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Abstract: Building information modeling (BIM) is a process that has shown great potential in the 
building industry, but it has not reached the same level of maturity for transportation infrastructure. 
There is a standardization need for information exchange and management processes in the 
infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the 
Industry Foundation Classes standard has harmonized different infrastructures under the Industry 
Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such 
as laser scanning for infrastructure monitoring is becoming more common. This paper presents a 
semi-automated framework that takes as input a raw point cloud from a mobile mapping system, 
and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in 
a highway road. The point cloud processing methodology is validated for two of its key steps, 
namely road marking processing and alignment and road line extraction, and a UML diagram is 
designed for the definition of the alignment entity from the point cloud data. 

Keywords: mobile laser scanning; point cloud processing; infrastructure information models; 
building information modeling; Industry Foundation Classes; road alignment modeling 

 

1. Introduction 

Nowadays, reliable and effective information exchange is crucial to any industry. 
Misinterpretations or delays directly translate into increased cost and time requirements. In the 
architecture, engineering, and construction (AEC) domain, this effect is accentuated. This field is a 
heterogeneous mix of different disciplines that are meant to work together. Such a synergy thrives 
with the presence of a standard ensuring that the data are accessible and usable by everyone involved. 
This is what shifted the industry toward the adoption of building information modelling (BIM). It 
acts as a unique source of information, storing all relevant data about the asset. It is not only a 
repository, but a workflow based on collaboration among disciplines. The model evolves as the asset 
does, while each team member contributes to its development [1]. An important factor regarding BIM 
is that its effects are amplified with the complexity and scale of the project. In the case of 
infrastructure, assets deal with highly complex and heterogeneous information from different 
sources. BIM for infrastructure has been growing over the last years, and has shown promising results 
[2–4]. This growth is not limited to its applications, but is also extended to its standardization. The 
Industry Foundation Classes (IFC) is an open standard for creating BIM models designed by 
buildingSMART, and it has been shifting toward the infrastructure domain over the past years. Its 
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most recent version, IFC 4.3, was released as candidate standard on April 2020 and has been one of 
the major updates for the schema. While the previous release only included bridges, this new 
harmonized version also includes railways, roads, ports, and waterways [5]. The efficiency, safety 
and performance of these assets are affected by all the stages of its life-cycle, from its design to its 
demolition. The BIM model is capable of incorporating information throughout its evolution. 
However, as the project complexity scales with its duration, the difficulty to feed data to update the 
model also increases. As a result, other technologies are used in conjunction with BIM to overcome 
this issue. Laser scanning provides a way to obtain both accurate geometric representations instead 
of idealized forms, and to monitor the current state of the asset. 

Point cloud to BIM approaches can be used to obtain an as-built model of the asset [6]. While as-
design modelling is quite common and usually straightforward, as-built modelling is challenging 
because of being based on the real outcome of the construction, instead of the idea behind it. Another 
application is the enhancement of inspection operations performed in the operational and 
maintenance stage [7]. These inspections are the main source of data regarding the actualized state 
of the asset (as-is model), and therefore heavily impact its management. 

Mobile laser scanning (MLS) is widely used for many infrastructure-related applications, despite 
still being an emergent technology. There is a vast literature available from the past decade, showing 
the interest from researchers, infrastructure operators, and administrations on this surveying 
technology and its capabilities. Some extensive reviews on the applications of laser scanning on 
infrastructure can be found in [8–11]. The review from Ma et al. [10] categorizes these applications 
according to the assets where the information is extracted from, namely: (1) on-road information 
extraction (road surface, road markings, driving lanes, road cracks, and manholes), and (2) off-road 
information extraction (traffic signs, light poles, roadside trees, and power lines). One of the most 
relevant road assets are traffic signs. Their predefined design in terms of material, shape, and size, 
makes them a common asset to extract information from. Recent approaches combine 2D imagery 
and 3D point cloud data extracted from mobile mapping systems in order to detect and classify traffic 
signs along the road [12–14], and to assess their visibility and recognizability [15]. There is also 
relevant research regarding the influence of vegetation in the infrastructure in terms of clearance and 
visibility disruption [16–18], or works focused on detecting several objects along the infrastructure 
[19,20]. 

Of greater interest for this work are two of the aforementioned applications: driving lane 
generation and road marking extraction. Both of them are complementary applications, as the 
geometric information from road markings can be employed to extract the driving lanes. As road 
markings have retroreflective properties, the intensity attribute of 3D point clouds (which is directly 
related with the energy of the emitted pulse once it is reflected back to the sensor) is commonly used 
to extract and process them [21–23]. Wen et al. [24] propose a complete framework for the extraction, 
classification, and completion of road markings that is able to extract the road markings using a U-
Net (encoder-decoder) segmentation network, and then classify them using a hierarchical approach 
that uses convolutional neural networks (CNN) to classify small size markings. Finally, occlusions 
and misdetections can be corrected with a context-based completion based on a conditional 
generative adversarial network (cGAN). As it can be seen, deep learning frameworks are common 
on the state-of-the-art for road marking extraction in 3D point clouds. Finally, regarding driving lanes 
extraction, it is worth mentioning the work from Li et al. [25,26], where 3D roadmaps are generated 
using the information from previously segmented road markings. Then, lane geometries and lane 
centrelines can be generated, including transition lines. However, this approach does not have into 
account the modelling of their outputs according to infrastructure standards. 

