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Abstract: The advancement in satellite remote sensing technology has revolutionised the approaches
to monitoring the Earth’s surface. The development of the Copernicus Programme by the European
Space Agency (ESA) and the European Union (EU) has contributed to the effective monitoring of the
Earth’s surface by producing the Sentinel-2 multispectral products. Sentinel-2 satellites are the second
constellation of the ESA Sentinel missions and carry onboard multispectral scanners. The primary
objective of the Sentinel-2 mission is to provide high resolution satellite data for land cover/use monitoring,
climate change and disaster monitoring, as well as complementing the other satellite missions such
as Landsat. Since the launch of Sentinel-2 multispectral instruments in 2015, there have been many
studies on land cover/use classification which use Sentinel-2 images. However, no review studies have
been dedicated to the application of ESA Sentinel-2 land cover/use monitoring. Therefore, this review
focuses on two aspects: (1) assessing the contribution of ESA Sentinel-2 to land cover/use classification,
and (2) exploring the performance of Sentinel-2 data in different applications (e.g., forest, urban area
and natural hazard monitoring). The present review shows that Sentinel-2 has a positive impact on
land cover/use monitoring, specifically in monitoring of crop, forests, urban areas, and water resources.
The contemporary high adoption and application of Sentinel-2 can be attributed to the higher spatial
resolution (10 m) than other medium spatial resolution images, the high temporal resolution of 5 days
and the availability of the red-edge bands with multiple applications. The ability to integrate Sentinel-2
data with other remotely sensed data, as part of data analysis, improves the overall accuracy (OA)
when working with Sentinel-2 images. The free access policy drives the increasing use of Sentinel-2
data, especially in developing countries where financial resources for the acquisition of remotely sensed
data are limited. The literature also shows that the use of Sentinel-2 data produces high accuracies
(>80%) with machine-learning classifiers such as support vector machine (SVM) and Random forest
(RF). However, other classifiers such as maximum likelihood analysis are also common. Although
Sentinel-2 offers many opportunities for land cover/use classification, there are challenges which include
mismatching with Landsat OLI-8 data, a lack of thermal bands, and the differences in spatial resolution
among the bands of Sentinel-2. Sentinel-2 data show promise and have the potential to contribute
significantly towards land cover/use monitoring.
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1. Introduction

The global land cover is rapidly changing due to anthropogenic activities (e.g., agricultural
expansion and urbanisation) and natural processes (e.g., flooding) [1–3]. These changes impact human
life, and hence effective monitoring mechanisms are needed for the sustainable management and
utilisation of natural resources (e.g., forests, water). The development of satellite remote sensing
technology has revolutionised the approaches in monitoring the natural and human resources on the
Earth’s surface, and this technology makes it possible to monitor large areas [4]. Since the launch of
the first satellite, which was dedicated to monitoring the surface of the Earth (Landsat 1) on 23 July
1972 [5], the scientific community has seen several satellites with both commercial (e.g., IKONOS,
SPOT) and non-commercial (e.g., Landsat, Sentinel) business models. These satellites produce different
remotely sensed data for different applications, such as forest, urban, natural hazard and agricultural
monitoring. The available remotely sensed data, based on a free access policy (e.g., Landsat), have
been playing an important role in monitoring natural resources and various ecosystem processes, such
as forest dynamics, especially in developing countries where financial resources for the acquisition of
remotely sensed data are limited [6,7].

In 2014, the Copernicus Programme, which is under the European Space Agency (ESA), launched
the first Sentinel satellite—Sentinel-1A. So far, the Copernicus Programme has launched several satellite
missions including Sentinels-1, 2, 3 and 5. One significant contribution of the Copernicus Programme
was the launch of the multispectral instruments—Sentinel-2 satellites. The Sentinel-2 constellation is
made of twin satellites; Sentinel-2A and Sentinel-2B (https://sentinel.esa.int/web/sentinel/missions/
sentinel-2). After launching Sentinel-2A on 23 June 2015, the first images were received a few days
later [8,9]. Sentinel-2B was then launched on 7 March 2017. Sentinel-2 satellites carry onboard
multispectral imaging instruments (MSI) with the capabilities of recording 13 wide-swaths bands [9].
The primary objective of the Sentinel-2 mission is to provide high-resolution satellite data for land
cover/use monitoring, climate change and disaster monitoring [9,10]. The other important objective
of Sentinel-2 is to complement the other global satellite programmes such as the Landsat and SPOT
(Satellite Pour l’Observation de la Terre) satellite programmes by ensuring continuity in monitoring
the dynamics on Earth’s surface [8,11–13].

The scientific community, government agencies and private sectors have used Sentinel-2 data
for different applications, such as agricultural, urban development and forest monitoring [12,14,15].
For example, Bruzzone, et al. [16] cited land cover/use monitoring as one of the essential applications
for Sentinel-2 data. Other examples of the important application of Sentinel-2 include the development
of a high spatial resolution (20 m) map for Africa for 2016 (i.e., CCI Land Cover—S2 prototype Land
Cover 20m map of Africa) [17], the Copernicus Land cover services high spatial resolution maps
(https://land.copernicus.eu/pan-european/high-resolution-layers), and the new pan-European high
spatial resolution land cover/use maps (http://s2glc.cbk.waw.pl/) [18]. Countrywide high spatial
resolution maps based on Sentinel-2 data have also been produced for Germany, Belgium, Bulgaria,
Belgium, and Greece [19,20].

Since the beginning of the 15th century [21], the Earth’s surface has experienced rapid changes,
which are driven by agricultural expansion [22], climate change [23] and rapid urbanisation [24].
These changes need monitoring instruments such as Sentinel-2 remotely sensed data to assess the status
of the Earth’s surface continuously and to inform decision-makers about future changes. Moreover,
long-term (>5 years) land use/cover change monitoring by Sentinel-2 has the potential of strengthening
existing policies by providing accurate and timely information [8,25]. For example, Sentinel-2 data is
playing an important role in monitoring the progress of achieving the Sustainable Development Goals
(SDGs) [26]. Like Landsat images [27,28], Sentinel data from all missions can be accessed free of charge
on Copernicus Open Access Hub (https://scihub.copernicus.eu/). Hence this data has the potential
to contribute to land cover/use monitoring in many parts of the world, especially in countries where
financial resources for acquiring remotely sensed data are limited [29].

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://land.copernicus.eu/pan-european/high-resolution-layers
http://s2glc.cbk.waw.pl/
https://scihub.copernicus.eu/
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There have been many studies based on Sentinel-2 data since the launch of these satellites in
2015 [30–32]. However, to the best of our knowledge, there has not been a review study dedicated
to the importance of Sentinel-2 land cover/use monitoring, highlighting its uses and effectiveness.
Therefore, the objectives of this review are to, (1) assess the contribution of Sentinel-2 data in land
cover/use monitoring, and (2) explore the utilisation and opportunities of Sentinel-2 images. At the end
of this review study, the best practices for using Sentinel-2 data are recommended. This review will be
useful to new users of Sentinel-2 images, especially that Sentinel-2 data is relatively new (i.e., five years)
as compared to other free access images such as Landsat (i.e., over four decades of operation).

2. Methods for Searching Literature

A systematic approach to database search was used to explore literature in three databases; Google
Scholar, Scopus and ScienceDirect by using approaches suggested by Blaschke [33] and Ma, et al. [34].
The literature search focused on articles on Sentinel-2 and land cover mapping. The search terms
were combined using the Boolean operation (OR, AND) to search for specific literature relating to
Sentinel-2. The initial search was done using the terms “Sentinel-2” AND “land cover” or “Sentinel-2”
AND “landcover.” A further search was done on the specific applications of Sentinel-2 images using
search terms such as “Sentinel-2” AND “Forest,” “Sentinel-2” AND “Agriculture”, and “Sentinel-2”
AND “urban” (Table 1). Only the literature published between 2015 and 2020 was considered because
Sentinel-2 was launched in 2015. Other records were also identified through other means, such as
recommendations by experts, and these records mainly included reports on the current applications
of Sentinel-2.

Table 1. The criteria used for the systematic literature search.

Criteria Details

Keywords “Sentinel-2” AND “land cover”, “Sentinel-2” AND “landcover”, “Sentinel-2” AND
“Forest”, “Sentinel-2” AND “Agriculture”, and “Sentinel-2” AND “urban”

Document type Journal articles, book chapters and conference proceedings, reports
Language English

Publication period 2015 to 2020

The literature search was refined by removing the double records from the three databases.
The articles which were not having the search terms in the title, keywords and abstract were also
removed from the list. The literature considered in this study, includes published articles, conference
proceedings and book chapters. Due to the many important applications taking place, which have not
been published in peer-reviewed journals, some reports were also considered. Although other articles
did not meet this criterion, they were also consulted, especially on the background and characteristics
of the Copernicus Programme and Sentinel-2 images.

3. Results

The initial literature search retained 4990 articles. The first refinement which considered articles
which had the search terms in the title, abstract and keywords returned 1154 articles. To be concise,
and reduce the number of articles under focus, a total of 204 articles remained after considering articles
which directly address the topic of Sentinel-2 land cover/use mapping. Since the search terms had
duplications (due to different databases searched), 36 articles were corrected for double records and
then 168 articles were considered in the final analysis. With the addition of 9 other records from other
sources, the total articles considered was 177 (Figure 1).
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Figure 1. The number of published articles for land cover monitoring using Sentinel-2 images and the
refinement processes.

