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Abstract: In marine habitat mapping, a demand exists for high-resolution maps of the seafloor both
for marine spatial planning and research. One topic of interest is the detection of boulders in side scan
sonar backscatter mosaics of continental shelf seas. Boulders are oftentimes numerous, but encompass
few pixels in backscatter mosaics. Therefore, both their automatic and manual detection is difficult.
In this study, located in the German Baltic Sea, the use of super resolution by deep learning to improve
the manual and automatic detection of boulders in backscatter mosaics is explored. It is found that
upscaling of mosaics by a factor of 2 to 0.25 m or 0.125 m resolution increases the performance of
small boulder detection and boulder density grids. Upscaling mosaics with 1.0 m pixel resolution by
a factor of 4 improved performance, but the results are not sufficient for practical application. It is
suggested that mosaics of 0.5 m resolution can be used to create boulder density grids in the Baltic
Sea in line with current standards following upscaling.

Keywords: habitat mapping; hydroacoustics; boulder detection; neural network; Baltic Sea;
deep learning; backscatter mosaic

1. Introduction

The need for improving the resolution of images is widespread, including tasks in medical
applications, object detection, or remote sensing [1]. In marine habitat mapping by acoustic
remote sensing specifically, a recent topic of interest is the detection of individual boulders for
purposes of hard ground delineation for marine spatial planning purposes as well as ecosystem
research [2–5]. The detection of boulders is typically based on the interpretation of backscatter intensity
mosaics derived from acoustic remote sensing by side scan sonars or multibeam echo sounders [6].
In such backscatter intensity mosaics, boulders are recognized by a characteristic backscatter pattern.
The typical resolution of backscatter mosaics in practical applications in the German Baltic Sea and
North Sea is 0.25 m to 1.0 m. This is in contrast to the aims of European habitat mapping guidelines to
describe all objects exceeding a diameter of 0.063 m, the sedimentological transition from gravel to
cobbles, as potential hard ground that needs to be detected [5]. Obviously, objects of such size cannot
be detected in currently available datasets, and the widespread application of new technology such as
synthetic aperture sonar [7], strongly increasing the resolution of bathymetric grids and backscatter
intensity mosaics especially in the along-track direction, is required.

In the meantime, however, the detection of small objects such as boulders encompassing only a
few pixels in backscatter mosaics needs to be improved to aid marine spatial planning and research.
Both manual and automatic methods of boulder determination struggle with the detection of small
objects, but especially for object detection frameworks based on convolutional neural networks (CNN),
recently used for automatic identification of boulders in backscatter mosaics [8], small object detection
is a serious challenge [9–11]. A previous study [8] finds that performance steeply decreased when
boulders are displayed with less than nine pixels. This is because the architecture of CNN’s commonly
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decrease the size of the image representations by pooling layers [12], so spatial relationships of larger
scale can be captured by the convolutional filters in the later stages of the network. Next to advancing
network architecture for the detection of small objects [11], the easiest solution to improve small
object detection for neural networks is the interpolation of the image to increase the amount of pixels
each objects encompasses [9], thus artificially increasing the number of pixels per object and image
resolution. However, upscaling the number of pixels by classical image scaling techniques such as
nearest neighbor interpolation or bicubic algorithms does not add new information to an object, which
could be used by a CNN for object detection. To counteract this limitation, different super resolution
techniques were developed in recent years to improve image resolution [1]. Super resolution can be
achieved by combining multiple low resolution images, or by combining images of slightly shifted
sensor pixels [13]. However, such approaches are not feasible for data generated by shipborne acoustic
remote sensing. While several low-resolution acoustic images of an area could be recorded, individual
pixel registration is not accurate enough for these techniques due to limitations in navigational accuracy
and motion compensation. In contrast, super resolution techniques can also be based on transforming
a single low resolution image into a higher resolution one, by training a neural network to learn the
representation of high-resolution features in a lower resolution space. Following training, the high
resolution features can be restored in low resolution images [14]. Such neural networks surpassed the
quality of pixel interpolation and allowed to increase image resolution in several applications [15] in
recent years. While the models typically cannot be applied to all feature types, a typical improvement
of resolution by a factor of 2 to 4 can be achieved with reasonable restoration of small details. Studies
utilising image super resolution by means of neural networks to marine habitat mapping are rare.
The technique was successfully applied to satellite images [16], achieving an objection detection
performance increase of 13–36% [17].