The objective of this paper is to present a semi-automated framework that takes as input a raw 
point cloud from a mobile mapping system, and outputs a IFC file that represents the centreline of 
the road (called alignment or main alignment throughout the paper) and the centreline of each road 
lane (offset alignment). The contributions of this paper can be listed as follows: 

(1) A point cloud-processing method that extracts the road main alignment and offset 
alignment of a highway road. In order to do so, a method for detection and classification of 
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solid and dashed road markings is also presented. Note that this road marking processing 
method does not aim to be a contribution by itself, but it is essential for the whole workflow 
and will be validated to prove that it has state-of-the-art performance. 

(2) A conversion of the main alignment and offset alignment as exported from the point cloud 
processing method, to an IFC Alignment model, which is part of IFC 4.1 standard. The 
model is supported with UML diagrams. 

The structure of this paper continues as follows: Section 2 presents the case study data and the 
proposed methodology, Section 3 shows the results obtained from its validation, Section 4 presents 
the discussion, and finally Section 5 outlines the conclusions and the future lines of this research. 

2. Materials and Methods 

2.1. Case Study Data 

The study area for this work consists of approximately 20 km of a highway road which was 
surveyed with the LYNX Mobile Mapper by Optech (Figure 1a). It consists of two LiDAR sensor 
heads, a navigation system that comprises an inertial measurement unit (IMU) and a two-antenna 
heading measurement system (GAMS), and a LadyBug 5 panoramic camera. For a complete 
description about the system specifications, the reader is referred to [27]. 

The raw data of the study area comprise 3D point cloud data as well as trajectory data, both 
including a synchronized time stamp attribute that allows the georeferentiation of the trajectory with 
respect to the point clouds. It is important to notice that the size of the point cloud data was too large 
to be processed with the available equipment, therefore it was divided into 43 individual point cloud 
sections with a manageable size. In average, each section has 3.5 million points and covers a length 
of around 400 m (Figure 1b). The complete dataset has approximately 155 million points and covers 
17.5 kilometres. The geographic location of the study area is not available because of confidentiality 
restrictions by the infrastructure owner. 

 
Figure 1. Case study data. (a) Optech LYNX Mobile Mapper. (b) Raw point cloud section. 

2.2. Methodology 

This section presents the methodological approach of this work as a sequential set of processing 
modules that take as input a 3D point cloud section of a highway road and outputs a IFCAlignment 
data model according to the specifications of IFC 4.1, which defines the alignment of the road as well 
as the middle point of each road lane. A schematic diagram of the workflow is shown in Figure 2. 
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Figure 2. Workflow of the presented method. 

2.2.1. Ground Segmentation 

The first module of the methodology aims to isolate the ground in order to ease the subsequent 
detection of road markings. Let 𝓟 𝒙,𝒚, 𝒛, 𝑰, 𝒕𝒔  be the raw point cloud, where 𝒙,𝒚, 𝒛  are the 
3D coordinates, 𝑰 is the intensity, and 𝒕𝒔 is the team stamp of the point acquisition. Also, let 𝓣𝒙,𝒚, 𝒛, 𝒕𝒔,𝝓,𝜽,𝛙  be the trajectory of the vehicle during the survey, where 𝒙,𝒚, 𝒛, 𝒕𝑺  are the 3D 
coordinates and time stamp in the same coordinate system as the point cloud, and 𝝓,𝜽,𝛙  are the 
roll, pitch, and heading of the vehicle at each recorded trajectory point. Also, let 𝒮 𝑷, 𝒊  be a function 
that takes a point cloud 𝑷 and selects a subset of points with indices 𝒊  (each index is an integer value 
representing the position of a point in 𝑷). 

Ground segmentation is a common process in the point cloud processing literature, and there 
are several different valid approaches to achieve acceptable results for this application. Here, an 
adaptation of the voxel-based method of Duillard et al. [28] is employed. First, the point cloud 𝓟  
is voxelized, and each voxel includes the vertical mean and variance of the points within each voxel. 
Then, a set of ground seed points is selected using the trajectory, and the knowledge that trajectory 
points are always located directly over the ground. Finally, a region growing algorithm is applied, 
iteratively selecting the neighboring voxels of those selected as ground and adding them to the 
ground segment when their vertical mean and variance are under thresholds 𝑑  and 𝑑  . 

Once the region growing is finished, the indices of the points within the voxels selected as 
ground, 𝒊 , are retrieved, and the ground cloud is defined as 𝓟 𝒮 𝓟 , 𝒊 . In practice, only the 
indices are stored in memory, such that 𝓟  is generated from 𝓟  only when it is needed. A more 
detailed description of the whole ground segmentation process can be found in previous work [12]. 
Figure 3 shows the results of the ground segmentation process. 

 

Figure 3. Ground segmentation. (a) Raw point cloud 𝓟 ; (b) the segmented cloud 𝓟  is colored in 
red 

2.2.2. Road Markings Detection 

The objective of this module is to detect points that belong to road markings within the 
previously segmented point cloud 𝓟 . Here, a detection process based on point intensity is proposed, 
as it is a highly discriminative feature that allows separating pavement and road markings. The 
following considerations are made to design the process of this module: 
• The intensity of a point is an attribute that depends on the distance between the sensor and the 

point itself. Therefore, usage of global intensity thresholds is not feasible. Instead, the intensity 
attribute should be analyzed locally, among points with similar distance with respect to the 
sensor. 

