 22–108
individual locations (Table 1). Note that this translates to >3000 measurements as there were five
snow depth measurements at each manual sample location. Further details about the snow survey
methodology can be found in Reference [54].

2.2. Generation of Lidar Snow Depth, Density, and SWE Maps

For seven of the surveys, we generated state-of-the-art airborne lidar-based maps of snow depth,
snow density, and SWE, as they included airborne lidar data. These maps were created for the two
~100 km2 lidar footprint areas (which each have three separate lidar acquisitions), that encompass the
study plots. The two montane plots are within a “high-elevation” lidar footprint, and the dense forest
and thinning comparison plots are within a “mid-elevation” lidar footprint. These maps were created
using high point density (~10–15 points/m2) snow-on airborne lidar data (which are differenced from
similar snow-off lidar data) and are bias-corrected with the field-measured snow depths. All lidar data
was flown by Quantum Spatial Inc. [52,55–58].

The snow depth maps were then combined with snow density maps generated using artificial
neural network (ANN) machine learning of the field-measured snow density measurements, using
various lidar-derived physiographic attributes as predictors. The methodology for creating these
maps (and their validation) is detailed in Reference [54], but is briefly summarized here. We use an
ensemble of ANNs with relatively simple network structure (1 hidden layer with ten neurons) with
Levenberg-Marquardt (L-M) backpropagation (Marquardt, 1963) to model the field snow density
measurements using lidar-derived metrics as predictor variables. The predictor variables include
physiographic variables (elevation, slope, northness—or sin(slope) × sin(aspect), canopy height, and
canopy closure), other GIS-derived quantities using the lidar data (skyview factor, below canopy
solar forcing index—or the ratio of incident solar radiation reaching the ground surface over a given
period to that hitting a flat surface with no obstructions), and lidar snow depth (from 1 February 2017).
These snow density maps are multiplied by the lidar snow depth maps to generate maps of SWE.

2.3. Generation of SfM Snow Depth Maps

Snow-on point clouds were generated from the RPAS imagery using Agisoft Metashape software.
After the point clouds were created, the ground points were isolated by using a combination of
Metashape’s built-in ground filtering algorithm (for a first cut separation of the point cloud) and a
Cloth Simulation Filter algorithm [59] implemented in R (to remove remaining debris from the ground
point cloud).

Next, we used an automated post-processing workflow to accurately georeference the point
clouds using available snow-off point cloud data. In this study, we use snow-off lidar point cloud
data (from summer 2014) for this purpose (though we also tried, with similar results, applying the
workflow using snow-off SfM data that we collected—see Section 3.1 below). This workflow consists
of two general steps. First, the snow-on SfM point clouds were co-registered with the snow-off point
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cloud canopy layer by removing any vertical offsets between the snow-on and snow-off point clouds
and then using an Iterative Closest Point algorithm implemented in CloudCompare software to match
the canopy layers. This successfully adjusted the snow-on point clouds to match the canopy elements
in the snow-off point clouds, even when there was sometimes substantial vegetation change between
the snow-on and snow-off data (Figure 2). Next, warping and tilting of the point clouds were removed
using low-order polynomial filters (a 1st order polynomial correction to correct tilt followed by a 2nd
order polynomial correction to correct warping) by comparing them to the lidar ground surface plus a
first guess of snow depth, based on the ground survey data. This first guess was generated using the
same ANN methodology as the creation of snow density maps from field snow density measurements
in Reference [54] and described in Section 2.2, except that field measured snow depths, rather than
field measured snow densities, are used as the predicted variable.
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Figure 2. Example showing the snow-on SfM point cloud in the center of the montane meadow plot
(mostly white, green, and brown colored dots represent snow, evergreen canopy, and woody material)
in relation to the lidar point cloud (red dots) for an area in the montane meadow plot. Note that in some
areas, there is a difference between the lidar (from summer 2014) and SfM (from winter 2017) point
clouds, due to post-wildfire effects (lost branches, fallen snags and trees), but for the snags and trees
that did not change during this period, the SFM and lidar point clouds are very close to one another.

This processing workflow was automated using CloudCompare’s command line mode (for the
ICP algorithm), as well as the US Forest Service’s FUSION/LDV [60] software and a python script to
model and correct warping and tilting in the snow-on SfM point cloud. The ANN machine learning
methodology is implemented in Matlab® software, as described in Reference [54].

2.4. Using SfM Snowpack Data to Supplement Lidar Snowpack Data

We used these SfM snow depth maps to advance our understanding of snow distributions for our
research sites in a number of ways. First, following the methodology in Reference [54], we combined
them with maps of snow density generated using ANN modeling of snow density measurements
to generate maps of SWE for our study plots. This enabled us to characterize differences in terms
of snow depth, snow density, and SWE for different seasons. This is important because while the
directly measured variable using lidar and SfM is snow depth, SWE is the snowpack variable that is of
most interest in hydrological applications [61]. Although the distribution of SWE is broadly similar to
that of snow depth, it is important to consider the effects of variable snow densities, which can vary
substantially in both space and time [54,62].
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Next, we investigated the relationships between snow depths for the larger mid- and high-elevation
lidar footprints on different dates to see how well they could be used to extrapolate snow depths
measured for the SfM study plots to the larger lidar footprints. In particular, we compared
the relationships between snow depths from the mid-winter (on 1 February 2017) and late winter
(on 7 March 2017 and 4 March 2019) lidar snow surveys with those from the mid-winter lidar snow
survey and the late-winter SfM data. To ensure that only the best quality SfM data was used to
construct these relationships, we only considered SfM data for open areas without an overhead canopy
for these comparisons. Of particular interest was (1) the strength of the relationships between the
lidar data on multiple dates (which indicated how well they could be used to predict snow depths
for different times), and (2) how well the SfM-data over the small study plots could capture those
relationships. Even though the late winter surveys occurred at the same time of year, the 7 March 2017
survey reflected more evolved snowpack conditions: For the mid-elevation lidar coverage, it reflected
mid-ablation to nearly snow-free conditions (depending on elevation), and for the high-elevation lidar
coverage, it reflected peak-SWE to mid-ablation conditions, depending on elevation. On the other
hand, the 4 March 2019 survey reflected conditions just prior to Peak SWE for the high-elevation lidar
coverage, and mid-ablation conditions for the mid-elevation lidar coverage. The 1 February survey
reflected mid-winter snowpack conditions in both areas.