3.1. Characteristics of the Reviewed Studies

About 60% of the literature accessed were from journals such as Remote Sensing of the Environment,
Applied Earth Observation and Geoinformation, Remote Sensing, and Photogrammetry and Remote
Sensing. Other studies (40%) where from journals which do not directly deal with remote sensing
(e.g., Applied Geography, Forest Ecology and Management) and other sources including conference
proceedings and technical reports. Conference papers were an important component of this study
considering that Sentinel-2 is a newer satellite programme compared to other programmes such as
Landsat; therefore, there is a lot of debate presented in scientific conferences.

3.2. Trends of Published Articles on Sentinel-2

Figure 2 compared the trends for Sentinel-2 and Landsat-8, a satellite sensor that was launched
2 years earlier than the launch of Sentinel-2. The general search without refinement showed an upward
trend for both Sentinel-2 and Landsat-8. Landsat had consistently higher numbers of published articles;
however, the trends were similar for the two sensors. Blaschke [33] indicated that it is common to
expect the number of published materials to increase for new sensors or contemporary processing
methods due to increasing usage.
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Figure 2. The general trends of articles published from 2015 to 2020 based on the accumulative number
of published articles. Note that Sentinel-2 was launched in 2015, while Landsat-8 was launched in 2013.

The studies considered in this review were conducted in many countries across the world including
countries from Asia, America, Europe and Africa (Figure 3). The distribution of the articles shows
that most of the articles on Sentinel-2 were done in Europe, specifically in countries such as German,
Romania, France, Bulgaria and Turkey. These studies focused on different topics on Sentinel-2 land
cover classification which ranged from pre-processing to practical applications (e.g., forest and urban
area monitoring).
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4. Discussion

4.1. Background of ESA Copernicus Sentinel Programme

The ESA Sentinel missions are coordinated by the Copernicus Programme which is under the
European Union Earth’s observation programme [13]. All the operations of ESA are funded by the
European Commission in partnership with ESA, EU member states and EU Agencies. In 1998, the
ESA and EU introduced the Global Monitoring for Environment and Security (GMES), which was
later called the Copernicus Programme in 2014 [13]. The ESA and the EU have established a funding
programme for the Copernicus Programme to provide financial support for the period between 2014
and 2020 to manage the satellite networks and to launch new satellites [10,25]. The Copernicus
Programme has three main objectives: (1) to produce and disseminate information to support EU
global policies for environment and security, (2) to provide a platform for stockholders, providers
and users for dialogue and collaboration, and (3) to provide a legal, financial, organisational and
institutional framework for the smooth function for ESA satellite missions.

The Copernicus Programme has strategic plans for developing seven satellite missions; four
of these satellites (Sentinel-1–3, 5) (It is important to note that Sentinel-4 is still under construction.
The two satellites under Sentinel-4 are due to be launched in 2023 and 2030). constellation have already
been launched [8,9]. The first Sentinel satellite, Sentinel 1A, was launched on 3 April 2014 and carries a
C-band synthetic aperture radio detection and ranging (radar) instrument. The remotely sensed data
collected by Sentinel-1 satellite has a wide range of applications which include sea and land monitoring,
emergency response due to environmental disasters, and economic applications (e.g., urban expansion).
Sentinel-3 is dedicated to oceanography, and the first satellite of the Sentinel-3 constellation (Sentinel
3A) was launched on 16 February 2016. In 2017, the Copernicus Programme launched Sentinel-5 to
monitor air pollution.

Each Sentinel mission is based on the constellation of two satellites which reduces the revisiting
time, and hence providing data in the shortest possible time [10,25]. The Sentinel programme has been
implemented in three phases including the pre-operation (2008–2010), initial operation (2011–2013),
and full operation (2014 and beyond) [25]. Under the strategic plans for the Copernicus Programme,
other satellites will be launched starting with Sentinel-4 and will go beyond Sentinel 6 in the near
future [25].

4.2. Overview of Sentinel-2 Mission

Sentinel-2 Earth observation satellites carry multispectral imaging systems and acquire optical
images [8,35]. Sentinel-2 satellites are operated by ESA, and the satellites were manufactured
by a consortium led by Airbus Defence and Space (Airbus DS). The mission supports several
services and applications such as agricultural monitoring, disaster management and land cover/use
classification [15,36–38].

4.2.1. Properties of Sentinel-2 Data

Sentinel-2 data has a global coverage of the Earth’s land surfaces from 56◦ S to 84◦ N, coastal
waters, and the whole Mediterranean Sea [8,28]. Compared to the swath width of Landsat missions
of 185 km [29], the Sentinel-2 mission has a wide swath of 290 km field of view [30]. The orbit for
Sentinel-2 is sun-synchronous at an altitude of 786 km, 14.3 revolutions per day, with a 10:30 a.m.
descending node at the equator [17]. This local time for the equator bypass was selected to minimise
cloud cover and ensuring suitable sun illumination. The bypass time for Sentinel-2 satellite matches
the Landsat’s and SPOT’s bypass time, combining the Sentinel-2 data with historical images to build
long-term time-series data [8], which are necessary for natural resource monitoring.

Sentinel-2 offers improved data compared to other low to medium spatial resolution satellite
images (e.g., Landsat), especially in temporal and spatial resolution [39]. The 13 bands for Sentinel-2
images have spatial resolutions ranging from 10 to 60 m (Table 2) [8,32]. The visible and the near-infrared
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(NIR) bands have a spatial resolution of 10 m, the infrared bands have 20 m spatial resolution and the
other bands have 60 m (Table 1). The 10 m spatial resolution makes Sentinel data to have the potential
for detailed exploration of the Earth’s surface (e.g., urban sprawls and agriculture). The other valuable
characteristic of Sentinel-2 data is its high temporal resolution of 5 days [40]. This temporal resolution
improved from 10 to 5 days after the launch of the second twin satellite, Sentinel-2B, which makes the
two satellites to operate at 180◦ orbit phase [8,9].

Due to the high temporal resolution (i.e., 5 days), land cover/use changes that take place within a
short period (e.g., fire incidences, floods, volcanic eruptions) can be monitored effectively. For example,
Phiri, et al. [41] used Sentinel-2 images to monitor floods in the Beira region of Mozambique, while
Verhegghen, et al. [42] monitored fire burnt areas using Sentinel-2 images in the Congo Basin.
The application of Sentinel-2 data to monitor these incidences, which happen over a short period,
makes the images more useful in countries where floods (e.g., Malawi, Mozambique and Zimbabwe),
cyclones and fire incidences are common [41–43]. Furthermore, other programmes, such as the
UN-Spider initiative have helped estimate the extent of flooding on a large-scale using Sentinel-2
products [44].

The Sentinel-2 sensor has low radiometric calibration uncertainty that makes the radiance of the
images to produce reliable results. Gorroño, et al. [45] and Gorroño, et al. [46] reported radiometric
uncertainty ranging from 0.03 to 0.4% for Sentinel-2 images. These values are comparable to other
sensors such as the Landsat-8 [45] and thus, Sentinel-2 images have the potential to produce highly
accurate information to support different applications.

The other characteristics of Sentinel-2 data that make the monitoring of the Earth’s surface more
effective include the wide swath and the free access data policy. The wide swath of 290 km makes the
processing of large areas much easier and more accurate with less need for data normalisation and
merging [29]. Sentinel-2 data is free, making it easy for resource-constrained researchers to use the data
and complement it with other free access data such as Landsat [6,30,32,47]. With many developing
countries (e.g., African countries) having challenges with financial resources to secure commercial-based
remotely sensed images, Sentinel-2 offers a good alternative for high spatial resolution images [6].
Sentinel-2 high spatial resolution images have already contributed to the 20 m land cover maps for
Africa [17] and other regional land cover maps based on Sentinel-2 images, especially that most of the
regional land cover/use maps have a spatial resolution of 30 m [1,48].

Table 2. Characteristics of ESA Sentinel-2A and -2B satellite images [9,49].

Sentinel-2A Sentinel-2B

Spatial Resolution
(m) Bands Central

wavelength (nm)
Bandwidth

(nm)
Central

Wavelength (nm)
Bandwidth

(nm)

10

Band 2—Blue 492.4 66 492.1 66
Band 3—Green 559.8 36 559 36
Band 4—Red 664.6 31 664.9 31
Band 8—NIR 832.8 106 832.9 106

20

Band 6—Red edge 740.5 15 739.1 15
Band 7—Red edge 782.8 20 779.7 20

Band 8A—Narrow NIR 864.7 21 864 22
Band 11—SWIR 1613.7 91 1610.4 94
Band 12—SWIR 2202.4 175 2185.7 185

60
Band 1—Coastal aerosol 442.7 21 442.2 21
Band 9—Water vapour 945.1 20 943.2 21

Band 10—SWIR—Cirrus 1373.5 31 1376.9 30
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4.2.2. Sentinel-2 Data Products

Sentinel-2 data is available in different processed forms [9,25,50]. This is because Sentinel-2 MSI
products undergo different stages of processing to reach a level that can be accessed by the users.
The main stages include Level-0, Level-1A, Level-1B, Level-1C and Level 2A (Figure 4). Level-0 and
Level-1A are not released to users and are in the form of compressed raw image data in instrument
source packet (ISP) format. Level-1B product is made of granules with 25 by 23 km long of about
27 MB. Level 1B product provides radiometrically corrected imagery with Top-Of-Atmosphere (TOA)
radiance values, and the product includes the refined geometry being used to produce the user accessed
Level-1C products. Level-1C is made of 100 × 100 km tiles in an orthorectified format in UTM/WGS
84 projection. Using digital elevation models, Level-1C is produced in cartographic geometry (i.e.,
visualisable model) [9]. Level 2A production can also be processed from level 1C products by using
the Sentinel-2 Toolbox [9]. From all these data products, Level-1C (Top-of-Atmospheric reflectance)
and Level-2A (Bottom-of-Atmospheric reflectance) are the most commonly used products in land
cover/use mapping.
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4.3. Pre-processing of Sentinel-2 Images

4.3.1. Geometric Correction

The geometric correction adjusts the position of the images in line with the ground position [9,13,28,51].
The Sentinel-2 images use a physical model for geometric correction by employing ground control
points (GCPs), known geographical locations for imagery referencing [25]. This model combines
position, altitude and transformation information to carry out the geometric correction. An automated
correlation process between reference images and GCPs is employed for geometric correction for
Sentinel-2 data into a cartographic model. The reference data used for geometric correction belongs to
the worldwide geo-referenced data, based on Sentinel-2 mono-spectral images [25]. The Shuttle Radar
Topographic Mission (SRTM) Digital Elevation Model (DEM) is also used to improve the geometric
accuracy [9].