• Most of the markings are linear elements that follow the direction of the vehicle trajectory (solid 
and dashed lines). Therefore, it seems convenient to locally search for road markings in a set of 
slices parallel to the trajectory. 
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• The generation of those slices needs to have into account the curvature of the road. The longer 
the slice in the direction of the trajectory at a point, the larger the effect of the curvature of the 
road. Hence, it is preferable to define short slices and process them iteratively. 
With these considerations, the point cloud 𝓟  is divided into a number of sections following 

the trajectory of the vehicle. For each point 𝑥,𝑦, 𝑧 ∈ 𝓣, a geometric transformation is applied to 
both the point cloud and the trajectory. First, they are translated such that the origin of coordinates 
corresponds to 𝑥,𝑦, 𝑧  and then rotated around the Z axis an angle given by the trajectory heading, 𝜓 , such that the next point 𝑥,𝑦, 𝑧 ∈ 𝓣 is located along the Y-axis. Then, the indices 𝒊  of the 
points with Y coordinates in the range 0,𝑦   ] are obtained and the point cloud 𝓟 𝒮 𝑷 , 𝒊 ) is 
extracted, where 𝑦  is the y coordinate of 𝑥,𝑦, 𝑧 ∈ 𝓣 plus an overlap of 2 m set to avoid losing 
points in curved areas of the road. Then, each 𝓟  is subsequently divided, following the same 
process, in bins 𝑏𝑖𝑛 , 𝑏𝑖𝑛 … 𝑏𝑖𝑛 , … 𝑏𝑖𝑛  of length 𝑏𝑖𝑛  (with 𝑏𝑖𝑛 2⁄  of overlap), and width 𝑏𝑖𝑛 . 
This process is graphically illustrated in Figure 4. 

The average intensity value of the points within each bin will be used to generate intensity 
profiles of the road. As it was mentioned, the intensity of a point depends on the distance with respect 
to the sensor, so the intensity profile is normalized by subtracting the average ground intensity across 
the profile. Then, in order to find consistent intensity peaks, the intensity profile is smoothed with a 
gaussian-weighted moving average filter with window size 𝑤 , and with a top-hat filter with a filter 
size 𝑤 . Finally, peaks are selected as local maxima with values higher than the intensity average 
across all bins. First and last bins are removed from the peak selection to avoid boundary artifacts. 
Points within bins selected as peaks are considered road marking candidates (Figure 5). 

 

Figure 4. The point cloud 𝓟  is partitioned in several transversal sections with respect to the 
trajectory of the vehicle, with a certain overlap. Each section is subdivided in smaller bins to get a 
locally averaged intensity value. 
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Figure 5. Road markings detection. (a) 3D point cloud employed to generate a single intensity profile. 
(b) Intensity profile, with normalized and filtered intensities. (c) Detected road markings on the 3D 
point cloud are colored in red. 

Once every 𝑷  has been analyzed, the road marking candidates are clustered via Euclidean 
distance clustering. As every bin selected during the process may have both road marking and 
pavement points, the latter are removed by applying an Otsu thresholding [29] to each cluster and 
its neighboring points, in a neighborhood 𝑛 . This process results in a set of indices 𝒊  that allow 
the selection of a point cloud 𝓟 𝒮 𝓟 , 𝒊  with the detected road markings (Figure 6). 

 
Figure 6. The result of road markings detection, 𝓟 , is colored in red over the point cloud. 

2.2.3. Road Markings Processing 

The objective of this module is to assign semantics to the points detected as road markings in 
the previous step of the methodology. The following considerations have been made: 
• The main objective of the whole process is to extract the center of the road and each lane using 

the information given by the road markings. Therefore, the relevant markings to be classified 
are solid and dashed lines. 

• The knowledge about the semantics of the road markings will allow to analyze the presence of 
false positives as well as occlusions and other false negatives on the point cloud of detected road 
markings, 𝓟 . 
First, the point cloud 𝓟  is retrieved from the indices extracted in the previous step. Then, it 

is rasterized, following the rasterization approach in [30] with a raster size 𝑟   ; and a binary image 
representing the pixels that contain at least one point is generated. Then, the eccentricity of each 
connected component is computed. The eccentricity is defined as the ratio of the distance between 
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the foci of the ellipse that has the same second-moments as the connected component, and its major 
axis. Only those components with an eccentricity close to 1 (larger than 𝑒𝑐𝑐 ), hence elongated 
elements, are selected as either solid or dashed lanes. A soft length filter is applied, initially classifying 
as dashed those lines whose length is between 𝑑𝑎𝑠ℎ  and 𝑠𝑜𝑙𝑖𝑑   , and solid if they are longer than 𝑐𝑜𝑛𝑡 . This soft thresholding allows to apply different processing approaches to solid and dashed 
lines to achieve a final classification result. 

For each solid line in 𝓟 , a Gaussian Mixture Model (GMM) fits the intensities of the points of 𝓟  and its neighborhood in 𝑷   to two different classes (ground and road marking). Then, a region 
growing process is defined to detect false negatives or partially occluded areas of the lines, where 
rectangular regions of interest [𝑟𝑜𝑖 , 𝑟𝑜𝑖 , … 𝑟𝑜𝑖 , . . . , 𝑟𝑜𝑖 ] centered on the line are iteratively defined, 
following the direction of the line until no more points are found. Each 𝑟𝑜𝑖  is defined to have a 
length of 𝑙  and a width, 𝑤 , equal to two times the width of the line. The intensity of the points 
within each region is classified using the GMM, and every point classified as road marking that is not 
found in the original solid line is added to it. This step allows to merge solid lines separated by an 
occluded area and to refine the detection of road marking points in the direction of the line. This 
process is illustrated in Figure 7a. 