In this study, it is tested whether the application of image super resolution to backscatter mosaics
increases performance of boulder detection by manual and automated methods, taking both the
creation of boulder density grids and the detection of individual boulders into account. Towards this
aim, a neural network is trained to increase the resolution of backscatter mosaics by factors of 2 and
4 to target resolutions of 0.125 m and 0.25 m. Subsequently, the model is applied to an independent
validation area, where the performance of boulder detection was tested on the different mosaics.

2. Data and Methods

2.1. Acoustic Data

The background for boulder detection on continental shelves is formed by graphical
representations of seafloor backscatter intensity, which can be derived by multibeam echo sounders
(MBES) [6] or side scan sonars (SSS) [18]. Side scan sonars are typically towed closely above the seafloor
and insonify the seafloor to their port and starboard side, recording the returning reflected (near vertical
incidence) or scattered acoustic energy over time. The backscatter intensity of the seafloor, for a given
acoustic system and acoustic frequency, depends on seafloor and shallow (down to ca. a decimetre for
high-frequency systems depending on sediment composition) subsurface composition both biotic and
abiotic, local morphology and geometry of the incident acoustic wave to the emitting transducers [19].
During processing of raw side scan sonar data for large-scale mosaics, system-dependent and survey
geometry effects are reduced as far as possible [20], although the latter can also be very useful for
habitat mapping purposes [21]. The mosaics resulting from the merge of several side scan sonar lines
express differences in seafloor composition by grayscale intensities, with darker colors indicating a
higher relative backscatter in this study. In side scan sonar mosaics, which are normally processed
using a flat seafloor assumption and thus do not correct for morphological effects, objects elevated
above the mean seafloor depth are recognized due to their localized impact on survey geometry.
Boulders elevated above the seafloor have an effectively steeper angle of incidence facing the sonar
system, which increases the energy of the reflected or backscattered acoustic wave [18], compared to
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the surrounding seafloor. On the opposite side of elevated objects, an acoustic shadow can form,
from which no acoustic energy is received. Therefore, elevated objects on the seafloor are recognized
by a characteristic pattern of high- and low backscatter intensities. The same effects take place
for local depressions, which produce an inverse pattern of high- and low backscatter intensities.
The along-track resolution of side scan sonar mosaics depends on the distance travelled by the vessel
between individual pings, and therefore depends on survey speed and ping rate, and opening angles
of the sonar system. The resolution in across-track direction depends on physical parameters of
the side scan sonar such as frequency, bandwidth or pulse length. For high-frequency sonars, it is
better than 0.1 m and typically exceeds the along track resolution. For large-scale habitat mapping
campaigns, the limiting factor is oftentimes the required ship speed and swath range needed to cover
large areas, and the corresponding decrease in along-track resolution [22]. In the German Baltic Sea [5],
for example, large areas are mosaiced to a resolution of 1 m, while some areas are available at a
resolution of 0.25 m. In this study, already processed mosaics derived of side scan sonar surveys are
used (mosaics processed by Franz Tauber, formerly IOW). Data were recorded using a single-pulse
EG&G DF-1000 side scan sonar operating at 384 kHz, with a slant range between 75 m and 100 m.
Resolution of the resulting mosaics is limited by along track-resolution due to ship speed between
approx. 3.5 and 5 knots, resulting in a maximum along-track resolution of 0.25 m [22].

2.2. Regional Setting

To obtain a sufficient amount and diversity of images for training of the super-resolution model,
backscatter mosaics from several areas located throughout the southern Baltic Sea were used (Figure 1).
Training data covers different seafloor facies observed in the Baltic Sea where boulders may be expected,
notably sandy areas and glacial till deposits of the Kriegers Flak, Fehmarn Belt [23,24], Darss Sill [25]
and Rönnebank [26]. The Kriegers Flak mosaics show a wide range of different sediment types,
expressed by different backscatter intensities. Glacial lag deposits appear in darker colors, while sand
areas appear in intermediate greyscale colors. Towards the deeper areas in the west, sediment grain
size decreases, resulting in bright backscatter colors. The Rönne Bank area is composed of glacial lag
deposits and coarse sand, with thin sand veneers on top. In the Fehmarn Belt, a mix of fine to medium
sands and glacial outcrops is observed, while in the Darss Sill region, high current velocities result in
exposed glacial deposits, with silt and sand depositing in protected areas. Additional information on
the local geological conditions in the different areas is given in the respective references. The validation
mosaic was recorded in the southern Baltic Sea near the western boundary of the Arkona Basin, on the
south-eastern edge of the shoal Kriegers Flak (Figure 1b,c).
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Figure 1. (a) Location of the mosaics used for validation and training of the super resolution and
object detection model. Areal extension of mosaics is enlarged. (b) Validation mosaic. (c) Annotated
validation mosaic. (d) Mosaics used for training of the super resolution model. (e) Mosaic used for
training of the object detection model. The mosaic was also part of the super-resolution training suite.
The native resolution of all mosaics is 0.25 m. Colors in (a–e) correspond to the depth scale.
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2.3. Image Super Resolution