Finally, we tested how well snow depths could be estimated from the SfM data for areas outside
the SfM plots (but within the lidar coverages) on these different dates using the relationships between
the late-winter SfM data and the mid-winter (1 February 2017) lidar data. These relationships were
modeled using a third order polynomial fit (which was chosen based on the data analysis described
above), and the regression parameters were applied to the 1 February 2017 lidar data to generate the
predictions. These simulated maps were then compared to the actual lidar observations on 7 March
2017 and 4 March 2019.

3. Results

3.1. Comparison Between SfM, Field-Based, and Lidar Snow Depths

Overall, there is good agreement between the lidar and the SfM snow depth maps in the montane
plots, which generally have sparse canopies. Figure 3a–i shows that most major snow depth features
are consistently represented in both maps, such as the areas with deep snow (which usually correspond
to north-facing aspects), and the extremely shallow snow on south-facing sides of large tree stands.
Overall, there are high squared correlation coefficient (R2) values (0.78 to 0.89), relatively low Root
Mean Squared Error (RMSE) values (8.5 to 9.4 cm) and small average differences (SfM average depths
are 1.0 to 3.5 cm shallower) between the SfM and lidar data (Table 2). The coefficient of variation (CV)
differences between the maps are also relatively low (0.01–0.04). At the same time, the agreement
between the SfM and field measured snow depths is comparable to that between the lidar and field
measured snow depths for the montane plots (Table 3, Figure S1). Although R2 values between the SfM
data and ground measurements (0.60–0.90) are a little lower than those for the lidar data (0.68–0.94),
SfM RMSEs (8.6–13.4 cm) are similar to lidar RMSEs (8.5–12.4 cm). Both the SfM and lidar data are
relatively unbiased with respect to ground observations for the montane plots.

There is generally a lower correspondence between the lidar and SfM snow depth maps for the
dense forest plots. Major features can clearly be seen in both sets of maps (e.g., the road on the northern
end of the plot as well as the snowbanks on either side of the road), though other details in the forest are
less consistent (Figure 3j–r). For example, the SfM maps show more pockets of shallow snow (especially
on 1 February 2017). Compared to the montane plots, the dense forest plot has lower R2 values (0.23 to
0.57), higher RMSEs (12.4 to 24.0 cm), and higher CV differences (0.09 to 0.26; with the SfM data having
higher CVs than the lidar data; Table 2). At the same time, though, average depth differences are
only a little larger than those observed in the montane plots (3.8 to 6.3 cm). Compared to the ground
observations, the lidar generally performs better than the SfM data, though the performance of the SfM
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data is also highly variable (Table 3, Figure S1) for the dense forest plots. RMSEs between SfM and field
measured snow depths range from 8.8 and 17.2 cm (vs. 8.3 to 10.3 cm for the lidar data), and R2 values
are 0.26 to 0.29 (vs 0.33 to 0.62 for the lidar data). However, the SfM data has lower biases, compared to
the ground observations, than the lidar data at the dense forest plot (−0.4 to 2.1 cm vs 0.8 to 5.8 cm).

Table 2. Agreement statistics between lidar and SfM snow depth data for the paired airborne lidar–SfM
surveys. Statistics are for the outlined areas for each plot in Figure 3.

Lidar Depth
(cm)

SfM Depth
(cm)

Lidar
CV

SfM
CV R2 RMSE

(cm)

Montane Meadow (1 February 2017) 65.1 62.1 0.26 0.30 0.78 9.2
Montane Meadow (4 March 2019) 75.3 71.8 0.25 0.26 0.80 9.4

Montane Valley (4 March 2019) 63.9 62.9 0.40 0.39 0.89 8.5
Dense Forest (1 February 2017) 54.3 48.0 0.29 0.55 0.23 24.0

Dense Forest (7 March 2017) 30.7 26.9 0.61 0.70 0.34 17.6
Dense Forest (4 March 2019) 34.9 29.6 0.45 0.55 0.57 12.4

Thinning Comparison (4 March 2019) 9.5 10.7 0.90 0.80 0.41 7.4
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Figure 3. Maps showing lidar snow depths, SfM snow depths, and their differences (SfM-lidar) for the
paired airborne lidar–RPAS SfM surveys for the montane meadow plot on 1 February 2017 (a–c) and
4 March 2019 (d–f); the montane valley plot on 4 March 2019 (g–i); the dense forest on 1 February 2017
(j–l), 7 March 2017 (m–o), and 4 March 2019 (p–r); and thinning comparison plot on 4 March 2019 (s–u).
A canopy hillshade effect is added to show the locations of trees.