Finally, to deal with false positives, each solid marking is set to meet two conditions: First, since 
the solid line has to be parallel to the trajectory, the angle 𝛼  between their principal directions is 
computed and markings whose angle is larger than 𝛼  are considered false positives. Similarly, 
markings whose length 𝑙  is shorter than 𝑠𝑜𝑙𝑖𝑑   are considered false positives as well (Figure 7a). 
Note that 𝑠𝑜𝑙𝑖𝑑 <  𝑠𝑜𝑙𝑖𝑑 , as the previous step is expected to reconstruct solid markings with 
small occlusions. 

Regarding dashed markings in 𝓟 , the objective is to find all markings that belong to the same 
line, considering that there may be more than one road lane separated with dashed markings. First, 
length and width of all dashed markings is computed, and they are clustered in groups such that the 
length and width of each marking is closer than tolerances 𝑡  and 𝑡  to the average value for all 
markings in the cluster. For the markings within each cluster, they are iteratively analyzed computing 
(1) the angle 𝛼  between the principal direction of the dashed marking and the direction of the 
vector that joins its centroid with the centroid of the closest marking in the cluster, and (2) the distance 𝑑  between centroids (Figure 7b). Two markings are merged as part of the same line when these 
parameters are under thresholds 𝛼  and 𝑑 . 

Finally, a process to search false negatives is carried out. The average of the minimum distances 
between the centroids of two markings within the same line, 𝑑  is computed, and when a gap is 
found between the two consecutive markings, the position of the missing ones is obtained using the 
aforementioned distance and the direction of the line (Figure 7b). In order to detect only the points 
belonging to the dashed marking, a rectangular region is computed and a binary intensity 
classification of the points within the region in 𝑷   (using a GMM in an analogous manner than for 
solid lines) is applied. 

Once solid and dashed lines are processed, they are stored as objects with several properties as 
shown in Table 1. That is, for each 𝓟 , a set of road markings 𝓜 = [𝑀 , … ,𝑀 , … ,𝑀 ] ∈ 𝓟  are 
defined with semantics and relevant properties. Note that not all properties are computed at this 
stage, and also that road marking points that are not classified as neither solid or dashed are 
considered of class “Others” but still stored as part of the output of this module. Road markings 𝑀  
of a road section are shown in Figure 7c. 
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Figure 7. Road markings processing. (a) False negatives or occlusions on solid lines are corrected 
using a region growing method that follows the detected line. False positives are removed based on 
angle 𝛼  (which has been exaggerated for better understanding of the figure) and length of the 
marking 𝑙 . (b) Dashed markings are merged together based on angle 𝛼  and distance 𝑑  false 
negatives can be found using parameter 𝑑 . (c) Processed road markings are shown in the 3D point 
cloud (solid lines colored in red, dashed lines colored in green). 

Table 1. Properties of each road marking object in 𝓜  
Property Description 

path Path of the point cloud 𝓟𝒓𝒂𝒘   
indices Indices of the marking in 𝓟𝒓𝒂𝒘   
points Nx3 array with the coordinates of the marking 
class Class of the marking (solid, dashed, or others) 

geometry Geometric properties of the marking 
line Polynomic parametrization of the marking 

2.2.4. Road Edge Detection 

This module aims to detect those road markings that delineate the edges of the road. The precise 
knowledge of road edges is essential to extract the center point of the road and hence, to build the 
IFC alignment models. The following considerations have been made: 
• The geometric data that are exported to build the IFC alignment model must not contain any 

error, so the model can be created correctly. This will be ensured if road edges are detected with 
no errors. 

• A fully automated approach is not desirable for this module. Even if complex heuristics are 
defined, it is not possible to ensure that road edges are correctly detected in all cases. Therefore, 
an efficient approach would include an automated process with manual verification, and only 
in those cases when errors are detected, a manual delineation of road edges would be enabled. 

• Manual verification of the results allows the definition of simple heuristics that are able to 
efficiently detect road edges in most cases, even if they are not robust enough to perform 
correctly in all cases. 
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With these considerations, an automatic road edge detection process is defined, and the results 
for each point cloud 𝓟  are manually verified by the user. If errors are found, the user is asked to 
manually select the road edges. 

Regarding the automatic process, markings 𝓜  as computed in the previous module are 
retrieved together with the ground point cloud 𝓟  and the trajectory 𝓣 . Then, 𝓟  is divided 
following the direction of the trajectory, retrieving the sections 𝓟  as detailed in Section 2.2.2. Then, 
the spatial coordinates of each road marking within 𝓟  are defined, obtaining a subset 𝓜 =𝑀 , …𝑀 , …𝑀 ⊂𝓜. Each 𝑀  is analyzed, computing its length 𝐿  and its transversal distance 
with respect to the trajectory 𝐷 . Note that this distance is defined as negative if it is measured to 
the left in the direction of the trajectory, and positive otherwise). Those 𝑀  whose 𝐿  is smaller 
than the 90% of the section length are filtered out, and from the remaining 𝑀  those with largest 
positive and negative 𝐷  are selected as part of the right edge and left edge respectively. 

These heuristics are simple but efficient. The result should be correct unless there exist false 
positives outside of the road edges or the edges themselves are false negatives. For these cases, the 
user will be asked to delineate road edges, selecting a rectangular region in 𝓟  for each edge. 

This results, independently of the type of process, in a couple of arrays of indices, (𝒊 , 𝒊  
allowing the selection of both road edges such that 𝓟 = 𝒮 𝓟 , 𝒊 , 𝓟 = 𝒮 𝓟 , 𝒊  are the point 
clouds of the right and left edge respectively (Figure 8). 