To improve the resolution of backscatter mosaics, a single-stage residual network for super
resolution (SRResnet, [27]) was used. The structure of SRResnet is explained in detail in [27] and
shown simplified in Figure 2. To clarify in text and figures the resolution and upscaling factor for each
mosaic, mosaics are labeled by their resolution and upscaling factors, if the image was upscaled from
lower resolution mosaics. For example, 0.25 m @ × 4 describes a mosaic of 0.25 m pixel resolution
following upscaling by a factor of 4.
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Figure 2. (a) Simplified structure of the used model based on [27,28]. (b) A schematic sketch of the
upscaling procedure by pixel shuffling with an upscaling factor of 2 for a single-channel image is
given in the lower right. The following abbreviations are used in a and b: c the number of channels
of the input and output images and the intermediate feature maps; Conv convolutional layer; BN
batch normalization layer; ReLu rectified linear activation unit; Sum Layer that elementwise sums the
output of a residual block with the output of the prior residual block; PS(r) Upscaling by periodic pixel
shuffling with the upscaling factor r; H image height; W image width.

The model includes 16 residual blocks (residual meaning the output of the previous block is
added to the output of the following residual block), working on the same width and height as the
input image. Each residual block includes two convolutional layers with 3 × 3 kernels and 64 feature
maps, a batch normalization layer and a rectified linear activation unit to introduce non-linearity into
the learning process. Following the residual blocks, two sub-pixel convolutional layers are added.
These layers perform the actual upscaling of the the image by convolving the output of the residual
blocks by 1/r, where r is the upscaling factor. The upscaling changes an input image with dimension
of cr2 · H · W to c · rH · rW, termed as periodic pixel shuffling [28]. Here, c is the number of channels,
H is the image height and W is the image width. To achieve an upscaling factor of 4, two sub-pixel
convolutional layers with r = 2 are combined sequentially, while a scale factor of 2 is achieved by
setting r = 1 in the second layer.

An MIT-licensed implementation of SRResnet was used for this study, with the link to the
repository provided in the supplementary material. Slight modifications to the code included changes
in order to provide an upscaling factor of 2 in addition to 4, and changes to preserve the dynamic
range of the upscaled images. The workflow followed for training and application of the super
resolution model is displayed in Figure 3. A selection of georeferenced and processed backscatter
mosaics in GeoTIF format that were available from prior studies located in the Baltic Sea were selected.
The location of these mosaics is shown in Figure 1. Generally, the mosaics were at least of average
quality, very poor quality mosaics with exceedingly strong water column stratification artefacts or
very poor weather conditions resulting in intense along-track stratification by heave artefacts were not
selected. In the following, the single-band grayscale mosaics were cut into sub-images of 100 × 100
pixels and converted to the png format. Single-band greyscale images were converted to RGB color
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space by duplicating the grayscale band into red, green and blue channels. RGB triplets are required as
input to the super resolution network. Finally, all high resolution (HR) images were downsampled to
low resolution (LR) by a factor of 2 and 4, respectively, using the rescaling function of scikit-image [29]
to simulate low resolution mosaics [16]. The procedure resulted in 8569 sub-images available for
training with SRResnet. The training of SRResnet was done on an Nvidia 2080 Ti graphics card. Image
processing takes about 1/15 s per image following training. The model was trained for 60.000 steps
with a batch size of 16. Other settings were left unchanged from the training parameters described
by [27]: The LR sub-images were scaled to the [0,1] interval by dividing the pixel value of each channel
by 256. HR output images were scaled to an interval of [−1, 1] for calculation of the MSE, the pixel-wise
error between the high resolution training image of native sonar resolution and the upscaled image:

MSE =
1

m n

m−1

∑
i=0

n−1

∑
j=0

[HRorig(i, j)− HRup(i, j)]2 (1)

where HRorig is the original high-resolution image and HRup the upscaled high-resolution image
and mxn are the image dimensions. The MSE was used as the loss function to update the network
weights using the Adam optimization algorithm [30]. The learning rate was set to 0.0001. Images were
randomly flipped.