Table 3. Agreement statistics between lidar/SfM and field measured snow depth data for the paired
airborne lidar–surveys.

SfM R2 SfM RMSE
(cm)

SfM Bias
(cm)

Lidar
R2

Lidar
RMSE (cm)

Lidar Bias
(cm)

Montane Meadow (1 February 2017) 0.82 8.6 0.7 0.79 9.2 1.6
Montane Meadow (4 March 2019) 0.60 13.4 −0.7 0.68 12.4 2.4

Montane Valley (4 March 2019) 0.90 9.7 2.7 0.94 8.5 4.1
Dense Forest (1 February 2017) 0.29 17.2 2.1 0.33 10.3 5.2

Dense Forest (7 March 2017) 0.26 16.3 1.8 0.40 9.3 0.8
Dense Forest (4 March 2019) 0.27 8.8 −0.4 0.62 8.3 5.8

Thinning Comparison (4 March 2019) 0.37 7.9 2.0 0.46 7.1 1.9

For the thinning comparison plot (Figure 3s–u), there is a higher correspondence between the
lidar and SfM maps than for the dense forest plot. The thinning comparison plot also has very little
snow (~10 cm on average) during the March 2019 survey (the only snow survey performed at this
site), yet both technologies show similar snow patterns. Overall, RMSE (7.4 cm) between the lidar
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and SfM data is lower than for the other surveys, R2 (0.41) is higher than some of the dense forest
plots surveys but lower than those in the montane plots (with the opposite true for CV differences),
and the average snow depth difference (1.2 cm) is small compared to the other surveys. Compared to
the ground survey data, the performance of the lidar and SfM data is similar (with R2 values of 0.37
and 0.46 and RMSEs of 7.1–7.9 cm), again with a relatively small bias (1.9 cm). Overall, the thinning
comparison plot has lower vegetation density than the dense forest plot, but higher vegetation density
than the montane plots (Table 1).

The accuracy of these SfM data depends, in part, on the quality of the first guess snow depth
maps (which are shown in Figure S2 Supplemental Materials). In general, these first guess maps are
comparable, in magnitude to the SfM and lidar maps, shown in Figure 3, but they typically do not
reflect as much variability as the SfM and lidar maps do. The overall agreement between theses maps
is usually lower than that between the SfM and lidar maps (with the exception of the 1 February 2017
dense forest plot, R2 values range from 0.09–0.33 lower, and RMSE values range from 0.4–3.6 cm higher).
Note that for the forest thinning comparison plot, the snow depths were so shallow that a spatially
variable first guess map was not needed. The first guess snow depth map showed virtually no spatial
variability, due to the small snow depth signal compared to the uncertainty of these maps (Figure S2g).
Nevertheless, it was included here to maintain methodological consistency with all other surveys.

Finally, note that the same methodology used here can be used to generate SfM snow depth
maps that based on snow-off SfM point clouds instead of snow-off lidar point clouds (Figure S3).
The agreement between the SfM and lidar snow depth maps is a little lower for these maps (compare
Table 2 and Table S1). This discrepancy may be related to inconsistent ground filtering algorithms used
for the lidar data (which was performed by QSI) and SfM data (see Section 2.3).

3.2. SWE Monitoring Using SfM

Due to the hydrological importance of quantifying water content of the snowpack, the snow density
and SWE maps for each plot prepared using the methodology of Broxton et al. [54] (see Section 2.3)
were useful for multi-temporal monitoring of snowpack. In this study, they were especially useful for
the montane plots because this area is very important for predicting local water supplies. For this area,
there were snow surveys for four subsequent water years near the time of peak SWE (in early March).
Figure 4 shows spatial differences between snow depth, snow density, and SWE for this area from
2017–2020 (note that in March 2017, there was airborne lidar, but no SfM data in the area).

While the 2019 maps depict snowpack conditions just prior to peak SWE, the 2017 and 2020 maps
reflect snowpack conditions that are further along in the melt season (note the relatively large areas
with no snow on south-facing slopes), and the 2018 maps depict historically low snow conditions
(as 2018 was a very dry and warm year). Despite the differences between snowpack conditions between
2018 and the other years, the 2018 data shows relatively deeper snowpack in the same areas as in the
other sets of maps (e.g., on north-facing slopes in the montane valley plot and on the shaded sides of
the montane meadow plot). There is a relatively high correlation between the 2017, 2019, and 2020
surveys (R2 between the 2017 and 2019 survey data are 0.71 and 0.69 for depth and SWE, respectively,
and the R2 between the 2017 and 2020 surveys are 0.67 and 0.60 for depth and SWE, respectively).
The R2 between the 2017 and 2018 survey is lower, (R2 = 0.36 for snow depth and 0.39 for SWE).
Overall, the 2019 survey had the most snow, but snow variability (as measured by the CV of snow
depth and SWE) was higher during 2017 (when there was more advanced snowmelt) and 2018 (when
the snowpack was shallow; Table 4) surveys. Snow density was also lowest in 2018 (due to shallow
snowpack) and highest in 2020 (as the survey occurred after a long period of warm, dry weather).
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different times across much larger (~100 km2) lidar coverages, we plotted the relationship between 
snow depth for three sets of lidar coverages (at different times in the snow season) for the mid- and 
high- elevation lidar domains (Figure 5). The mid-winter (1 February 2017) lidar data is used as the 
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Figure 4. Maps of snow depth, snow density, and SWE for the montane plots near-maximum snow
accumulation on 6 March 2017 (a–c), 5 March 2018 (d–f), 4 March 2018 (g–i), and 4 March 2020 (j–l).
A canopy hillshade effect is added to show the locations of trees and contours (contour interval = 2 m)
are added to help interpret the topography of the area.