 
Figure 8. Road edges are shown in the 3D point cloud, right edge 𝓟  in green and left edge 𝓟  in 
red. 

2.2.5. Alignment and Road Lane Processing 

The objective of this module is to detect and define the alignment of the road and the centerline 
of each road line. For that purpose, the point clouds of the road edges 𝓟  and 𝓟  are used together 
with the point cloud of the ground 𝓟  and road markings 𝓜. First, a linear polynomic curve is 
fitted to the 𝑥,𝑦  coordinates of each edge. If the quality of fit is good (𝑅  coefficient larger than 𝑅2 ) the linear model is kept. Otherwise, it is replaced by a quadratic polynomic curve, that will 
get a better fit in curved sections of the road. 

The polynomic curves are subsequently sampled, obtaining a point each 𝑑  meters. This 
results in two sets of coordinates that represent the road edges with a set of uniformly distributed 2D 
points. In order to retrieve the third coordinate, the closest neighbor in the 𝑥,𝑦  coordinates of 𝓟  
is obtained, and the z coordinate of the closest neighbor assigned to the sampled edge point. 

Finally, the alignment is defined using the left edge as reference. For each point on the edge, the 
closest point of the right edge is selected, and the closest point to the geometric mean of both edge 
points in 𝓟  is computed and considered an alignment point (Figure 9). This way, a set of points 𝑷 = 𝑥,𝑦, 𝑧 ⊂  𝓟   is defined and will be used to build the IFC alignment model. Note that 𝑷  
coordinates should be ordered following the direction of the trajectory. 
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Figure 9. The alignment 𝑷  is obtained from the sampled road edges. 

Once the coordinates 𝑷  are retrieved, the middle point of each road lane is computed. First, it 
is necessary to make some considerations: 
• The first necessary step is to detect the number of road lanes. This number is not constant along 

the study area, and a single point cloud 𝓟  may have different numbers of lanes when, for 
instance, there is a highway entrance or exit. 

• Both solid and dashed markings can separate two lanes. However, the separation between the 
same lines can change along the road (for instance, a dashed line can be replaced by a solid line 
for a road section with prohibition of overtaking). 
With these considerations, the point cloud 𝓟  is transversally divided in sections 𝓟  and 

subsequently in bins 𝑏𝑖𝑛 ,𝑏𝑖𝑛 … 𝑏𝑖𝑛 , … 𝑏𝑖𝑛  following the same approach than in Section 2.2.2, 
but defining each bin with the same length than 𝓟  and a width of 𝑏𝑖𝑛 , and considering only bins 
between the edges 𝓟  and 𝓟 . Then, an occupancy vector 𝑶 = [𝑂 ,𝑂 , … ,𝑂 , . .𝑂   ] is computed 
such that 𝑂  indicates whether or not there are either solid or dashed markings from 𝓜 in 𝑏𝑖𝑛 . The 
presence of markings in a bin indicates a separation between two lanes, hence 𝑶  indicates how 
many road lanes are in 𝓟  (Figure 10). The number of lanes 𝒩  in each 𝓟  is stored in an array 𝓝 = [𝑁 , … ,𝑁 , …𝑁   ], and it is analyzed with the following criteria: (1) the number of lanes has to be 
constant for a distance of at least 𝑑 . If any discrepancy is found in the number of lanes 𝑁  of a 
section 𝓟 , it is assumed to has the same number of lanes as the previous correct section. 

Finally, the middle point of each road lane is obtained following the same approach than for the 
alignment coordinates 𝑷 , starting on the left margin and computing iteratively the middle point 
with respect the next lane separation until the right margin is reached. 
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Figure 10. Road lane processing. (a) Example of a road section with two lanes. (b) Example of a road 
section with three lanes. 

At this point, two different tables are created as .csv files to export the results. The first one 
includes a Nx3 matrix with the coordinates of 𝑷  as a set of ordered 3D points defining the center 
of the road with a small resolution. The second one is a Mx3 matrix that allows the positioning of the 
middle point of each road lane from 𝑷 , including: 
• OffsetXY: The perpendicular distance between each point in 𝑷  and each middle point of each 

road line. 
• OffsetZ: The vertical distance between each point in 𝑷  and each middle point of each road line. 
• Offset_id: Since there may be more than one lane per point in 𝑷 , an index is stored for each pair 

of (OffsetXY, OffsetZ) that points to the coordinate in 𝑷  from which the offsets were obtained, 
allowing the offset alignment generation as explained in Section 2.2.6. 
Figure 11 shows the results of this module. The road alignment, as well as the middle point of 

each road lane, are described as a set of ordered points with a small resolution such that a polyline 
can be defined without introducing a relevant error, even when there is a certain curvature on the 
road. 

 

Figure 11. The alignment (black points) and the centerline of each road line (which is employed to 
define the offset alignment -red and green points-) are shown in the 3D point cloud. 

2.2.6. IFC Alignment Model Generation 

The purpose of this module is to obtain an IFC model that contains the alignments for both the 
center of the road (main alignment) and the lanes (offset alignments). 