To assess the performance of the model, the validation mosaic was exported to sub-images
of 100 pixels. The sub-images were downsampled by a factor of 2 (to 50 × 50) pixels and 4 (to
25 × 25 pixels) to simulate a LR image dataset as discussed by [16] for remote sensing data, using
the rescale function of scikit-image [29]. An example of a sub-image is given in Figure 4. To reduce
checkerboard artefacts at the boundaries of the upscaled images [31], the images were padded with
16 pixels with the mean intensity value of the complete sub-image. Following upsampling by the
model, the (also upscaled) padded pixels were removed, and checkerboard artefacts significantly
reduced. All upscaled images were used as input for boulder detection as described in the following
section. Finally, upscaled images were merged to a GeoTif using the open source gdal-merge utility. It
was found that the greylevel intensities were shifted in the upscaled mosaic, and a constant intensity
shift was applied to the mosaics for visualization purposes.

2.4. Object Detection

2.4.1. Manual Object Detection

Boulders were manually digitized by the author using the open source geographic information
system QGIS version 3.8.3 based on the validation mosaic at a resolution of 0.25 m. To aid the
interpretation, a 50 × 50 m grid was projected on the mosaic. Each grid cell was screened at different
resolutions, from a pixel level to a complete overview, as the appearance of potential boulders to the
human interpreter is very different depending on scale and object size. Only objects with shadows
facing away from the nadir were considered. Each grid cell was analyzed two times. The complete
process required approximately 12 working hours. For comparing the results of model runs upscaling
the validation mosaic to 0.125 m, boulders in the subsets used for the analysis were re-counted.
Corresponding images can be found in the Supplementary Materials.

2.4.2. Automated Object Detection

Boulder detection was automated using the object detection framework RetinaNet [32], with a link
to the repository provided in the supplementary material. Training of the network closely follows the
description given by [8], and is only briefly summarized here (Figure 3). The only deviations comprise
the use of a new training database (provided in the supplementary files) which puts an emphasis on
picking smaller and more objects over a smaller mosaic, shown in Figure 1e. In total, 5495 individual
boulders identified in the training mosaic using QGIS were used for model training. The training



Remote Sens. 2020, 12, 2284 7 of 20

mosaic was cut into sub-images with an extension of 25 m × 25 m (corresponding to 100 × 100 pixels
for mosaics of 0.25 m resolution). Images were exported with a 5 pixel overlap to ensure most boulders
are completely imaged on at least one sub-image. An ASCII file linking the geographic coordinates of
the manually identified boulders to pixel coordinates of the respective sub-images was created using a
python script. The list of sub-images and pixel coordinates of the included boulders is then passed to
the object detection model for training.
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Figure 3. Workflow followed during training of SRResnet (a) and RetinaNet (b).

Keras-retinaet [32] was used to train an object detection model, with the link to the repository
provided in the supplementary material. The model was initialized using weights of ResNet50,
and trained for 20 epochs with 5000 steps each. Images were internally upscaled to 800 × 800 pixels
by RetinaNet (corresponding to an upscaling of factor 8 for 100 × 100 pixels input images). Images
were translated at random and flipped in the horizontal and vertical direction. Intersection of union
threshold (0.5) and anchors parameters (minimum anchor box size of 32) were left at their standard
values. Two examples of the training database were not represented by these anchor settings, tested
by the publically available anchor optimization implementation of [33], with a link to the repository
provided in the supplementary material. The training of the individual models took about 3.5 h on an
Nvidia 2080 TI graphics card. Image processing during application takes about 1/20 s. As discussed
by [8], the model still suffers from an incomplete training dataset, which includes a high number
of false negatives that impact scores reported by the model for individual boulders. Therefore,
during application, the threshold score for including the detected objects was set to 0.3. This value was
subjectively determined and set in a way that no missclassification occured on a part of the validation
mosaic which shows strong water column stratification. The detected boulders were loaded as a layer
into QGIS for further analysis.
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Output Images
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LR image
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SRResnet x4 100 x 100SRResnet x2 100 x 100

Figure 4. Example of a sub-image located at 54.9896°N, 13.1335°E at the different pixel dimensions.
For better visualization, all images are magnified from the original size by a factor of 5. The 25 ×
25 pixel LR image was magnified by a factor of 10 instead. The boulders are recognized by typical
backscatter patterns, with high backscatter intensities facing the side scan sonar towfish, and acoustic
shadows on the opposite side. It is observed that the image upscaled by a factor of 2 shows a slight
increase in average greylevel intensities.