Although Sentinel-2 has a low geometric error, Storey, et al. [52] reported that Sentinel-2 has
a geolocation error of 12.5 m which is higher that the geolocation error for Landsat-8 of 12 m [53].
Storey, et al. [52] also reported that there is a sensor-to-sensor misalignment between Sentinel-2 and
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Landsat-8 of 38 m. To normalise this error, the National Aeronautics and Space Administration (NASA)
has developed a robust harmonisation programme (Harmonized Landsat and Sentinel-2) for the
two datasets to reduce this error [54,55]. So far, no known studies have focused on assessing the
consistency of Sentinel data with other satellite data, including the earlier version of Landsat images
(i.e., Landsat 1–7).

The atmospheric/topographic (ATCOR) software provided by the Sentinel-2 toolbox software
handles the other part of the geometric and topographic correction. Topographic correction focuses on
reducing effects due to shadows and surface irregularities [56]. Generally, the ESA carries validation
meetings (Validation Team Meetings) to address different application challenges and to improve the
accuracy of Sentinel-2 products [57].

4.3.2. Atmospheric Correction

Pre-processing improves the quality of the images by reducing the errors associated with data
acquisition. Like other spaceborne optical sensors, atmospheric, topographic, shadows, and cloud
cover effects also affect Sentinel-2 [58,59]. These effects have the potential of reducing classification
accuracy during a land cover/use mapping [60]. It is important to note that the classification accuracy
reported in this manuscript is the overall accuracy (OA). Generally, different atmospheric correction
methods have been applied to Sentinel-2 data. For example, Pflug, et al. [58] tested the performance
of ATCOR on Sentinel-2 images and reported that the results were similar to those of Landsat-8 and
RapidEye images.

Other studies used different methods for atmospheric corrections of Sentinel-2 including Fast
Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH), 6S and Dark Object Subtraction (DOS)
which have the potential of reducing atmospheric effects on Sentinel-2 [61]. The unique aspect of
Sentinel-2 pre-processing is the availability of the Sentinel Application Platform (SNAP) or Sen2Core
for pre-processing the images provided by ESA [62,63]. This platform offers an opportunity for different
pre-processing including atmospheric and topographic corrections [9,59].

Due to the importance of image correction for atmospheric effects, many studies have reported the
increasing development of new algorithms for Sentinel-2 atmospheric correction. Vanhellemont [64]
tested the use of dark spectrum fitting atmospheric correction on the aquatic environment, and
high overall classification accuracy was obtained. In a separate study, Hagolle, et al. [65] developed
multi-temporal and multispectral methods for atmospheric correction to estimate aerosol optical
thickness over land. Furthermore, image correction for atmospheric effects (iCOR) has also been
developed, and it is effective on Sentinel-2 [66].

4.3.3. Cloud Cover Masking

Similar to other space-based optical sensors, cloud cover is common for Sentinel-2 [67].
Many studies have developed and tested different methods of cloud masking of Sentinel-2 images,
including Fmasking and fusion with thermal bands from other images [67,68]. Fmasking is the most
common method used for cloud masking and has been used in many studies to improve the quality of
the Sentinel-2 images. For example, Frantz, et al. [68] developed an improved version of the Fmask
algorithm by using a cloud displacement Index. Although different methods for cloud masking have
been tested on Sentinel-2 data, studies focusing on how these methods improve the land cover/use
classification accuracy for Sentinel-2 are still lacking. Other institutions such as Vlaamse Instelling
voor Technologische (VITO) (https://remotesensing.vito.be/hubspot-topics/Sentinel-2) in Belgium have
focused on improving the application of Sentinel-2 by developing cloud masking tools in order to
improve the accuracy of Sentinel-2 data for different application such as forest, agricultural and disaster
monitoring [69,70].

https://remotesensing.vito.be/hubspot-topics/Sentinel-2
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4.4. Land Cover/Use Classification with Sentinel-2

Sentinel-2 satellite was launched at a time when many advanced classification methods were
already developed. These methods are based on both pixel [30,71] and objects [39,72]. High computing
capabilities have also contributed to the advancement in land cover/use classification using Sentinel-2.
Land cover/use classification of Sentinel-2 has been dominated by machine-learning approaches
(Table 2) including random forests (RF), k-nearest neighbour (KNN), support vector machine (SVM)
and Bayes. RF classifier is commonly used compared to the other classifiers [7,36,73].

Sophisticated machine-learning techniques such as convolutional neural network (CNN) have
also been used on Sentinel-2 images [74]. For example, Segal-Rozenhaimer, et al. [75] applied CNN on
land cover classification and achieved high classification accuracy of 91%. In addition, cloud-based
computing has also contributed to improved land cover/use monitoring because large dataset can be
analysed at a fast rate [76,77]. For example, Hiestermann, et al. [77] employed cloud-based computing
using Google Earth Engine to map crops in South Africa. RF and Maximum likelihood classifiers
(MLC) have also been used to produce the high spatial resolution (20 m) land cover map for Africa
based on Sentinel-2 data—the CCI Land Cover—S2 prototype [17].

4.4.1. Supervised and Unsupervised

Many studies on Sentinel-2 data have shown that a supervised classification approach is
applied more than an unsupervised classification approach [31]. The major reason is that many
classification algorithms have been developed based on the supervised classification approach, while the
unsupervised classification employs the Iterative Self-Organizing Data Analysis Technique (ISODATA)
and k-means clustering as the major classification algorithms [78,79]. Supervised classification is
often applied by combining object-based image analysis (OBIA) and machine-learning classifiers.
However, recent studies show that many researchers are still using pixel-based classification [71,76,80].
The application of machine-learning classifiers with OBIA has shown the potential of producing high
classification accuracy. However, the pixel-based approaches are still commonly used (Table 2).

4.4.2. Pixel-Based Image Analysis

The pixel-based land cover/use classification is one of the most common classification approaches
applied to Sentinel-2 [31,81,82]. The literature shows that RF is the most common classifiers used
for pixel-based approach (Table 3). Due to the limitations of pixel-based approaches, such as
salt-and-pepper effect or speckle—spectral noise, sub-pixel methods have been applied on Sentinel-2
data to improve the classification accuracy [83,84]. Spectral mixture analysis (SMA) is one of the robust
methods which are used for land cover/use classification for Sentinel-2 to reduce mixed pixel effects.
For example, Degerickx, et al. [84] applied Multiple Endmember Spectral Mixture Analysis (MESMA)
to urban land cover/use and achieved an accuracy of 85%.
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Table 3. Selected studies on pixel and sub-pixel-based land cover/use classification of Sentinel-2 images.

Study Land Cover/Use Classification Method Classifier Accuracy (%)

Clark [83] Bareland, built-up area, vegetation, crops Subpixel MESMA, RF 74–84

Colkesen, et al. [85] forest, soil, water, corn, barren, impervious
surfaces pixel-based CCF 87–95

Degerickx, et al. [84] Roof, pavement, soil, shrub, tree Sub-pixel MESMA 57–90
Denize, et al. [7] Crop residues, bare soil, winter crop, grassland Supervised pixel-based SVM, RF 81

Forkuor, et al. [62] Agriculture, urban Supervised pixel-based RF, SVM, ANN 87–92
Fragoso-Campón, et al. [86] Forest, shrubs, water, rocks Supervised pixel-based RF 73–79

Gašparović, et al. [87] Water, built-up, bare soil, forests Supervised classification MLC, ANN 83–91
Glinskis, et al. [88] Oil pam Supervised pixel-based MLC 60–70
Immitzer, et al. [8] Maize, onion, sunflower, sugar beet pixel-based RF 65–76
Khaliq, et al. [89] Water, Cabbage, Maize, built-up Supervised pixel-based RF 91
Kussul, et al. [90] Crops, bareland, water Unsupervised pixel-based ANN 88–94

Miranda, et al. [31] Water, forest, urban bareland Supervised pixel-based MLC 100
Pesaresi, et al. [12] Built-up area Supervised pixel-based SML 60

Rujoiu-Mare, et al. [81] Forest, waterbodies, built-up Supervised pixel-based MLC, SVM 92–98
Sekertekin, et al. [71] Waterbody, settlement, bareland, vegetation Supervised pixel-based MLC 78–85

Steinhausen, et al. [91] Cropland, forest grassland, urban areas, water Supervised pixel-based RF 89–91

Thanh Noi, et al. [73] Residential, impervious surface, agriculture,
bareland, forest, water Supervised pixel based RF, SVM, KNN 90–95

Vuolo, et al. [40] Carrot, Maize, potato
Pumpkin Supervised pixel-based RF 91–95

Weinmann, et al. [92] Forest, garden, Fields, settlements Supervised pixel-based SVM 72–80