To support the explanation of the procedure, both an UML class diagram and a general 
flowchart are provided to be understood along each other. The UML can be seen in Figure A1 
(Appendix A) and the flowchart is visible in Figure 12. 
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The process revolves around an alignment hierarchy where the main alignment stands on top 
and the offset alignments depend on it for their geometry definition. While the nature of the hierarchy 
implies that the main alignment has to be created first, the process can be explained simultaneously, 
since the building process is quite similar. First, the data matrices obtained from the point cloud are 
fed into the system, where they are formatted into packages. These packages are called constructors 
and they contain the necessary information to define a unique curve. Depending on whether they 
describe the center of the road (MainAlignmentConstructor) or one of its lanes 
(OffsetAlignmentConstructor), the formatting varies, but the objective is the same: one constructor 
equals one curve. Then, these constructors are used to create segments describing the center of the 
road (IfcAlignment2DHorizontalSegment & IfcAlignment2DVerticalSegment), and offset points based on 
them that describe the shape of each lane (IfcDistanceExpression). Afterwards, the segments are 
concatenated forming the curve of the main alignment (IfcAlignmentCurve), and the points are 
connected forming the curves of the offset alignments (IfcOffsetCurveByDistances). Finally, these 
curves are used as the base for their corresponding IfcAlignment instances, and the model is exported 
into an IFC file. 

 
Figure 12. General flowchart diagram of the Industry Foundation Classes (IFC) alignment model 
generation. 

For a more detailed explanation, the process can be broken down into its two stages: formatting 
the data, and creation of the alignments. As mentioned previously, the end goal of the formatting 
stage is to obtain one constructor for each curve. Additionally, it also serves to express the input data 
from the matrices (.csv) in an appropriate form, so that it can be easily used throughout the program. 
For the main alignment, this stage is a simple redistribution of the data found in the Nx3 matrix. This 
means that the constructor contains the coordinates of 𝑷  in an ordered list. However, for the offset 
alignments, the possibilities of incorporation lanes and missing data are also taken into account. The 
solution for both these issues is based on the Offset_id parameter. The Offset_id is an index that 
indicates to which main alignment point the accompanying OffsetXY and OffsetZ are related. 
Therefore, by querying all its values for repetition, a counter list is obtained. This counter list reflects 
the amount of times each index is repeated, indicating the number of lanes for each 𝑷 . This allows 
the consideration of incorporation lanes, since the counter would increase in the moment a new lane 
appears, and decrease when it disappears. As for the missing data, if there is a jump in the sequential 
values of Offset_id (e.g., 1, 1, 2, 2, 15, 15, 16, 16), it means that there are no related OffsetXY and OffsetZ 
for the 𝑷  in between. To avoid misrepresenting that part of the road, the curves are split if the jump 
surpasses certain threshold. This implies that points before and after the split will belong to different 
curves and, therefore, to different constructors. 

The creation stage for the main alignment is focused on the definition of linear segments 
connecting each sequential pair of 𝑷 . Following the IFC schema, the vertical and horizontal 
components of the alignment are defined separately. Horizontal segments 
(IfcAlignment2DHorizontalSegment) contained in the XY-plane are described by their StartPoint, their 
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SegmentLength, and their StartDirection. The StartPoint is given directly from 𝑷  and the 
SegmentLength is obtained as the norm of the vector connecting two consecutive 𝑷 . The 
StartDirection is the counterclockwise angle of said vector, with respect to the x-axis. Vertical 
segments (IfcAlignment2DVerticalSegment), on the other hand, are defined based on their horizontal 
counterpart. Their description contains StartHeight, StartGradient, and HorizontalLength. As before, the 
StartHeight is given as the z coordinate of 𝑷  . Their StartGradient is the slope, and the 
HorizontalLength is the same as the SegmentLength of their horizontal counterpart, since they are 
described for the same pair of 𝑷  . These segments are then concatenated into the curve of the main 
alignment (IfcAlignmentCurve) and passed down for the creation of the offset alignments. 

Modelling the offset alignment requires the consideration of the tangential discontinuity present 
when two consecutive segments of the main alignment have different StartDirection. This causes an 
angle difference between the segments, that translates into the issue depicted in Figure 13a. Because 
the point is between two segments with different perpendicular directions, it is not possible to 
directly place the OffsetXY measurement for that 𝑷  . Furthermore, the angle difference also means 
that the lanes will be modeled differently from one another. Picture a smooth curve in a road, the 
interior lane has a different curvature radius than the exterior one, in order to keep the shape of the 
road. This effect is also translated when using line segments, the interior lane has to change direction 
sooner than the exterior lane. To do so, a shifting parameter D is calculated, whose purpose is to 
change the point in which the OffsetXY will be applied. This approach, seen in Figure 13b, solves both 
the discontinuity and this modelling issue. The perpendicular direction is obtained from the segment 
connecting to the target 𝑷  . The point to apply the OffsetXY is then shifted backwards or projected 
forwards by D depending on whether it is an interior or exterior lane, respectively. 

 
Figure 13. Offset alignment modelling. (a) Unknown perpendicular direction. (b) Shifting parameter 
solution. 

These points (IfcDistanceExpression) are then connected to form each of the offset alignment 
curves (IfcOffsetCurveByDistances). The final step is to use the curves obtained from the creation stage 
as the base for the IfcAlignment instances of the center of the road and the lanes. Finally, the model is 
exported as an IFC file. 

3. Results 

3.1. Parameters 

In Section 2.2, several parameters and thresholds were introduced. In Table 2, they are 
summarized together with the values used for the validation of the method. In most cases, the 
definition of the parameters comes from previous knowledge of the problem (e.g., the geometric 
properties of road markings), and an empirical verification that is needed in every methodology 
heavily based on heuristics as the one presented in this work. 
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Table 2. Values of the parameters used for the validation of the method. 