Table 4. Averages and coefficient of variation (CV) for the snow depth, snow density, and SWE maps
in Figure 5 (for areas that have data for all years). For 7 March 2017, statistics are derived from the
airborne lidar survey (as no SfM was flown for this area on this date), and for the other dates, they are
derived from the SfM surveys.

Date Average
Depth (cm)

Depth CV
(-)

Average
Density (g/cm3)

Density
CV

Average
SWE (cm) SWE CV

7 March 2017 52.0 0.63 0.32 0.05 17.0 0.65
5 March 2018 14.2 0.85 0.30 0.07 4.2 0.83
4 March 2019 69.3 0.34 0.33 0.05 22.7 0.35
4 March 2020 56.7 0.40 0.36 0.04 20.2 0.38

3.3. Using Airborne Lidar to Extend the SfM Data

Figure 4 shows that while there are differences between the snowpack distributions for different
years (e.g., between the peak-SWE conditions on 4 March 2019 vs the post-peak SWE conditions on
6 March 2017), there are also similarities (e.g., areas with deeper snow in one scene tend to have deeper
snow in other scenes). To further understand the consistency between the snowpack at different times
across much larger (~100 km2) lidar coverages, we plotted the relationship between snow depth for
three sets of lidar coverages (at different times in the snow season) for the mid- and high- elevation
lidar domains (Figure 5). The mid-winter (1 February 2017) lidar data is used as the abscissa, and
the late-winter (7 March 2017 and 4 March 2019) lidar data are used as the ordinates in these plots.
Figure 5 (red dots) shows that the relationships between the snow depth data change between different
dates. For example, while the relationship between 1 February 2017 and 4 March 2019 lidar data for the
high-elevation lidar coverage is linear, the relationship between the 1 February 2017 and 7 March 2017
lidar data for the high-elevation lidar box is nonlinear. The former represents a comparison between
mid-winter and conditions just prior to peak SWE while the latter represents a comparison between
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mid-winter and primarily post-peak SWE conditions. Despite this changing shape, the strength
of these relationships is consistent in both cases (with R2 values of ~0.9). For the mid-elevation
lidar coverage, these relationships (which both represent a comparison of mid-winter conditions and
mostly mid-ablation conditions) are nonlinear for both pairs of data, and are somewhat weaker, but
still consistent (R2 = ~0.77 in both cases). This suggests there a high degree of intra-seasonal and
inter-annual relatability between snow depth patterns for our study sites at different times. Note that
these relationships are similar if all lidar pixels are considered (thick red dashed lines in Figure 5) vs. if
only open pixels (where SfM performs well) are considered (thin red dashed lines in Figure 5).
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Figure 5. Relationships between 1 February 2017 lidar snow depth and 7 March and 4 March 2019 
lidar (red dots, for the entire lidar coverages) and SfM (blue dots, for the SfM survey plots, based on 
open pixels) snow depth data for the mid-elevation (a,c) and high-elevation (b,d) lidar coverages. The 
dashed lines show the third order polynomial regressions for each data series (for the lidar regression, 
additional lines have been added to show the similarity of the comparisons when using only open 

Figure 5. Relationships between 1 February 2017 lidar snow depth and 7 March and 4 March 2019 lidar
(red dots, for the entire lidar coverages) and SfM (blue dots, for the SfM survey plots, based on open
pixels) snow depth data for the mid-elevation (a,c) and high-elevation (b,d) lidar coverages. The dashed
lines show the third order polynomial regressions for each data series (for the lidar regression, additional
lines have been added to show the similarity of the comparisons when using only open pixels (thin red
dashed lines) and all pixels (thick red dashed lines). The open area SfM regressions (blue lines) are
used to simulate the 4 March 2019 snow depths for the airborne lidar coverages in Figures 6 and 7.

Next, we tested how well the SfM data within the small study plots can capture these relationships.
Also plotted in Figure 5 are the relationships between the 1 February 2017 lidar snow depth and the
7 March 2017 and 4 March 2019 SfM data for the dense vegetation plot (for the mid-elevation panels)
and for the montane plots (for the high-elevation panels), considering only open pixels (where the SfM
data perform well). Note that there was no SfM survey for the montane plots on 7 March 2017. The data
follow similar trends to those found for the larger lidar coverages (just a little flatter; Figure 5), though
with lower R2 values. This may be due to the lower quality of the SfM data in some environments (e.g.,
the dense forest plot), as well as the smaller dynamic range represented in these small plots compared
with the overall lidar coverages (note that the dense forest plot, in particular, is flat with fairly uniform
forest cover across most of the plot).
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patterns in areas that have undergone substantial vegetation changes (such as the thinning 
comparison plot in Figure 6g–i, which underwent mechanical thinning between the 2017 and 2019 
snow surveys). 