Note that accuracy includes the range of producer’s, user’s and overall accuracy. In Table 3, RF refers to random forest, MLC is Maximum likelihood classifier, SVM is support vector
machine, ANN refers to the Artificial Neural Network, MESMA is multiple endmember spectral mixture analysis, SML is Symbolic Machine-learning and CFF is canonical correlation forest.
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4.4.3. Object-Based Image Analysis

Due to the high spatial resolution of Sentinel-2 data, OBIA is mostly preferred (see Figure 5)
for land cover/use classification [8,93]. However, there is still a considerable number of studies
that have used the pixel-based classification approach (Table 3 and Figure 5). This is shown by the
growing number of studies reporting that OBIA produces higher classification accuracy compared to
pixel-based [87,94]. OBIA has been used for different land cover/use classification including water,
agriculture, forests and urban areas (Table 4). The development of machine-learning approaches in land
cover classification has contributed to the efficient performance of OBIA [95]. For Sentinel-2 data, many
studies have focused on the application of the combination of OBIA with machine-learning classifiers
on land cover/use classification, due to the high spatial resolution [39,93]. Other important issues, such
as the effects of segmentation parameters, have not been fully tested on Sentinel-2 data [28,96,97].
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Figure 5. The accumulative number of published articles in Google Scholar which mentioned
pixel-based, sub-pixel and object-based. Search terms used included ”Sentinel-2” AND “sub-pixel”,
“Sentinel-2” AND “pixel-based” and “Sentinel-2” AND “object-based”.
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Table 4. Selected studies on the object-based land cover/use classification of Sentinel-2 images.

Study Land Cover/Use Classification Method Classifier Accuracy (%)

Dong, et al. [98] Cropland OBIA-Classifier RF 78–96
Clark [83] Bareland, built-up area, vegetation, crops OBIA-Classifier RF 75–84

Csillik, et al. [99] Wheat, maize, rice, sunflower, forest, unclassified OBIA-Rule based Ruleset 78–98
Delalay, et al. [100] settlement, industry, water, forest OBIA-classifier RF, CT 61–95
Derksen, et al. [80] Crops, road, orchards OBIA-Contexture Contextual 80–90

Gašparović, et al. [87] Water, built-up, bare soil, forests OBIA-Classifier ANN 83– 91
Gašparović, et al. [87] Water, built-up, bare soil, low vegetation, forest OBIA-Rule based Ruleset 84–91

Gómez, et al. [101] Winter, wheat, Others, Built-up OBIA-Classifier RF 84–98
Heryadi, et al. [102] forest, water body, urban, bare land OBIA-classifier k-NN 80–98
Immitzer, et al. [8] Maize, onion, sunflower, sugar beet OBIA-Classifier RF 65–76

Kaplan, et al. [103] Water, Forest, wetland, urban, green field, dry
fields OBIA-Rule based Ruleset 89–90

Kaplan, et al. [72] Water, Forest, wetland, urban, green field, dry
fields OBIA-Rule based Ruleset 88–90

Kolokoussis, et al. [104] Land, seawater, oil spill, possibly dissolved oil spill OBIA-Rule based Ruleset 72–91
Labib, et al. [105] Built-up, water, vegetation, Shadow OBIA-Rule based Ruleset 67–71

Laurent, et al. [106] Canopy, brown leaves, green leaves OBIA-Classifier Bayesian 96–98
Lu, et al. [107] Plastic-mulched land-cover, crops OBIA-Classifier CT 88–90

Marangoz, et al. [108] forest, water body, urban OBIA-Rule based Ruleset 80–88
Marangoz, et al. [109] Bare land, forest, settlement, vegetation, water OBIA-Rule based Ruleset 66–76
Mongus, et al. [110] Agriculture, forest, Water, grassland OBIA-Classifier Naïve Bayes 88–95
Novelli, et al. [39] Greenhouse OBIA-Classifier RF 89–93

Phiri, et al. [41] Water, built-up area, forests OBIA-Classifier RF 67–91

Popescu, et al. [111] urban area, water, forest, agriculture OBIA-Classifier Latent Dirichlet
Allocation (LDA) -

Weinmann, et al. [92] Settlement, industry, water, forest OBIA-Classifier RF 80–83
Xiong, et al. [76] Cropland OBIA-Google Earth Engine SVM, RF 68–85

Zheng, et al. [93] Roads, bareland, Forest OBIA-Classifier KNN, ANN, RF,
SVM 70–90

Note that accuracy includes the range of producer’s, user’s and overall accuracy. In the table, RF refers to random forest, SVM is support vector machine, ANN refers to the Artificial
Neural Network, LDA refers to Latent Dirichlet Allocation and CT is classification tree.
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4.4.4. Accuracy of Sentinel Land Cover/Use Mapping

High accuracies have been reported on the land cover/use classification of Sentinel-2 data (Table 2
and Figure 6), and most of the classification accuracies achieved are above 80%. Other methods,
including the pixel-based approach, using the maximum likelihood classifier (MLC), have also proved
to produce high classification accuracies [31,38,112]. A comparison of accuracies based on different
machine-learning classifiers has shown that RF and SVM outperform the other classifiers (Figure 6).
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considered for each classifier. Note that RF refers to random forest, MLC is maximum likelihood
classifier, SVM is support vector machine, CT is classification tree and k-NN is k nearest neighbour.

The comparison of accuracies for different classifiers needs to be interpreted with caution
because the performance of these classifies depends on several factors such as number of training
samples [113,114], number of land cover classes [112], the type of terrain [115] and pre-processing
techniques applied on the images [60]. Since the studies reported here were conducted under different
conditions, they are not totally comparable.

4.5. Integration of Sentinel-2 with Other Remotely Sensed Data

Sentinel-2 has been successfully fused/integrated with different remotely sensed data to improve
its applicability in land cover/use mapping and analysis. Fusion by different bands from Sentinel-2 has
also been successful because of the different spatial resolution of the different bands. For example,
Wang, et al. [116] fused the 20 m bands with the 10 m bands to improve the spatial resolution.
The standard and simplest fusion method of Sentinel-2 data is the pan-sharpening approach.
Gašparović, et al. [87] indicated that Brovey, Intensity Hue Saturation (IHS), and Principal Component
Analysis (PCI) improve the classification accuracy of Sentinel-2 land cover/use classification. Fusion
with other images like the Landsat thermal band has been implemented to reduce cloud cover on
Sentinel-2 data [67,116].



Remote Sens. 2020, 12, 2291 15 of 35

Sentinel-2 data has also been integrated with other datasets such as synthetic aperture radar (SAR),
Light Detection and Ranging (LiDAR) and other higher spatial resolution images, including Unmanned
Aerial vehicle (UAV) images [10,87,117]. The success of Sentinel missions has also been shown by
the complementary use of data from different Sentinel missions. Many studies have reported the
integration of Sentinel-2 with Sentinel-1 data in different applications including urban land cover/use,
wetland mapping and biomass assessment [7,10]. Sentinel-1 synthetic aperture radar (SAR) data offers
several advantages when integrated with optical Sentinel-2 data. These benefits mainly include the
improvement in land cover/use classification accuracy. Sentinel-2 has also been successfully used
with Sentinel-3 data (i.e., topographic and surface temperature data), and the results have shown
promise [95]. da Silveira, et al. [117] integrated Sentinel-2 with LiDAR data to classify seven vegetation
types in northeast Brazil, and the results showed a significant improvement of accuracy from 49 to 61%.
This was mainly attributed to the complementary role played by Sentinel-2 reflectance information
and LiDAR metrics, especially in differentiating forest succession stages based on vertical attributes.

4.6. Opportunities and Challenges of Sentinel-2 Data

The past five years of working with Sentinel-2 data, since 2015, has shown great potential in land
cover/use mapping and analysis [15,118]. The major factors driving the success of the Sentinel-2 data
are the free access to the data, the high spatial resolution (10–20 m), the short revisit time, and the
presence of the red-edge bands. Turner, et al. [6] indicated that free and open access data contributes
to the increasing applications of remotely sensed data. This is similar to the NASA Landsat data,
which has become a global tool for land cover/use mapping and analysis at the region and global
scale because of the free access policy [27,28]. With the availability of the high spatial resolution, the
scientific community and practitioners are looking forward to land cover/use maps based on the high
spatial resolution (10 m) Sentinel-2 images at the national, regional and global scale.

The high resolution of the Sentinel-2 data offers opportunities for detailed land cover/use mapping
at a fine scale. The visible and near-infrared bands have been used for land cover/use analysis, which
needs high resolution, such as urban land cover/use classification, crop monitoring and plantation
forest mapping. For example, Yang, et al. [119] investigated the season flooding in urban areas
using Sentinel-2 data. Generally, there has been an increase in studies on crop monitoring and these
studies range from yield assessment to crop identification [36,90]. The monitoring of small-scale forest
plantation was also reported to be successful using Sentinel-2 in the Tanintharyi region in Myanmar [38].
Given that the high spatial resolution of 10 m is only on four bands (visible to near infra-red), this poses
a challenge when integrating other bands, such as short-wave bands and the red-edge bands, which
need to have the same spatial resolution. Many studies have also proposed methods of downscaling
the low spatial resolution images to 10 m through image fusion [63,87].

The presence of the three red-edge bands has shown high applicability to land cover/use
mapping, especially in vegetation land covers/uses [62,120,121]. The red-edge bands have been used to
improve land cover/use classification [62] and specific mapping of land covers/uses, such as grassland
monitoring [15] and land cover/use disturbances, such as oil spill [121]. Kussul, et al. [90] compared
the classification results between Landsat OLI-8 which has no red-edge band and Sentinel-2 images.
The results showed that the red-edge bands improved classification results by 4–5%.