To assess the performance of the model in the different geological facies, model detections were
compared to the manual interpretation of selected sub-images. In these cases, an agreement between
manual and automatic classification is assumed when the manually detected boulder is located within
the bounding box of the automatic detection.

For practical marine spatial planning applications boulder densities are often assessed in a
raster-based approach [5]. Following guidelines currently recommended for the German Baltic Sea,
comparison of the model results was done by counting boulders within 50 m × 50 m grid cells using
inbuilt QGIS functions. The results were grouped into 3 classes, comprising 0 boulders (no boulders),
1–4 boulders (intermediate boulder density) and more than 5 (high boulder density). Corresponding
confusion matrices were calculated using scikit-learn [34].

To compare the overall agreement between the different models, the F1 score was used, which is
given by

F1 = 2 · precision · recall
precision + recall

(2)

Precision is tp/(tp + fp) and recall is tp/(tp + fn), where tp is the number of true positives, fp

is the number of false positives and fn is the number of false negatives. The reported F1 values for
block densities represent the macro-average, which is the score that was calculated independently for
each class and then averaged, because the huge number of empty cells (no boulders) would lead to
inflated average values for poor-performing models otherwise. Thus, all classes are treated with equal
importance. While the human expert interpretation serves as the reference and base of comparison,
it should be noted that it cannot be taken as the “true” seafloor condition, and the corresponding
precision and recall values have to be interpreted with caution.

3. Results

3.1. Grids of Boulder Density

Figure 5 displays boulder densities estimated by the model on original and upscaled validation
mosaics and the expert interpretation. The corresponding confusion matrices are shown in Figure 6,
while the precision, recall and F1 scores are given in Table 1.
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Figure 5. Block densities of the validation area for manual interpretation and the model running
on different mosaics. (a) hows an example where a grid cell classification changed after correctly
identifying a small boulder following upscaling to 0.125 m resolution. (b) shows an example where a
grid cell classification changed due to mis-interpretation of water column stratification after upscaling
to 0.125 m resolution.

It is observed that the overall shape of the local boulder field is comparable between the model
and the manual interpretation, both for the original mosaic and the 0.25 m @ × 2 mosaic. Visually,
the shape of the boulder fields is more poorly preserved for the LR mosaic of 0.5 m and the 0.25 m @ ×
4 mosaic. In case of the 1.0 m mosaic, only one grid cell including boulders is recognized by the model.

Table 1. Precision, accuracy and F1 score (macro-average) for boulder densities displayed in Figure 5.

Mosaic Boulder Count Precision Recall F1

Mosaic manual 3170 - - -
Mosaic 0.25 m resolution 2704 0.82 0.80 0.81
Mosaic 0.5 m resolution 353 0.62 0.41 0.37
Mosaic 0.125 m @ × 2 4593 0.85 0.83 0.84
Mosaic 0.25 m @ × 2 2333 0.77 0.75 0.76
Mosaic 0.25 m @ × 4 884 0.67 0.57 0.58
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The manual detection yields 3170 detected boulders. Running on the validation mosaic at the
native resolution of 0.25 m, the model finds 2704 boulders. The classification of the boulder grids
yielded an F1 score of 0.81, with similar precision and recall values of 0.82 and 0.81, respectively.
The model run on the LR mosaic of 0.5 m resolution yields 353 detected boulders, while the F1

score drops to 0.37. The strongly reduced number of detected boulders is mostly represented by the
misclassification of dense boulder cells, of which only 9 out of 134 are found. At a mosaic resolution of
1.0 m, the model only identifies a single boulder in the validation area. The mosaic was excluded from
further performance comparisons.