 

Figure 6. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression 
between the 4 March 2019 SfM data and 1 February 2017 lidar data and shown in Figure 5c), and the 
difference (simulated-observed) for the mid-elevation lidar coverage (a–c) and the area around the 

Figure 6. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression
between the 4 March 2019 SfM data and 1 February 2017 lidar data and shown in Figure 5c), and the
difference (simulated-observed) for the mid-elevation lidar coverage (a–c) and the area around the
dense forest (d–f) and thinning-comparison (g–i) plots. Note that the simulated depths are for the area
covered by the 1 February 2017 lidar, while the March 2019 lidar has a different footprint. The small
dark boxes in (a–c) show the area covered by the inset maps (d–i) corresponding to the plots in Figure 1.

The strength of the relationships between the lidar snow depth data on different dates, as well as
the ability of the SfM data to capture these trends suggests that the SfM data can be used to predict
snow depth distributions over the larger airborne lidar coverages, given that a lidar snow depth map
already exists. To evaluate how well this extrapolation works, we used the relationships between
the 1 February 2017 lidar, 7 March 2017 and 4 March 2019 SfM data, shown in Figure 5, applied to
the 1 February 2017 lidar map, as described in Section 2.4. Figures 6 and 7, which show observed
and simulated snow depth data for the mid- and high-elevation lidar coverages on 4 March 2019,
illustrate that these extrapolations are fairly successful at estimating the observed lidar snow depth
data. This can be seen for both the entire ~100 km2 lidar coverages, as well as for the < 1 km2 study
plots. Note, however, that there can be significant differences between the observed and simulated
snow depth patterns in areas that have undergone substantial vegetation changes (such as the thinning
comparison plot in Figure 6g–i, which underwent mechanical thinning between the 2017 and 2019
snow surveys).



Remote Sens. 2020, 12, 2311 14 of 23

Remote Sens. 2020, 12, 2311 14 of 24 

 

dense forest (d–f) and thinning-comparison (g–i) plots. Note that the simulated depths are for the 
area covered by the 1 February 2017 lidar, while the March 2019 lidar has a different footprint. The 
small dark boxes in (a–c) show the area covered by the inset maps (d–i) corresponding to the plots in 
Figure 1. 

 

Figure 7. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression 
between 4 March 2019 SfM data and 1 February 2017 lidar data shown in Figure 5d), and the difference 
(simulated-observed) for the high-elevation lidar coverage (a–c) and the area around the montane 
plots (d–f). Note that the simulated depths are for the area covered by the 1 February 2017 lidar, while 
the March 2019 lidar has a different footprint. The small dark boxes in (a–c) show the area covered by 
the inset maps (d–f) corresponding to the plots in Figure 1. 

In general, spatial statistics from these simulated snow depth maps are also fairly similar to those 
from the observed lidar data. Table 5 shows statistics related to the distribution of snow depths 
(mean, cv, skewness) as well as measures of autocorrelation (measured by the fractal dimension of 
snow depths for distances that are smaller or larger than a well-known scale break that occurs at ~25-
30 m). Note that there was no SfM survey for the high-elevation coverage on 7 March 2017, so 
statistics for this date are given assuming a simulated map that would be obtained if the relationships 
between the lidar data (red lines in Figure 5) were captured. For the high-elevation coverage, the 
distribution parameters for the simulated maps are very close to those for the observed maps: The 
mean snow depth is within 5%, the CVs are ~10% lower, and the skewness is similar. Likewise, both 
the short- and long-range fractal dimensions are similar, with the latter above 2.9, suggesting spatially 
random variability for longer correlation distances, and the former ~2.7–2.8, indicating more spatial 
complexity at shorter correlation distances. The agreement between these statistics for the simulated 
and observed lidar maps is a little worse for the mid-elevation coverage, as the simulated maps had 
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Figure 7. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression
between 4 March 2019 SfM data and 1 February 2017 lidar data shown in Figure 5d), and the difference
(simulated-observed) for the high-elevation lidar coverage (a–c) and the area around the montane plots
(d–f). Note that the simulated depths are for the area covered by the 1 February 2017 lidar, while the
March 2019 lidar has a different footprint. The small dark boxes in (a–c) show the area covered by the
inset maps (d–f) corresponding to the plots in Figure 1.

In general, spatial statistics from these simulated snow depth maps are also fairly similar to those
from the observed lidar data. Table 5 shows statistics related to the distribution of snow depths (mean,
cv, skewness) as well as measures of autocorrelation (measured by the fractal dimension of snow depths
for distances that are smaller or larger than a well-known scale break that occurs at ~25–30 m). Note
that there was no SfM survey for the high-elevation coverage on 7 March 2017, so statistics for this date
are given assuming a simulated map that would be obtained if the relationships between the lidar data
(red lines in Figure 5) were captured. For the high-elevation coverage, the distribution parameters for
the simulated maps are very close to those for the observed maps: The mean snow depth is within 5%,
the CVs are ~10% lower, and the skewness is similar. Likewise, both the short- and long-range fractal
dimensions are similar, with the latter above 2.9, suggesting spatially random variability for longer
correlation distances, and the former ~2.7–2.8, indicating more spatial complexity at shorter correlation
distances. The agreement between these statistics for the simulated and observed lidar maps is a
little worse for the mid-elevation coverage, as the simulated maps had slightly lower (by ~10%) mean
snow depths, lower (by ~25%) CV, but similar skewness. Compared with the high-elevation coverage,
there were also slightly larger differences between the short-range fractal dimensions for the observed
and simulated maps, suggesting that the simulated maps for the mid-elevation coverage were not as
good at capturing small scale snow depth variability as for the high-elevation coverage.