Besides the opportunities offered by the Sentinel-2 data, there are many challenges associated with
using Sentinel-2 data. The primary limitations include misalignment with other remotely sensed data
(e.g., Landsat 8), the absence of the panchromatic (i.e., black and white) and thermal bands, and the
variation in the spatial resolution of the bands. Storey, et al. [52] reported that the Landsat OLI-8 and
Sentinel-2 images have a sensor-to-sensor misalignment of 38 m due to the errors in ground control
points (GCPs) and Global Land Survey (GLS) framework. On a global scale, there were plans to correct
the misalignments by 2018. However, users need to be cautious and apply manual correction to align
the images. Furthermore, other automated methods have been developed to solve the problem of
misalignment through different steps for image pre-processing before integrating Landsat OLI-8 and



Remote Sens. 2020, 12, 2291 16 of 35

Sentinel-2 images [30]. NASA is also undertaking the harmonisation of Landsat OLI-8 and Sentinel-2
(HLS), which aims at obtaining corrected images through atmospheric correction, cloud and shadow
masking, co-registration, bidirectional reflectance normalization and bandpass adjustment [54,55].

The 13 bands from Sentinel-2 do not include a panchromatic band nor a thermal band. For those
applications which need a panchromatic band, such as pan-sharpening, such applications cannot
be applied on the original Sentinel-2. Different methods using other independent bands such as
single bands or by averaging the bands with a high spatial resolution (i.e., the four bands with 10 m
spatial resolution), have shown promise in improving Sentinel-2 land cover/use monitoring [116,122].
Thermal bands are essential for various applications of cloud cover masking [67,68]. With Sentinel-2
imagery lacking a thermal band, other studies have suggested using thermal bands from the Sentinel-3
mission [123]. However, the thermal bands from Sentinel-3 have the low spatial resolution, and hence,
need to be pan-sharpened [123].

4.7. Best Practices for Optimal Classification Accuracy with Sentinel-2

To produce the desired classification accuracy with Sentinel-2 data, several technical aspects need
to be taken into consideration. These include pre-processing and selecting appropriate methods for
classification. Pre-processing, such as atmospheric and topographic corrections, needs to be considered
before the classification. Atmospheric correction is ideal for multiple images, especially for time series
analysis. There are many approaches for atmospheric correction. However, the Sentinel toolbox offers
atmospheric correction software dedicated to Sentinel-2 pre-processing. Topographic correction aims to
normalise the effects due to surface irregularities and can also be corrected using the Sentinel-2 Toolbox.

Due to the increasing number of available methods for land cover/use classification, critical
consideration needs to be put into place to choose the appropriate classification method. Many
studies have shown that supervised OBIA, using a machine-learning classifier, produces the desired
results [34,61,124]. However, several considerations have not been tested, especially the scale parameters
for OBIA [8,28,110]. Other methods like spectral mixture analysis (SMA) have the potential [83,125],
especially in reducing mixed pixel effects.

4.8. Specific Applications of Sentinel-2 in Land Cover/Land Use Monitoring

Sentinel-2 multispectral images have been used for land cover/use monitoring in different ways
across the world. These various aspects include forest mapping [126–128], carbon assessments [129,130],
urban area mapping [131,132] and natural hazards monitoring [41,133,134]. Other vital applications
include agricultural [135,136] and water resources monitoring [77,137]. The studies on the
implementation of Sentinel-2 in land cover/use monitoring have been reported in many countries
across the world, including Europe, Asia, America, and Africa. Many studies that have been reported
in developed countries, especially in Europe, integrated Sentinel-2 data with contemporary datasets
such as LiDAR and UAVs datasets [86,117,138], while studies, based in developing countries, combined
Sentinel-2 data with other open-source data such as Sentinel-1 SAR data and Landsat [139,140].

4.8.1. Sentinel-2 for Forest Monitoring

In the forest sector, Sentinel-2 products have been a powerful tool because of being useful to
different applications including mapping of forest area [126,128], establishing boundaries of specific
forest types [127,131], discrimination of forest types [132,141], and other applications such as leaf
area index (LAI) analysis [142,143]. In all these applications (Table 5), Sentinel-2 data have proved
to be more useful than other low spatial resolution images (e.g., Landsat) because of the high spatial
resolution (10 m) [144] and the availability of the red-edge band [145].

The application of Sentinel-2 images differ from region to region; however, the major difference
is between the developing and the developed countries. In developed countries, such as Finland
and Germany, Sentinel-2 data is increasingly applied for specific applications (e.g., forest inventory)
requiring detailed analysis. However, most applications in developing countries focus on describing
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the extent of the forests (land cover/use). For example, Puliti, et al. [146] reported the use of
Sentinel-2 in forest inventories in Norway. The increasing combination of UAVs [146,147] and
LiDAR [86,117] datasets with Sentinel-2 has shown promise and was highly accurate in describing
different forest attributes.

Invasive plant species have also been monitored using Sentinel-2 images. Kattenborn, et al. [147]
reported the use of Sentinel-2 in combination with Sentinel-1 and UAVs to monitor three invasive species
(Pinus radiata, Ulex europaeus and Acacia dealbata) in Chile. In Baringo County, Kenya, Ng, et al. [148],
compared Sentinel-2 and Pléiades (2-m spatial resolution) data to produce a highly accurate vegetation
map that would differentiate an invasive tree species (Prosopis) from native forest trees and mixed
vegetation classes. This information is useful for effective forest management strategies. Although they
observed that higher spatial resolution of Pléiades contributed to high accuracy, it was concluded that
Pléiades is costly and the free of charge Sentinel-2 data provides a viable alternative as its increased
spectral resolution compensates for the lack of spatial resolution.

Forest fire (wildfire) monitoring has been one of the crucial applications of Sentinel-2 imagery.
With forest fires being common in most of the tropical regions [149], Sentinel-2 has proved to be a
valuable tool due to the high temporal resolution of five days. Navarro, et al. [150] reported the
application of Sentinel-2 multispectral images for post-fire monitoring using spectral indices in Madeira
Island. Sentinel-2 images have also been used for mapping burned scars, fires severity and soil erosion
susceptibility in southern France [151]. Continental level maps for Africa on fire have also been
developed based on Sentinel-2 multispectral images [149]. The combination of multispectral Sentinel-2
and SAR Sentinel-1 improves the accuracy of fire monitoring [42,149]. Besides forest fires, Sentinel-2
has also been used to monitor the quality of foliage in national parks, such as the Kruger National Park
in South Africa, especially after fire incidences.

Other sensitive areas requiring adequate monitoring, include the wetland ecosystems as they
have been affected by different anthropogenic activities, such as an expansion of urban and agricultural
areas [97]. Whyte, et al. [144] highlighted those wetland areas are sensitive to climate change, especially
to the increasing temperature and the changing rainfall pattern. By using Sentinel-2, wetland maps
have been developed for the Newfoundland (Canada) using Google Earth Engine. The combination
of Sentinel-2 and Sentinel-1 to monitor wetland was tested in China, and this study achieved high
accuracy (70–90%). In iSimangliso Wetland Park, South Africa, mapping of wetland areas was
enhanced with the combination of Sentinel-2 and Sentinel-1 [144]. In line with wetland areas, mangrove
forests are an important component of the wetland ecosystem and have also been affected by human
activities [152,153]. Therefore, Sentinel-2 data have the potential to enhance effective monitoring of
these mangrove ecosystems. For example, Mondal, et al. [152] mapped the mangrove forests in the
coastlines of Senegal and the Gambia (West Africa) with high accuracy (>80%).
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Table 5. Summary of major forest application of Sentinel-2 imagery across the world.

Application Specific Application Country Methods Accuracy Reference

Forest

Forest extent
Poland, China, Burkina Faso,

South Africa, Madagascar,
Zimbabwe, Bulgaria

Machine-learning, cloud
computing 80–90%

Suresh, et al. [158], Wang, et al. [127], [126],
Adjognon, et al. [131]; Nzimande, et al. [128];

Filchev [159]

Forest types Italy, Ghana, South Africa, Togo Linear discrimination analysis,
spectral indices, Machine learning 88–90% Laurin, et al. [132]; Konko, et al. [160];

Puletti, et al. [141], Laurin, et al. [132]

Species Identification Germany, Italy OBIA-RF, Stepwise regression 65–76% Immitzer, et al. [8], Laurin, et al. [132]

Forest productivity Germany, South Africa,
Southern Africa

Machine-learning (Random Forest),
Invertible Forest Reflectance Model 90–92% Mutowo, et al. [161]; Ramoelo, et al. [162];

Darvishzadeh, et al. [163]

Growing stock Norway, Greece, Italy, Finland Fusion with UAV data, Linear
regression SE=3.4–5.8% Puliti, et al. [146], Chrysafis, et al. [164],

Mura, et al. [118]

Forest Inventory Finland, Norway Fusion with UAV data,
multivariable models SE=3.4–5.8% Puliti, et al. [146], Astola, et al. [165], [166]

Wetland mapping China, Canada, South Africa,
Senegal, Ghana

machine-learning, Google Earth
Engine, OBIA 83–90% Yesou, et al. [167], Mahdianpari, et al. [168],

Whyte, et al. [144]; Mondal, et al. [152]

Leaf Area Index (LAI) Finland, Germany, South Africa,
Bulgaria

Red-edge band with Partial Least
Squares Regression (PLSR),

Spectral Indices
R2 = 91%

Clasen, et al. [143], Korhonen, et al. [11],
Sibanda, et al. [142]; Dimitrov, et al. [169]