The 0.5 m and 1.0 m mosaics upscaled by SRResnet to 0.25 m resolution deliver improved results
compared to the LR mosaics. The model run on the 0.25 m @ × 2 mosaic achieves an F1 of 0.76
with 2333 identified objects. Little misclassification of empty cells take places, with 5 out of 298 cells
being incorrectly assigned. The majority of wrong classifications is found in the intermediate class
of 5–10 boulders. For the model running on the 0.25 m @ × 4 mosaic, the F1 score is reduced to 0.58,
with 884 identified boulders. The boulder density is being generally underestimated, represented by
an reduced recall of 0.57. For the 0-block class, few false classifications occur (2 cells of 298).

Model

0.25 m 0.25m@x2 0.25m@x4 0.125m@x20.5 m

Model Model Model Model

M
an
ua
l

Figure 6. Confusion matrices of the block diagrams shown in Figure 5.

Following the comparison with datasets where a native resolution mosaic is available,
the backscatter mosaics were upscaled beyond the initially available resolution by a factor of two
to a resolution of 0.125 m, and the automatic detection applied to image tiles of 25 × 25 m. In total,
4593 boulders are detected, 1423 more than the manual count at 0.25 m resolution. The F1 score in
comparison to the manual interpretation is 0.84, with nearly identical values for precision (0.85) and
recall (0.83). The general shape of the area with dense boulders is preserved, but more numerous
occurrences of boulders are observed in previously empty cells (Figure 5).

3.2. Boulder Detection Performance in Different Seafloor Facies

To assess the boulder detection performance on the upscaled mosaics depending on seafloor
composition, the validation mosaic (Figure 1c) is differentiated into several facies. In the south-west
and north-east, extended areas of homogeneous backscatter appearance are observed in medium
grayscale intensities, comprized of mainly sandy material. Here, isolated boulders are recognized
on the sandy material (Figure 7). In the north-western and south-eastern part, areas of generally
high backscatter intensity with distinct boundaries to the surrounding seafloor are comprized of
glacial lag deposits, widespread in the Baltic Sea, and numerous boulders of larger (Figure 8) and
smaller (Figure 9) size are observed. Anthropogenic impact is expressed by an artificial plough mark,
which is crossing the central part of the validation mosaic (Figure 10). Throughout the mosaic, two
different artefacts are observed: Extensive blanking of side scan data occurs in the nadir, directly
below the side scan sonar towfish (observed in Figures 7 and 10). In addition, intense water column
stratification effects are observed especially in the outer parts of the side scan sonar swaths (Figure 11).
The corresponding accuracy numbers for all facies are given in Table 2.
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Figure 7. Subsets of the native and upscaled mosaics for the isolated boulder facies. Manual and model
detections are marked. Insets detail the appearance of individual boulders in the different mosaics.
The location of the shown mosaic subset in the validation mosaic is marked in Figure 1.

For the facies of isolated boulders on homogeneous sand (Figure 7), no artefacts are introduced
into the background during the upscaling, including the nadir region. In the original mosaic of 0.25 m
resolution, 12 boulders are recognized. Two features which may be small boulders are missed by the
model on the native mosaic, three are missed by the model on the 0.25 m @ × 2 mosaic, and nine are
missed on the 0.25 m @ × 4 mosaic. No false positives are present for isolated small boulders on sandy
seafloor. However, due to decreasing recall the F1 score decreases slightly from 0.91 for the original
mosaic to 0.86 for the image upscaled by a factor of 2, and drops to 0.4 for the image upscaled by a
factor of 4. The detection run on the 0.125 m @ × 2 resolution mosaic finds 12 boulders, matching
those found by manual interpretation of the 0.25 m mosaic. However, the increased resolution allows
the manual identification of two additional boulders. The resulting F1 score is 0.92 for the 0.125 m @ ×
2 mosaic.

Figure 8 demonstrates the performance in an area including large boulders with distinct and
extended shadows on glacial lag deposits. From west to east, the original image shows a gradual
increase in backscatter, which is reproduced in images upscaled by a factor of 2 and 4. The manual
count results in 32 boulders. The number of boulder recognized in the native mosaic by the model is
28 with an F1 score of 0.85. The model running on the 0.25 m @ × 2 mosaic finds 26 objects, while the
number drops to 9 for the 0.25 m @ × 4 mosaic. The respective F1 scores are 0.75 and 0.44. For large
boulders, the model counts 35 boulders on the 0.125 m @ × 2 mosaic, while 55 potential boulders
could be identified manually at the increased resolution. Of these, 34 are also identified as boulders
by the automatic classifications, while 21 manual interpretations are not confirmed by the model.
The resulting F1 score for the upscaled models is 0.77.