Because the fine scale (1 m) spatial variability depicted in these simulated maps can be somewhat
different than in the observed maps, we compared the observed and simulated maps at a variety of
spatial scales, by averaging the 1 m pixels to larger pixel sizes (Figure 8). As expected, the simulated
and observed maps have a closer fit for larger pixel sizes, with the largest increases occurring between
1 and 100 m, and smaller differences occurring after that. For the mid-elevation lidar coverage, the R2
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values increase from ~0.7–0.8 for 1 m pixels to > 0.9 for 100 m pixels, while RMSEs decrease from
10–15 cm for 1 m pixels to ~7–8 cm for 100 m pixels. For the high-elevation lidar coverage, the R2

values increase from ~0.9 for 1 m pixels to > 0.95 for 100 m pixels, while RMSEs again decrease from
10–12 cm for 1 m pixels to ~6–7 cm for 100 m pixels. Figure 8 also shows the performance of simulated
maps that would be obtained if the relationships between the lidar data (red lines in Figure 5) were
captured perfectly. For these scenarios, there is some reduction in RMSE (by ~20–30%), suggesting
that some of the error between the simulated (using SfM data) and observed snow depth data is the
result of this relationship not being fully captured by the SfM data. Similar results can be obtained for
predictions of SWE values (compare Figures S5—S8 with Figures 5–8).

Table 5. Mean, coefficient of variation (CV), and skewness, and short- and long-range fractal dimensions
(D) for observed and simulated snow depth maps for the mid- and high-elevation lidar coverages for
7 March 2017 and 4 March 2019.

Mean (cm) CV Skewness Short-Range D 1 Long-Range D 1

Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim

Mid-Elevation
7 March 2017 19.3 17.3 1.32 1.00 2.8 2.4 2.60 2.77 2.93 2.93
4 March 2019 21.5 19.0 0.92 0.64 1.4 1.8 2.78 2.73 2.96 2.96

High-Elevation 7 March 2017 41.4 42.4 0.88 0.78 0.6 0.9 2.68 2.71 2.90 2.92
4 March 2019 67.5 64.6 0.45 0.40 −0.3 −0.2 2.78 2.81 2.91 2.90

1 The fractal dimensions (D) are estimated from the slope of log-log unidirectional semi-variogram plots as in
Reference [63], where D = 3-b/2, and b is the slope of the log-log semi-variogram over a particular interval. The scale
break that separates the short- and long-range segments (30 m for the mid-elevation coverage and 25 m for the
high-elevation coverage) corresponds to a well-known scale break (e.g., References [64,65]) that separates rich
spatial-complexity of snow depths at smaller scales, and more spatially random variability at larger-scales.
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Figure 8. Performance of the simulated snow depth maps for the mid- and high-elevation lidar
coverages on 7 March 2017 (a–b) and 4 March 2019 (c–d) for different pixel scales. The original 1 m
maps are aggregated (by averaging) to the larger pixel scales. The solid lines depict the performance of
the simulated maps, created using the relationships between the 1 February 2017 and subsequent SFM
data (to assess the actual ability of the SfM data to predict snow depth distributions over the larger
lidar domains). The dashed lines with open circle markers depict the performance of the simulated
maps, created using the relationships between the 1 February 2017 and subsequent SFM data (to assess
the potential ability of the SfM data to predict snow depth distributions over the larger lidar domains).
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4. Discussion

In this study, we show that RPAS-SfM monitoring of snowpack can be a useful tool to provide
temporal snowpack monitoring. This monitoring provides accurate snow depth maps over small study
plots that do not have too much forest cover, and also offers the ability to capture relationships between
current and past snow depths that can be used to estimate snow depths for larger areas. In particular,
we show that for our study sites, limited spatial extent RPAS-SfM snow depth observations (when
combined with past lidar snow depth observations) can be used to generate fairly accurate estimates
of snow depth across the lidar domains (having R2 and RMSE values of ~0.75–0.9 and 10–15 cm,
respectively, as compared with observed lidar snow depth distributions). These estimates improve
further when aggregating to larger pixel sizes (Figure 8). Note that even at the 1 m pixel scale, these
values are comparable with those of the SfM snow depth maps themselves and a little better (higher
R2, lower RMSE) than those for the first guess snow depth maps (compare Figure 8 with Table 1 and
Table S1). This implies that SfM should be useful for multitemporal snow monitoring that is applicable
at basin-scales. This is important given the high costs of repeated airborne lidar acquisitions. With the
exception of a very few high-budget operations (e.g., NASA’s Airborne Snow Observatory [29]) this
high cost makes it infeasible to collect many repeated snow-on lidar data for most sites. In addition,
RPAS-SfM may be especially suitable for operational snowpack monitoring because the SfM data can
be processed relatively quickly [39].

The success of the extrapolations shown here depends on two critical factors. First, they rely on the
fact that there is a strong relationship between snow depth distributions at different times. We tested
this by comparing the snow depth data across the mid- and high- elevation lidar coverages at three
different times, representing a range of snowpack conditions, from mid-accumulation to mid-ablation
(Figure 5). Even though the shape of these relationships changed considerably at different times (i.e.,
it was more linear when comparing snow depths within the accumulation season and nonlinear when
comparing accumulation season to ablation season snow depths), their strengths were consistent
at different times (R2 ~0.77 and ~0.90 for the mid- and high-elevation lidar coverage, respectively).
This suggests that they should be useful for predicting snow depth distributions for other times as well.