Forest Fires/Wildfire Madeira Island, Bulgaria,
Congo DRC, Africa (continent)

Active fire products with SAR data
fusion, New Algorithm 80–89% Verhegghen, et al. [42]; Roteta, et al. [149];

Navarro, et al. [150], Nedkov [170], Filchev [159]

Dryland mapping German, South Africa Sub-pixel classification, BiomeBGC
Simulations 82% Munyati [171], Dotzler, et al. [172]

Grassland mapping South Africa Sparse Partial Least Squares
Regression (SPLSR) R2 = 59% Shoko, et al. [156]

Canopy cover Finland, German Generalized additive models,
Spectral Unmixing and UAVs RMSE = 0.05–0.42 Korhonen, et al. [11], Clasen, et al. [143]

Forest succession Brazil, Poland SVM, RF, OBIA 90–97% Sothe, et al. [173], Szostak, et al. [126]

Forest Degradation Bulgaria, Tanzania OBIA-RF R2 = 0.97, 95% Hojas-Gascon, et al. [174], Nedkov [170]

Forest healthy Poland Machine-learning 75–78 Hawryło, et al. [175]

Forest phenology German Correlation with ground sensor R2 = 0.99 Lange, et al. [176]

Biomass
assessment

Above-ground biomass Vietnam, Finland, South Africa,
Zimbabwe, Italy

Machine-Learning, SPLSR, PARAS,
Regression analysis 80–91%

Pham, et al. [154], Pandit, et al. [177];
Shoko, et al. [156], Majasalmi, et al. [155],

Laurin, et al. [132]

Below grown biomass Turkey Regression analysis, Supervised
classification R2 = 97% Bulut, et al. [130]

Carbon Assessment Carbon assessment Czech Republic, Turkey, South
Africa

Bootstrapped Random Forest,
Regression analysis, multivariate

regression models
R2 = 30–75%

Bulut, et al. [130], Naidoo, et al. [129],
Gholizadeh, et al. [157]
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Sentinel-2 data has also been a critical monitoring mechanism in climate change through
biomass and carbon assessment. Most of the studies have reported using Sentinel-2 data to monitor
above-ground biomass [14,154,155]. In Northern Vietnam, Pham, et al. [154] reported the application
of Sentinel-2 to map above-ground biomass for mangrove forests. Shoko, et al. [156] also characterised
the above-ground biomass for C3 and C4 grass in Drankensberg region in South Africa using Sentinel-2
data. Although most of the studies on biomass focus on above-ground biomass, Bulut, et al. [130]
determined the total biomass by considering both above- and below-ground biomass in Turkey. Many
studies that focus on determining carbon quantities have used regression analysis (e.g., multivariant
regression) to relate the spectral properties of Sentinel-2 and carbon quantities [129,130,157].

4.8.2. Sentinel-2 for Agricultural Monitoring

Sentinel-2 has become an important tool for monitoring agricultural activities (Table 6). This is
evidenced by the various studies, which have focused on developing global products to support
agricultural activities [178,179]. For example, global agricultural maps produced by the Onesoil project
in Belarus using Sentinel-2 products and machine-learning, provide useful information to farmers [180].
Bellemans, et al. [181] also reported on a global project (Sentinel-2 for Agriculture) involving African
countries, such as Burkina Faso, South Africa, Morocco and Madagascar. The specific applications of
Sentinel-2 in agriculture, include crop production monitoring [77,135,182], crop type mapping [183,184],
irrigation agriculture monitoring [137], nitrogen content assessment [185] and assessment of crop
health [186]. These studies range from small scale monitoring (i.e., field-level) [182,183] to continental
level [76].

Due to the high demand for information for agriculture production, Sentinel-2 data has been used
for real-time monitoring of agricultural activities [77]. An exciting development in the application of
Sentinel-2 in agricultural applications is the increasing use of cloud computing applications (e.g., use
of Google Earth Engine) [178]. It is important to note that cloud-based computing has become
common in other applications such as forest and wetland monitoring. Therefore, Xiong, et al. [76] and
Hiestermann, et al. [77] highlighted that cloud computing is useful for extensive area monitoring (e.g.,
national and continental level). In addition, machine-learning algorithms produce high accuracies in
agricultural monitoring, especially in the discrimination crop type [187] and identifying the specific
types of agricultural systems (e.g., irrigation farming) [188].

Sentinel-2 images are also commonly used for monitoring crop diseases. Zheng, et al. [189]
used Sentinel-2 data to monitor wheat yellow rust in China. Heavy metal-induced stress on rice was
also assessed using Sentinel-2 multispectral data in China. The results from these studies have high
accuracies of over 85%, indicating that Sentinel-2 data has the potential for crop health monitoring.
Dhau, et al. [186] assessed the abilities of Sentinel-2 multispectral images to detect maize grey leaf spot
disease in Durban, South Africa. The results showed that including all the 13 bands for Sentinel-2
and using the RF classifier produced a high accuracy of 83%. Other applications of Sentinel-2 images
that are related to plant health monitoring include detecting crop residues [82,190] and assessing the
chlorophyll in crops [191].

An accurate estimate of biophysical parameters is important for a number of applications such as
precision agriculture, crop productivity and soil hydrology [169,192]. Sentinel-2 images have been
used for estimating biophysical parameters [193–195]. For example, Xie, et al. [192] used Sentinel-2
images to retrieve chlorophyll content, leaf area index, nitrogen content and leaf chlorophyll index.
One of the advantages of Sentinel-2 images is the availability of the red-edge band, which is reliable in
retrieving biophysical parameters [193,195].



Remote Sens. 2020, 12, 2291 20 of 35

Table 6. Summary of agricultural application of Sentinel-2 imagery globally.

Application Country Methods Accuracy Reference

Crop diseases China, South Africa, Zimbabwe Random Forest 77–94% Zheng, et al. [189], Dhau, et al. [186];
Chemura, et al. [191]

Crop residue Spain, Malawi Maximum likelihood, OBIA,
regression 90–97% Andersson, et al. [82], Estrada, et al. [138],

Zheng, et al. [196]

Crop type detection Ukraine, France, Austria,
Zimbabwe, Ethiopia, Bulgaria

Deep learning, Random Forest,
Support vector regression 77–96%

Kussul, et al. [184], Chemura, et al. [187];
Vogels, et al. [188], Vuolo, et al. [40],

Veloso, et al. [197]; Dimitrov, et al. [198]

Crop yield
focusing/productivity

Belgium, Saudi Arabia, Ukraine,
Zimbabwe, Mali

Deep learning, Random Forest,
Maximum likelihood, Spectral indices 35–96%

Lambert, et al. [182];
Hiestermann, et al. [77],

Al-Gaadi, et al. [135], Delloye, et al. [199]

Cropland extent

United Kingdom, Madagascar,
Ukraine Global Dataset

(Burkina Faso, South Africa,
Morocco, Madagascar)

Cloud-based computing,
Machine-learning, OBIA 64.4–96%

Zhang, et al. [200], Bontemps, et al. [178];
Inglada, et al. [201],

Lebourgeois, et al. [136], Kussul, et al. [184]

Irrigation crop
Ethiopia, Global Dataset

(Burkina Faso, South Africa,
Morocco, Madagascar)

Object-based 94% Vogels, et al. [137]; Vogels, et al. [188]

Nitrogen content Belgium, Bulgaria Multivariant regression 65–90%, RMSE = 0.25 Clevers, et al. [185], Dimitrov, et al. [169]

Real-time crop monitoring South Africa Cloud-based computing (Google
Earth Engine) - Hiestermann, et al. [77]

Smallholder crop monitoring Mali, Ethiopia Supervised pixel-based, object-based 80–94% Lambert, et al. [182]; Vogels, et al. [137]

Soil properties Spain, France, USA Multivariant analysis, Neural
Network, TRApezoid Model 64–88% Gao, et al. [139], El Hajj, et al. [202],

Sadeghi, et al. [203]

Biophysical parameter estimates France, Spain, Bulgaria

neural networks (NN), support vector
regression (SVR), kernel ridge

regression (KRR), and Gaussian
processes regression (GPR)

RMSE = 0.1–0.2 Upreti, et al. [193]; Xie, et al. [192],
Dimitrov, et al. [169]
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4.8.3. Sentinel-2 for Urban Area Monitoring

The characteristics of Sentinel-2 are driving the increasing use of these images in monitoring
urban areas (Table 7). The application of Sentinel-2 in urban areas include urban expansion [204],
urban heat island [205], rural-urban transition [206], informal settlement [207], and urban ecosystem
(e.g., urban forests/green space) [140]. In addition to these applications, Sentinel-2 images have also
been used to monitor surface water in urban areas. For example, Yang, et al. [208] extracted surface
water in Beijing, China using Sentinel-2. For most countries in Africa, urban expansion (e.g., slum
settlements) due to population growth has been a major challenge [209]. Hence, Sentinel-2 provides
a reliable tool for urban land use planning [210,211]. The choice of Sentinel-2 data was attributed to
its high spatial resolution (10 m) to identify informal settlements accurately, and in most cases, the
combination of Sentinel-2 and Sentinel-1 has produced highly accurate results.

Although Sentinel-2 data offers an opportunity for monitoring urban activities, few studies have
been dedicated to urban monitoring using Sentinel-2. Most of the studies that employ Sentinel-2 data
in urban monitoring mainly focus on urban expansion [206,212]. Therefore, there is a need for studies
on different urban monitoring aspects (e.g., road networks, access to facilities, waste management)
using contemporary high spatial resolution data (i.e., Sentinel-2).