Parameter Value Parameter Value   𝑑    0.05 m   𝑙    3.5 m   𝑑    0.05   𝛼    10º   𝑏𝑖𝑛    1 m   𝑠𝑜𝑙𝑖𝑑    20 m   𝑏𝑖𝑛    0.15 m   𝑡    0.75 m   𝑤    15   𝑡    0.75 m   𝑤    5 𝛼𝑡ℎ 15º   𝑛    0.5   𝑑    50 m   𝑟    0.2 m   𝑅2    0.999   𝑒𝑐𝑐    0.98   𝑑    1 m   𝑑𝑎𝑠ℎ    0.5 m   𝑏𝑖𝑛    0.5 m   𝑠𝑜𝑙𝑖𝑑    7.5 m   𝑑    100 m 

3.2. Road Marking Detection and Processing 

This section is focused on the validation of the methods from Section 2.2.2 and Section 2.2.3 for 
road marking detection and processing respectively. Ground truth data were obtained by randomly 
selecting a 20% of the point cloud sections 𝓟𝒈𝒊 generated during the process and labelling them 
manually. This results in approximately 4 km of road that is used for validation. To simplify the 
labelling process for the manual operator, the point clouds were rasterized with a raster size of 0.1 
m, and a pixel-wise labelling was carried out over the intensity image of the raster structure. To obtain 
validation results for road marking processing, two different classes are annotated: solid line and 
dashed line (Figure 14a). 

 
Figure 14. Road markings processing results. (a) Manual reference with labels for solid and dashed 
lines. (b) False positives (red) and false negatives (black) are highlighted on the 3D point cloud. 

Road marking detection is validated by directly comparing, pixel by pixel, the manually 
annotated images with the corresponding raster images that include the road markings from 𝓟  
as defined in Section 2.2.2. The metrics used for this validation are Precision, Recall, and F-score 
(Equations 1–3). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 𝐹𝑃 (1)

  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 𝐹𝑃   (2)

  𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙    (3)

where TP, FP, and FN are the number of true positive, false positive and false negative pixels 
respectively. 



Remote Sens. 2020, 12, 2301 15 of 22 

 

Furthermore, two distance metrics are considered to offer a better insight on the value of the 
validation metrics: 𝑑  is the average distance, across the ground truth, between false positive points 
and their closer true positive points. Similarly, 𝑑  is the average distance between false negative 
points and their closer true positive points. These distances allow to quantify the influence of the 
labelling quality on the results; a closer distance to the raster size implies a bigger influence of 
boundary errors on the labelling process. The results can be seen in Table 3. 

For road marking processing, a confusion matrix of solid and dashed lines across the ground 
truth is shown in Table 4. 

Table 3. Road marking detection results and validation metrics. 

Precision Recall F-score   𝒅𝑭𝒑 (m)   𝒅𝑭𝑵 (m) 
0.919 0.964 0.932 0.184 0.333 

 

Table 4. Confusion matrix for road marking classification. 

GT/Prediction Solid Line Dashed Line 
Solid Line 99826 163 

Dashed Line 466 13805 
As it can be seen, the metrics for road marking detection are promising. Even if there exist false 

positives and false negatives in the validation data, most of them are in the boundaries of the 
markings (Figure 14b), which is reasonable as the manual labelling was done pixel-wise in intensity-
based images with a resolution of 0.1 m. 

3.3. Alignment and Road Lane Processing 

This section is focused on the validation of the methods from Section 2.2.5. The output of the 
point cloud processing modules is a set of ordered point coordinates that represent the alignment, or 
central line, of the road (𝑷  ). Such set of points can be validated against manual references. A similar 
approach than in Section 3.2 was carried out, selecting a 20% of the sections 𝓟𝒈𝒊 randomly (this 
selection is independent from the one in Section 3.2), and manually defining a line on a raster image 
of the section that represents the alignment. The 3D line corresponding to the pixels selected by the 
manual annotation are retrieved, and two parameters are computed: the average distance of the 
points in 𝑷  corresponding to the section 𝓟𝒈𝒊 with respect to the reference 3D line (𝑑  ) and the 
angle between the principal component of the points in 𝑷  and the director vector of the reference 
3D line (𝛼  ). 

The results for all selected 𝓟𝒈𝒊 can be visually interpreted with the box plots in Figure 15a. The 
central mark of each box represents the median, which is 0.072 m for 𝑑  and 0.177º for 𝛼 . 
The top edge of the box indicates the 75th percentile, hence it can be seen that errors are small and 
close to the resolution of the images used for defining the ground truth. A few outliers are also present 
in the results. One of them is shown in Figure 15b, where the transition to a third lane which appears 
in the boundary of the section is not captured by the manual annotation. 
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Figure 15. Alignment extraction results. (a) Box plots of the error metrics 𝑑  and 𝛼 . (b) 
Example of a road section that results in an outlier for 𝑑  due to the transition to a third road lane 
that appears in the boundary of the section, where manual reference is colored in red and alignment 
points are colored in green 

Finally, Figure 16 shows a visualization of the alignment on Google Earth. The small error found 
in the validation data can be qualitatively generalized to the entire dataset given the visual results 
over the satellite image. 

 
Figure 16. Points of 𝑷  for the case study data displayed as a point layer on Google Earth 

3.4. IFC Alignment Model Generation 
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The methodology employed in the IFC alignment model generation was explained in Section 
2.2.6, using the UML class diagram present in Figure A1 (Appendix A) as a guide. It is based on the 
IFC 4.1 version of the schema and programmed using the xBIM 5.1.274 toolkit available for Visual 
Studio. However, while IFC 4.3 Draft Schema introduced several changes in the entity hierarchy and 
introduced new definitions, the geometric description of IfcAlignmentCurve and 
IfcOffsetCurveByDistances remained the same. Therefore, the alignment creation procedure 
showcased is valid for the newly released IFC 4.3. The exported IFC contains 17 offset alignments, as 
a result of the splitting procedure, to avoid missrepresentation of the road because of missing data. 
Their instances can be seen alongside the top view of the model in Figure 17. 