The second critical factor affecting the success of these extrapolations is the ability of the distributed
SfM data to capture these relationships. Our SfM data were generally able to capture these relationships,
however, they did a better job for the montane plots than for the dense forest plot. This can be seen
by the higher agreement statistics (Figure 8) and smaller differences between statistics describing
the spatial distribution and spatial autocorrelation (Table 5) of the observed and simulated maps
for the high-elevation lidar coverage. This ability to reproduce these spatial statistics is particularly
important for applications that are based on statistics from lidar snow data (such as snow-cover
depletion models [66]). The lower agreement between the observed and simulated maps for the
mid-elevation lidar coverage could be because the dense forest plot (from which the SfM data is
extrapolated) has a flat topography and mostly uniform forest cover, and so contains a relatively small
range of snow conditions. However, it could also be because SfM data quality is much poorer for
densely forested conditions [20,67]. We tried to mitigate this by only considering pixels without an
overhead canopy. While this improved the ability of the SfM data to capture these relationships, it also
ignores under-canopy areas such as tree wells in their derivation. Nevertheless, this does not seem to
have too much of an effect on the relationships themselves as they are only sensitive to snow depth
changes between the survey dates, which occur similarly for both canopy-covered and open areas
(note the similarity between the thick and thin red lines in Figure 8).

Although this method works well at our research sites, more research is needed to understand
how well it works at other sites. It is well known that there is substantial similarity between snow
distributions at similar points in the snow season (e.g., peak SWE) [68–73]. However, there are
also substantial spatial differences between snow distributions during the accumulation and melt
seasons [46,74–76]. This does not necessarily mean, though, that there are not strong relationships
relating melt-season snow depth to accumulation-season snow depth (for our study sites; there were
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strong relationships; Figure 5), especially since spatial patterns of snow disappearance are related to
the distribution of snowpack at the start of the melt season [77].

One thing that is likely to lead to greater difficulties when using the pre-existing lidar observations
of snow distributions is land cover change (such as forest thinning, wildfire, or normal forest growth)
because these changes are known to alter the snow depth patterns [4,6,9,78]. We showed in Figure 6
that the observed and predicted snow depth distributions were different following forest thinning
treatments at the forest thinning comparison site. Climate variability and climate change may also
cause issues, since snow distributions for a particular year are influenced by differences in the sequence,
timing and magnitudes of snowfall/accumulation events, redistribution (due to wind), interactions with
canopy, and melt [50,79,80]. Nevertheless, the high correlations for the snow depth relationships, shown
in Figure 5, and for the simulated snow depth maps resulting from these relationships (in Figures 6
and 7) suggest that these differences do not necessarily make it harder to simulate snow depth patterns
for different years. That is, even though the shape of these relationships can change under changing
climate conditions, it is unclear how their strength would change.

In this study, the SfM snow depth data, themselves are reasonably accurate, and under ideal
conditions, they have comparable quality to airborne lidar. For example, at our montane plots, which
have relatively gentle topography and sparse tree cover (average slope ~10% and average canopy
cover~15%), the SfM-generated snow depth maps generally have high correspondence with the
airborne lidar-generated snow depth maps (with R2 ~0.75 to 0.85 between the two) and comparable
agreement with ground observations (RMSE ~10 cm for both technologies). For comparison, most
studies that evaluate the performance of SfM for snow depth mapping generally find RMSEs of
~5–15 cm in open settings [36,37,40,48,67,81]. SfM can even produce reasonable snowpack maps under
very low snow conditions [37]. For example, at the thinning comparison plot in March 2019 (average
snow depth ~10 cm), there is good correspondence between the RPAS-SfM, airborne lidar, and ground
snowpack measurements (Figure 3 and Tables 2 and 3). The performance of SfM (and, to a lesser extent,
lidar) is markedly lower under dense forest conditions [20,67]). At our dense forest plot (average
canopy cover ~45%), the correspondence between the SfM data and the ground measurements is lower
than between the lidar data and the ground measurements (RMSE ~10 to 20 cm for the SfM maps vs
~10 cm for the lidar maps). This performance difference is likely because SfM requires line of sight to
collect visual data in order to reconstruct the ground surface, while lidar pulses can split and provide
multiple returns, and thus, have a greater ability to penetrate dense tree canopies [27].

The quality of these SfM surveys depends on a variety of factors, including the conditions and
parameters used during drone image acquisition, the type of environment being surveyed, as well
as the success of each of the processing steps in Section 2.3. In terms of image acquisition, we found
that our acquisition parameters (RPAS flight ~75 m above ground at ~5–7 m per second with ~75–80%
overlap for the images, and using the RPAS’s automatic camera exposure adjustments) were sufficient
to capture imagery sufficient to produce good quality point clouds for our study plots. The most
significant issues that we experienced were due to deep tree shadows. Although these were not
a problem under sparse canopy conditions (in the montane plots), they caused problems for point
reconstruction under dense canopy conditions (in the dense vegetation plot). In heavily shaded areas,
the dark and poorly resolved ground surface caused spurious noise in the point clouds, which in
turn led to problems with the ground filtering (already a substantial source of uncertainty [82–84]).
Ultimately, this led to spurious snow depth variability for the dense forest plot (such as the artifacts
seen in Figure 3).