4.8.4. Sentinel-2 for Natural Hazards

Globally, there are different natural hazards (Table 7), which affect both flora and fauna.
Phiri, et al. [41] reported that natural hazards have negative impacts on infrastructure (i.e., built-up
areas). These natural hazards include floods [134], droughts [172], earthquakes [213] and volcanic
eruptions [214]. Water resources affect human life through floods, especially in coastal and riparian
areas [41,134]. For example, Phiri, et al. [41] attempted to help policymakers in making informed
decisions on pre- and post-management of floods by employing Sentinel-2 data in Beira, Mozambique.
Studies on the drought area mainly focus on the vegetation growth in drought-prone regions.
For example, Munyati [171] and Dotzler, et al. [172] mapped drought stress in deciduous forest
communities in South Africa, and Germany, respectfully.

Sentinel-2 data has also been used to map the effects of more destructive natural disasters such
as earthquakes [215] and volcanic eruption [214]. For example, Jelének, et al. [215] investigated
the post-earthquake landslide distribution by using Sentinel-2 and Sentinel-1 data in New Zealand.
In Sounders Island of the South Sandwich Islands, Gray, et al. [214] investigated the volcanic activities
using Landsat-8 and Sentinel-2 data. The application of Sentinel-2 data in monitoring natural disasters
is in line with one of the main aims of the Copernicus Programme of monitoring the Earth’s natural
disasters [25].
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Table 7. Summary of urban and natural hazard application of Sentinel 2 imagery.

Application Specific Application Country Methods Accuracy Reference

Urban Urban expansion Brazil, China, Tanzania,
Kenya Spectral Indices, RF 75–92%

Gombe, et al. [212]; Ng, et al. [148];
Iannelli, et al. [216];
Tavares, et al. [204]

Urban extent China, Brazil Fusion 83% Iannelli, et al. [216];
Tavares, et al. [204]

Rural-urban transition Ghana Principal Components
Analysis (PCA) - Møller-Jensen [206]

Informal settlement South Africa Cloud-based computing
(Google Earth Engine) - Gibson, et al. [207]

Urban surface water China, Macedonia Pixel-based/OBIA 80–92% Yang, et al. [217], Yang, et al. [208],
Sekertekin, et al. [218]

Urban climate France, Germany Canonical Correlation
Forests 69–75% Qiu, et al. [219]

Urban change France Convolutional Neural
Networks (CNN) 60–91 Daudt, et al. [220]

Urban
ecosystem/forest/green
space

Slovakia, Switzerland SVM, Maximum
likelihood 73–90% Haas, et al. [140],

Recanatesi, et al. [221]

Urban heat island Lebanon, France, German MLC, Neural Network 82–84%
Kaloustian, et al. [222];
Qiu, et al. [223],
Chunping, et al. [205]

Natural hazards

Floods Spain, Mozambique Spectral indices and OBIA 64–85% Caballero, et al. [134],
Phiri, et al. [41]

Droughts Germany, South Africa Spectral Mixture Analysis,
Biome-BGC Simulations 73–82% Munyati [171], Dotzler, et al. [172]

Earthquakes New Zealand, France cross-correlation RMSE= 0.025–0.20
Kääb, et al. [213],
Jelének, et al. [215],
Stumpf, et al. [224]

Volcanic eruption Saunders Island,
Germany

Correlation, visual
assessment,
Convolutional neural
network (CNN)

RMSE = 0.03 Gray, et al. [214], Valade, et al. [225]
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5. Conclusions

This study aimed at understanding the contribution of ESA Sentinel-2 data towards land cover/use
monitoring. The current research has shown that most studies reviewed indicated that Sentinel-2 data
has the potential for land cover/use monitoring across the world. Many studies have also reported
the superiority of Sentinel-2 over similar sensors such as Landsat-8. The application of sentinel-2
data differs from region to region, especially the type of data which is integrated with Sentinel-2.
In developing countries, Sentinel-2 is integrated with cotemporally datasets, such as LiDAR and UAVs
data, while free access data is combined with Sentinel-2 in developing countries. The major strength of
Sentinel-2 is the high spatial resolution, high temporal resolution and the availability of the red-edge
band [8,25]. Many classification methods have been applied with Sentinel-2 data including both pixel-
and object-based approaches. However, the use of OBIA and machine learning classifiers (e.g., RF
and SVM) has proved to have the great potential of improving land cover classification. The studies
have also shown that due to the high spatial resolution, Sentinel-2 data can achieve high accuracies
compared to other medium spatial resolution satellite images, such as Landsat. Like other optical
satellite images, Sentinel-2 images are affected by cloud cover, and hence limiting its applicability in
cloud prone areas. Since Sentinel-2 images are relatively new (approximated 5 years), many regions
have not been tested in comparison with earlier versions of Landsat images.

Moving forward, Sentinel-2 offers new opportunities for both the private sector, government
organisations, the scientific community and practitioners to increasing availability of regional, national,
continental and global level land cover/use maps based on the high spatial resolution Sentinel-2 data.
Future review studies can explore the applications of Sentinel data to specific regions of the world (e.g.,
Africa, Asia).
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Creation of training dataset for Sentinel-2 land cover classification. In Proceedings of the Photonics
Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, Wilga,
Poland, 6 November 2019; p. 111763D.

19. ESA. Mapping Germany’s Agricultural Landscape. ESA, Ed.; 2017. Available online: https://www.esa.int/ESA_
Multimedia/Images/2017/2008/Mapping_Germany_s_agricultural_landscape (accessed on 28 April 2020).

20. Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Lafarga Arnal, A.; Armesto Andrés, A.P.; Garraza Zurbano, J.A.
Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of
the Common Agricultural Policy. Remote Sens. 2018, 10, 911. [CrossRef]

21. Goldewijk, K.K.; Ramankutty, N.J.L.U. Land use changes during the past 300 years. In Land-Use, Land Cover
and Soil Sciences-Volume I: Land Cover, Land-Use and the Global Change; EOLSS: Paris, France, 2009; pp. 147–168.

22. DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and
agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [CrossRef]

23. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.;
Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science
2013, 342, 850–853. [CrossRef]

24. Sloan, S.; Sayer, J.A. Forest Resources Assessment of 2015 shows positive global trends, but forest loss and
degradation persist in poor tropical countries. For. Ecol. Manag. 2015, 352, 134–145. [CrossRef]

25. Spoto, F.; Martimort, P.; Drusch, M.J.E. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES
Operational Services. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27
April 2012.

26. Helber, P.; Bischke, B.; Hees, J.; Dengel, A. Towards a sentinel-2 based human settlement layer. In Proceedings
of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019; pp. 5936–5939.

27. Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.;
Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [CrossRef]

28. Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens.
2017, 9, 967. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2011.09.026
http://dx.doi.org/10.1016/j.rse.2017.03.021
http://dx.doi.org/10.3390/rs8040299
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.005
http://dx.doi.org/10.1080/10106049.2018.1474274
http://dx.doi.org/10.1080/01431161.2019.1587207
https://www.esa.int/ESA_Multimedia/Images/2017/2008/Mapping_Germany_s_agricultural_landscape
https://www.esa.int/ESA_Multimedia/Images/2017/2008/Mapping_Germany_s_agricultural_landscape
http://dx.doi.org/10.3390/rs10060911
http://dx.doi.org/10.1038/ngeo756
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1016/j.foreco.2015.06.013
http://dx.doi.org/10.1126/science.320.5879.1011a
http://dx.doi.org/10.3390/rs9090967


Remote Sens. 2020, 12, 2291 25 of 35

29. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data.
Remote Sens. Environ. 2012, 122, 66–74. [CrossRef]

30. Yan, L.; Roy, D.; Zhang, H.; Li, J.; Huang, H. An Automated Approach for Sub-Pixel Registration of Landsat-8
Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery. Remote Sens. 2016,
8, 520. [CrossRef]

31. Miranda, E.; Mutiara, A.B.; Wibowo, W.C. Classification of land cover from Sentinel-2 imagery using
supervised classification technique (preliminary study). In Proceedings of the 2018 International Conference
on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 3–5 September 2018; pp. 69–74.

32. Chastain, R.; Housman, I.; Goldstein, J.; Finco, M. Empirical cross sensor comparison of Sentinel-2A and 2B
MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous
United States. Remote Sens. Environ. 2019, 221, 274–285. [CrossRef]

33. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,
2–16. [CrossRef]

34. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image
classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

35. Mandanici, E.; Bitelli, G. Preliminary comparison of Sentinel-2 and Landsat 8 imagery for a combined use.
Remote Sens. 2016, 8, 1014. [CrossRef]

36. Inglada, J.; Arias, M.; Tardy, B.; Morin, D.; Valero, S.; Hagolle, O.; Dedieu, G.; Sepulcre, G.; Bontemps, S.;
Defourny, P. Benchmarking of algorithms for crop type land-cover maps using Sentinel-2 image time series.
In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan,
Italy, 26–31 July 2015; pp. 3993–3996.

37. Cai, W.; Zhao, S.; Zhang, Z.; Peng, F.; Xu, J. Comparison of different crop residue indices for estimating
crop residue cover using field observation data. In Proceedings of the 2018 7th International Conference on
Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–4.