The case of numerous small boulder on a medium to high backscatter background is shown in
Figure 9. From 42 boulders that are recognized manually, 29 are found by the model on the native
mosaic (F1 score 0.82), 26 on the 0.25 m @ × 2 mosaic (F1 score 0.68) and 12 on the 0.25 m @ × 4
mosaic (F1 score 0.41). The discrepancy between manually and automatically identified boulders on
the upscaled mosaic increases for the facies of small boulders at 0.125 m @ × 2, with 82 manually
identified boulder candidates. Of these, 54 are also found by the model, which in addition finds 5 false
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positive objects, resulting in an F1 score of 0.77. For all three boulder facies, precision values remain at
a comparable level to the interpretation of the native mosaic, while recall values decrease substantially.
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Figure 8. Subsets of the native and upscaled mosaics for the large boulder facies. Manual and model
detections are marked. Insets detail the appearance of individual boulders in the different mosaics.
The location of the shown mosaic subset in the validation mosaic is marked in Figure 1.
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Figure 9. Subsets of the native and upscaled mosaics for the small boulder facies. Manual and model
detections are marked. Insets detail the appearance of individual boulders in the different mosaics.
The location of the shown mosaic subset in the validation mosaic is marked in Figure 1.
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Table 2. Comparison of the automated boulder detection to the manual interpretation for the different
facies and mosaics shown in Figures 7–10.

Mosaic Facies Manual Count Model Count TP FN FP Precision Recall F1

Mosaic 0.25 m isolated 12 10 10 2 0 1.0 0.83 0.91
Mosaic 0.25 m @ × 2 isolated 9 9 3 0 1.0 0.75 0.86
Mosaic 0.25 m @ × 4 isolated 3 3 9 0 1.0 0.25 0.4
Mosaic 0.125 m @ × 2 isolated 14 12 12 2 0 1.0 0.86 0.92

Mosaic 0.25 m large 32 28 25 6 3 0.89 0.81 0.85
Mosaic 0.25m @ × 2 large 26 22 11 4 0.85 0.67 0.75
Mosaic 0.25 m @ × 4 large 9 9 23 0 1.0 0.28 0.44
Mosaic 0.125 m @ × 2 large 55 35 34 21 1 0.97 0.64 0.77

Mosaic 0.25 m small 42 29 28 14 1 0.97 0.67 0.82
Mosaic 0.25 m @ × 2 small 26 23 19 3 0.88 0.55 0.68
Mosaic 0.25 m @ × 4 small 12 11 31 1 0.92 0.26 0.41
Mosaic 0.125 m @ × 2 small 82 59 54 28 5 0.92 0.66 0.77

Mosaic 0.25 m plough 4 12 3 1 9 0.25 0.75 0.38
Mosaic 0.25 m @ × 2 plough 12 3 1 9 0.25 0.75 0.38
Mosaic 0.25 m @ × 4 plough 10 3 1 7 0.3 0.75 0.43
Mosaic 0.125 m @ × 2 plough 5 29 3 2 26 0.10 0.6 0.17
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Figure 10. Subsets of the native and upscaled mosaics in an area of plough marks. Manual and model
detections are marked. Insets detail the appearance of the plough mark boundaries in the different
mosaics. The location of the shown mosaic subset in the validation mosaic is marked in Figure 1.

The performance in areas of morphological features (plough marks) is shown in Figure 10.
Within the plough marks, the number of detected boulders by the model exceeds the manual
intepretation regardless of the underlying mosaic, resulting in F1 scores around 0.4. A further increasing
number of false positives detected by the model on the 0.125 m @ × 2 mosaic. Here, at maximum
5 potential boulders are manually identified, while 29 potential matches are found during the automatic
classification. The corresponding low precision value of 0.1 cause a F1 score of 0.17. The trend of an
overestimation of boulders is observed all along the plough mark, continuing outside of the shown
subset. Over the complete validation mosaic, 37 boulders are identified manually in the area with
plough marks (1.2% of total detections), while 69 boulders are found by the model on the 0.25 m
mosaic (2.6% of total detections), 80 on the 0.25 m @ × 2 mosaic (3.4% of total detections), 39 on the
0.25 m @ × 4 mosaic (4.4% of total detections) and 128 on the 0.125 m @ × 2 mosaic (2.7% of total
detections). For the area with water column artefacts (as well as areas of the side scan sonar nadir),
few misclassifications occur chiefly for the mosaic upscaled by a factor of 4, with an example shown in
Figure 11.
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Figure 11. Subsets of the native and upscaled mosaics in an area affected by water column stratification
artefacts. Insets detail the appearance of the water column artefacts in the different mosaics.
The location of the shown mosaic subset in the validation mosaic is marked in Figure 1.