The automated post-processing steps described in Section 2.3 were also quite important for
producing high-quality snow depth maps. Since many of our point clouds were directly georeferenced
with onboard GPS data, we relied upon these steps to ensure accurate georegistration of the SfM point
clouds, relative to the existing snow-off data. While this approach is capable of producing accurately
georeferenced point clouds [85], it increases the reliance on these post-processing steps to produce
accurate snow depth maps. In particular, it relies on sufficiently accurate first guess snow depth maps
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to add to the snow-off data so that they could be used to remove tilting and warping issues that
sometimes affect SfM point clouds [86]. For our study sites, these maps (Figure S2) were reasonably
accurate (typically having RMSEs of 10–15 cm, a little higher than the final SfM maps; compare Table 2
and Table S1), leading to the ability to use them reliably in our SfM post-processing steps.

Although the high-resolution snow depth mapping afforded by lidar and SfM are already some of
the best ways to monitor distributed snowpack properties in mountain forests, taking the extra step of
estimating SWE is enormously valuable because SWE is the snowpack variable that is of most interest
in hydrological applications [28,61]. Broxton et al. [54] showed that it is important to consider snow
density differences across space at our sites, because even though snow depth variability accounts for
a majority of SWE variability, snow density can still show substantial spatial variability on a given
date (varying by more than 75% across these research sites). This is in line with other studies finding
substantial spatial variability of snow density [62,87–90]. Following [54], we use machine learning
of how field snow density measurements relate to various lidar-derived physiographic variables to
produce maps of snow density, which are then combined with the snow depth maps to produce maps
of SWE (see Section 2.3). These maps validate fairly well with snow density / SWE observations at
our research sites. The RMSEs of these snow density maps range from 0.024 to 0.033 g/cm3, and the
RMSEs of the resulting SWE estimates range from ~2 to 4 cm [54]. For comparison, the RMSEs of the
extrapolated SWE maps range from ~4-5 cm at the 1 m scale to ~2-3 cm at the 1000 m scale (Figure 8).

Overall, for multitemporal monitoring of snowpack where SfM is used as a tool to compliment
airborne lidar, we would recommend:

(1) Conducting an airborne lidar survey representing mid-winter to peak snowpack conditions, to
provide a baseline coverage before too much melt so that there are no major snow-free areas over
the study area (which would require an alternate technique to extrapolate snowpack conditions
in these areas)

(2) Planning SfM surveys in areas where SfM has a high chance of success (e.g., sparse canopy, gentle
topography, not a whole lot of brush / low vegetation) and where a large range of snow depth
variability can be observed (which can include multiple SfM plots), giving a greater ability for
successful extrapolation to the larger airborne lidar domain

(3) Designing complimentary ground snow surveys that capture snow conditions across a range
of physiographic conditions to be able to generate a reliable first-guess snow depth map to
aid in the creation of the SfM data (as well as allowing for good characterization of snow
densities). These surveys should capture snow variability related to the important physiographic
characteristics and snow processes for a given field site. For our area, snow depth variability
was primarily influenced by the tradeoff between shading (from both terrain and vegetation
and terrain influences) and interception [6]. Therefore, it was ideal to have transects spanning
gradients of vegetation cover and tree shading (e.g., across forest gaps and into forest edges) and
on opposing aspects.

The existence of snow-on lidar data makes these planning tasks easier as objective criteria (based
on these data) can be used for site selection. The RPAS flight acquisition parameters (see Section 2.1)
and processing steps (see Section 2.2) used in this study seemed to be adequate to produce good quality
SfM snow maps, but it is also likely that additional improvements could be made. For example, using
more exact positioning (e.g., using RTK GPS), which can provide cm level precision [91–93]), could
help with model positioning and reducing the warping and tilting of the SfM models, thus reducing
the importance of post-processing to correct the point cloud data. Also, the use of drone-based lidar
would perform better than SfM in areas with thick canopy [20] (with the obvious drawback that it is
much more expensive). Finally, using a fixed-wing aircraft that can cover larger areas may improve
the ability to capture the snow spatial variability needed for basin-scale snow estimation, though
this option may be limited in some denser forests, due to line-of-sight requirements in places such as
the US.
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5. Conclusions

Although airborne lidar has revolutionized our ability to make distributed measurements of
snowpack in mountain forests, it is expensive and time-consuming to process, making it hard to use for
real-time or multi-temporal snow monitoring. This study demonstrates that SfM based on multi-angle
imagery from a multi-rotor RPAS and airborne lidar can provide complementary information for
high-quality snowpack monitoring, as the use of RPAS allows for relatively low cost, on-demand
snow monitoring over small plots, and airborne lidar provides monitoring over a much larger area
and at a higher cost. The existence of snow-on lidar data may allow subsequent SfM data to be
extrapolated to much larger areas by comparing the spatially distributed snow thicknesses from the
SfM data with those of already-measured lidar snow depths. This would make SfM data much more
useful for basin-scale hydrological applications such as Land Surface Model evaluation and water
supply monitoring. At our study sites, using the relationships developed between the small plot
SfM data and previously flown airborne lidar resulted in fairly accurate snowpack estimates for the
larger domains (R2 values between the extrapolated maps and observed lidar data that is used for
verification are ~0.7–0.9, and RMSE’s between the two are ~10–15 cm for a 1 m pixel scale, with even
higher performance when aggregating the data to larger pixels). However, the methodology proposed
here may not always be appropriate (e.g., after extensive land cover changes), and more research is
needed to understand its effectiveness at other research sites. Ultimately, successful incorporation of
SfM and airborne lidar will be important for cost-effective multitemporal monitoring of snowpack.
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