38. Nomura, K.; Mitchard, E. More than meets the eye: Using Sentinel-2 to map small plantations in complex
forest landscapes. Remote Sens. 2018, 10, 1693. [CrossRef]

39. Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object-based
greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J.
Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [CrossRef]

40. Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2
data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [CrossRef]

41. Phiri, D.; Simwanda, M.; Nyirenda, V. Mapping the impacts of Cyclone Idai in Mozambique using Sentinel-2
and OBIA Approach. S. Afr. J. Geogr. 2020, 1–22. [CrossRef]

42. Verhegghen, A.; Eva, H.; Ceccherini, G.; Achard, F.; Gond, V.; Gourlet-Fleury, S.; Cerutti, P. The potential of
Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sensi. 2016, 8,
986. [CrossRef]

43. Hoque, M.A.-A.; Phinn, S.; Roelfsema, C.; Childs, I. Tropical cyclone disaster management using remote
sensing and spatial analysis: A review. Int. J. Disaster Risk Reduct. 2017, 22, 345–354. [CrossRef]

44. UN-Spider. Recommended Practice: Flood Mapping and Damage Assessment using Sentinel-2 (S2) Optical Data; UN:
Queensland, Australia, 2017; Available online: http://www.un-spider.org/advisory-support/recommended-
practices/recommended-practice-flood-mapping-and-damage-assessment (accessed on 5 May 2020).

45. Gorroño, J.; Banks, A.C.; Fox, N.P.; Underwood, C. Radiometric inter-sensor cross-calibration uncertainty
using a traceable high accuracy reference hyperspectral imager. ISPRS J. Photogramm. Remote Sens. 2017, 130,
393–417. [CrossRef]

46. Gorroño, J.; Fomferra, N.; Peters, M.; Gascon, F.; Underwood, C.I.; Fox, N.P.; Kirches, G.; Brockmann, C.J.R.S.
A radiometric uncertainty tool for the Sentinel 2 mission. Remote Sens. 2017, 9, 178.

47. Phiri, D.; Morgenroth, J.; Xu, C. Four decades of land cover and forest connectivity study in Zambia—An
object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 97–109. [CrossRef]

48. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover
mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015,
103, 7–27. [CrossRef]

49. Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using
red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2011.08.024
http://dx.doi.org/10.3390/rs8060520
http://dx.doi.org/10.1016/j.rse.2018.11.012
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001
http://dx.doi.org/10.3390/rs8121014
http://dx.doi.org/10.3390/rs10111693
http://dx.doi.org/10.1016/j.jag.2016.07.011
http://dx.doi.org/10.1016/j.jag.2018.06.007
http://dx.doi.org/10.1080/03736245.2020.1740104
http://dx.doi.org/10.3390/rs8120986
http://dx.doi.org/10.1016/j.ijdrr.2017.02.008
http://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-flood-mapping-and-damage-assessment
http://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-flood-mapping-and-damage-assessment
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.002
http://dx.doi.org/10.1016/j.jag.2019.03.001
http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002
http://dx.doi.org/10.1016/j.jag.2012.10.008


Remote Sens. 2020, 12, 2291 26 of 35

50. Martimor, P.; Arino, O.; Berger, M.; Biasutti, R.; Carnicero, B.; Del Bello, U.; Fernandez, V.; Gascon, F.;
Silvestrin, P.; Spoto, F. Sentinel-2 optical high-resolution mission for GMES operational services.
In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain,
23–28 July 2007; pp. 2677–2680.

51. Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide
to Landsat preprocessing. Ecology 2017, 98, 920–932. [CrossRef]

52. Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M.J.R.S.O.E. A note on the temporary
misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI)
imagery. Remote Sens. Environ. 2016, 186, 121–122. [CrossRef]

53. Storey, J.; Choate, M.; Lee, K.J.R.S. Landsat 8 operational land imager on-orbit geometric calibration and
performance. Remote sens. 2014, 6, 11127–11152. [CrossRef]

54. Masek, J.; Ju, J.; Roger, J.-C.; Skakun, S.; Claverie, M.; Dungan, J. Harmonized Landsat/Sentinel-2 products
for land monitoring. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote
Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8163–8165.

55. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C.
The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219,
145–161. [CrossRef]

56. Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral instrument (MSI)
data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ.
2017, 201, 47–56. [CrossRef]

57. ESA. 4th Sentinel-2 validation team meeting. In ESA Abstract Book; ESA: Paris, France, 2020.
58. Pflug, B.; Makarau, A.; Richter, R. Processing Sentinel-2 data with ATCOR. In Proceedings of the EGU

General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016; p. 15488.
59. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2.

In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 4 October
2017; p. 1042704.

60. Phiri, D.; Morgenroth, J.; Xu, C.; Hermosilla, T. Effects of pre-processing methods on Landsat OLI-8 land
cover classification using OBIA and random forests classifier. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 170–178.
[CrossRef]

61. Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. Comparison of physically and image based atmospheric
correction methods for Sentinel-2 satellite imagery. In Perspectives on Atmospheric Sciences; Springer: Cham,
Switzerland, 2017; pp. 255–261.

62. Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of
sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens.
2018, 55, 331–354. [CrossRef]

63. Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Monitoring cotton
root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci. Rep.
2018, 8, 2016. [CrossRef]

64. Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of
the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [CrossRef]

65. Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate
aerosol optical thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENµS and
Sentinel-2 Images. Remote Sens. 2015, 7, 2668–2691. [CrossRef]

66. De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.;
Neil, C.; Van der Zande, D.J.E.J.O.R.S. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data
using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542.
[CrossRef]

67. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159,
269–277. [CrossRef]

68. Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images:
Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481.
[CrossRef]

http://dx.doi.org/10.1002/ecy.1730
http://dx.doi.org/10.1016/j.rse.2016.08.025
http://dx.doi.org/10.3390/rs61111127
http://dx.doi.org/10.1016/j.rse.2018.09.002
http://dx.doi.org/10.1016/j.rse.2017.08.033
http://dx.doi.org/10.1016/j.jag.2018.06.014
http://dx.doi.org/10.1080/15481603.2017.1370169
http://dx.doi.org/10.1038/s41598-018-20156-z
http://dx.doi.org/10.1016/j.rse.2019.03.010
http://dx.doi.org/10.3390/rs70302668
http://dx.doi.org/10.1080/22797254.2018.1457937
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1016/j.rse.2018.04.046


Remote Sens. 2020, 12, 2291 27 of 35

69. Goor, E.; Dries, J.; Daems, D.; Paepen, M.; Niro, F.; Goryl, P.; Mougnaud, P.; Della Vecchia, A. PROBA-V
Mission Exploitation Platform. Remote Sens. 2016, 8, 564. [CrossRef]

70. Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T.J.R.S.O.E. A first assessment of the Sentinel-2 Level
1-C cloud mask product to support informed surface analyses. Remote Sens. Environ. 2018, 217, 426–443.
[CrossRef]

71. Sekertekin, A.; Marangoz, A.; Akcin, H. Pixel-Based Classification Analysis of Land Use Land Cover Using
SENTINEL-2 and LANDSAT-8 Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 91–93.
[CrossRef]

72. Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J.
Remote Sens. 2017, 50, 137–143. [CrossRef]

73. Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine
Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [CrossRef] [PubMed]

74. Suresh, R.; Sneghalatha, R.; Devishree, S.; Pavethera, K. A Survey on Hyperspectral Image classification Using
Machine Learning. Available online: https://www.semanticscholar.org/paper/A-Survey-of-Hyperspectral-Image-
Classification-in-Ablin-Sulochana/8e6b723e0c971eafd5151030de7fc4ec18edbee5 (accessed on 7 May 2019).

75. Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud detection algorithm for multi-modal satellite
imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [CrossRef]

76. Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.;
Gorelick, N.J.R.S. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and
object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9,
1065. [CrossRef]

77. Hiestermann, J.; Ferreira, S.L. Cloud-based agricultural solution: A case study of near real-time regional
agricultural crop growth information in South Africa. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2017, 42, 79–82. [CrossRef]

78. Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification
performance. Int. J. Remote Sens. 2007, 28, 823–870. [CrossRef]

79. Olaode, A.; Naghdy, G.; Todd, C.J.I.J.O.I.P. Unsupervised classification of images: A review. Int. J. Image
Process. 2014, 8, 325–342.

80. Derksen, D.; Inglada, J.; Michel, J. Spatially precise contextual features based on Superpixel Neighborhoods
for land cover mapping with high resolution satellite image time series. In Proceedings of the IGARSS
2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
pp. 200–203.

81. Rujoiu-Mare, M.-R.; Olariu, B.; Mihai, B.-A.; Nistor, C.; Săvulescu, I. Land cover classification in Romanian
Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery. Eur. J. Remote Sens.
2017, 50, 496–508. [CrossRef]

82. Andersson, J.; Bontemps, M.S. Detecting crop residues burning using Sentinel-2 imagery: Conservation
agriculture promotion in Central Malawi. Master’s Thesis, Catholic University of Lovain, Lovain-la-Neuve,
Belgium, 2018. Available online: http://hdl.handle.net/2078.1/thesis:17258 (accessed on 7 May 2020).

83. Clark, M.L. Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2
imagery for multi-seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325.
[CrossRef]

84. Degerickx, J.; Roberts, D.A.; Somers, B. Enhancing the performance of Multiple Endmember Spectral Mixture
Analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection. Remote Sens.
Environ. 2019, 221, 260–273. [CrossRef]

85. Colkesen, I.; Kavzoglu, T. Ensemble-based canonical correlation forest (CCF) for land use and land cover
classification using sentinel-2 and Landsat OLI imagery. Remote Sens. Lett. 2017, 8, 1082–1091. [CrossRef]

86. Fragoso-Campón, L.; Quirós, E.; Mora, J.; Gutiérrez, J.A.; Durán-Barroso, P. Accuracy enhancement for land
cover classification using LiDAR and multitemporal Sentinel 2 images in a forested watershed. Multidiscip.
Digit. Publ. Inst. Proc. 2018, 2, 1280. [CrossRef]
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