 
Figure 17. Top view of the IFC model and its alignment instances. 

Because of the scale of the road compared to the separation between the road lanes, it is 
necessary to zoom into an specific section to appreciate both the splits and lanes. Figure 18 shows 
several scenarios at once: (i) separation and paralelism between the lanes and main alignment; (ii) the 
appearance of a new lane; (iii) the reposition of the lanes to maintain the main alignment in the 
middle. 

Overall, the shape of the road lanes followed the main alignment without any issues, mainly 
because of the thorough point cloud preprocessing. For reference, the viewer used through the 
development of the procedure and for the obtainment of the figures presented was FZK Viewer 5.3.1. 
Nevertheless, the obtained IFC model is merely a skeleton for future works following the IFC 4.3 
release. The body of the road can be built upon the alignments given by this procedure, and semantic 
properties can be added to further enrich the model. While some of these steps would require a 
manual input or a new data feed, the existence of the alignments ease the introduction of these future 
lines of work. 
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Figure 18. Main alignment (reds) and offset alignments (blue). Third lane appearance. 

4. Discussion 

Attending to the results shown in Section 3, the proposed methodology is able to fulfill the 
objective and contributions of this work as presented in Section 1. First, the point cloud processing 
workflow outputs the main alignment and offset alignment of a highway road in a format that can 
be easily converted to an IFC compliant file. The validation of both road markings and alignment 
processing show a good performance in terms of errors with respect to manual references and has 
into consideration highway entrances and exits to define the alignment as the centerline of the road. 
Conversely, it can be argued that the main drawback of this method is the fact that it is not a fully 
automated process. This may have an impact on the time consumption of the method. Specifically, 
for Road Edge Detection (Section 2.2.4), manual corrections were required only for 20% of the point 
cloud sections of the case study but represent more than 65% of the total time of the process. Hence, 
it is clear that full automated and reliable processes would save resources in terms of time and manual 
interaction. Although full automation is a future objective for this research line, having a manual 
verification of the results before converting them to an IFC file guarantees the final user that any 
relevant error on the point cloud processing stage is corrected beforehand. Another future line of 
research will be motivated by the large number of heuristics that are defined throughout the point 
cloud processing workflow. With a larger amount of labelled data, it should be possible to train 
supervised learning algorithms and set classification models that allow road marking classification 
with no need of manual parameter tuning. 

Second, a UML diagram that defines the construction of the IFC file is proposed (Appendix A). 
The generation of IFC compliant files from point cloud data of road infrastructure is expected to be a 
relevant research field in the next few years with the newly released IFC 4.3, where the definition of 
IfcAlignment objects will be essential for the positioning of the different road elements. Furthermore, 
different infrastructures could be interconnected (railways, bridges, etc.,) as a result of the 
harmonization process that is at the core of IFC 4.3. As the standardization process evolves, different 
civil engineering software tools are expected to be able to work with IFC files, hence the interest and 
potential of point cloud processing tools that allow the generation of this type of information models. 
Similar processes that allow to define IFC-compliant infrastructure entities are a natural future line 
for this research, once standards such as IFC Road are published and openly available. The feasibility 
of this line of research is being demonstrated in recent work [31,32]. Nevertheless, the automatic 
generation of an IFC model containing the alignments should be viewed as an alternative form of 
presenting information. This means that the point cloud is to be cleaned and preprocessed before 
passing it down to create an IFC-based model. Therefore, it is completely dependent on the raw data 



Remote Sens. 2020, 12, 2301 19 of 22 

 

provided. If the input data are refined and set to describe a smooth curve, it will be reflected in the 
outcome of the IFC as well. The major drawback of the procedure on itself is that it uses an average 
number of lanes as basis. This assists the modeling of appearing lanes, but it would present issues if 
the number were to drop below that average on a section of the road. Regardless of this, the process 
has automatically created alignments that describe 20 km of road and, while the techniques are to be 
refined as a future line of work, it can be seen as a baseline for modelling the road itself, now that IFC 
4.3 has been released. 

5. Conclusions 

This paper presents a methodology that outputs IFC-compliant files that model the alignment 
and the centerline of the road lanes of a highway road, using point cloud data that is processed in a 
semi-automated manner (automatic processing with manual validation) as input. The point cloud 
processing framework includes methods for ground segmentation, road marking detection and 
extraction, road edge detection based on the road markings, and finally alignment and road lane 
processing. In order to validate the methodology, information extracted from both road markings 
and alignment are compared with manual references, showing state-of-the-art performance for road 
marking processing and average errors close to the resolution of the reference for the alignment. 

This Cloud-to-IFC workflow is expected to generate interest in infrastructure owners and 
administrations as BIM projects in infrastructure start to be more common, and buildingSMART just 
released IFC 4.3 as the result of the harmonization procedure between different infrastructure 
domains. Future research would consider expanding the alignment description to include arc 
segments and transition curves, modelling the assets covered by the schema beyond their alignment, 
and exploring the capabilities of remote sensing data to assist the generation of information models 
of built infrastructure. 
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Appendix A 

 
Figure A1. UML class diagram for the IFC alignment model generation. 
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