3.3. Small Object Detection

The detection of small objects, here assumed to correspond to small bounding boxes, is of special
interest. To determine whether the upscaling improved the detection of small boulders, the areas
covered by the bounding boxes are displayed in Figure 12 for the automatic boulder detection applied
to the original and upscaled mosaics. The highest number of boulders is detected around 3.5 m2 on
the 0.25 m, 0.25 m @ × 2 and 0.125 m @ × 2 mosaics. These values roughly corresponds to the median
of the bounding box size, which is 3.40 m2 for the 0.125 m @ × 2, 3.69 m2 for the 0.25 m and 3.62 m2

for the 0.25 m @ × 2 mosaic. Generally, the distribution of the bounding box sizes is increasingly
similar towards larger values for these mosaics, with negligible differences above the 80th percentile
(Figure 12).

For the native mosaic at 0.25 m resolution, and the upscaled mosaic 0.25 m @ × 2 no
significant difference in the relative distribution of smaller-sized bounding box dimensions is observed,
although the absolute numbers of detected objects are larger for the model at native 0.25 m resolution.
The minimum bounding box size is slightly lower for the native 0.25 m resolution, with a minimum of
0.93 m2, compared to 1.04 m2 for the 0.25 m @ × 2 mosaic. However, the number of detected small
objects with bounding boxes of less than 1.5 m2 is limited to around 1% of the total detections, with 50
objects for the original validation mosaic and 35 objects for the mosaic upscaled to 0.25 m. The 0.125 m
@ × 2 mosaic yields a higher number of smaller objects. The minimum detected object size is 0.53 m2

and a total number of 303 potential boulders with bounding boxes less than 1.5 m2 exist, corresponding
to ca. 7% of the total number of detected objects.

In contrast, a clear drop of detected objects with small bounding boxes is observed for the 0.25 m
@ × 4 mosaic and the LR mosaic of 0.5 m resolution. The former shows a median of 5.55 m2 and
a minimum detected bounding box size of 2.37 m2, the latter a median of 6.33 m2 and a minimum
detected bounding box size of 3.06 m2. For the 0.5 m mosaic, no bounding boxes with a size between
3 m2 to 3.5 m2 are present.

Figure 12 shows that a moderate correlation of 0.46 (p < 0.01) exists between the bounding box
area and the threshold score assigned by the boulder detection model for the 0.25 m2 model.
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Figure 12. Cumulative area distribution of bounding boxes from 0 m2 to 10 m2. The scatter plot inset
demonstrates the correlation between bounding box area and object score. The score threshold of 0.3 is
indicated by a dashed blue line.

4. Discussion

4.1. Impact on Boulder Density Grids

The interpretation of marine acoustic data by automated methods remains challenging in many
areas, including the identification of boulders [5]. The recent approach to better include boulders
in marine spatial planning and meet demands of authorities is to classify boulders in grid cells of
50 × 50 m at a defined backscatter mosaic resolution of 0.25 m [5]. However, vast areas have been
mapped at resolutions below 0.25 m in the German Baltic Sea and North Sea, and a re-surveying
would be time consuming and expensive. In this regard, it is clearly observed that the super resolution
followed by automated object detection is advantageous compared to using lower resolution images
for both upscaling factors of 2 and 4, especially given the fast computation time of the trained models
during the post-processing workflow. Especially the 0.5 m mosaics that are upscaled by a factor of
2 deliver a very close agreement to both manual counting and to model runs on the native 0.25 m
resolution in this study, with F1 scores of 0.76 and 0.81, respectively. It has to be considered that
metrices were calculated very conservatively. Especially the assumption, that the true conditions
are reflected in manual counting is not correct, and the actual performance of the models will be
underestimated. The performance on the 0.25 m @ × 4 mosaic is noticeably poorer, compared to the
native resolution. However, the increase in performance compared to the original low resolution
model (from 1 to 884 detections) is clear, and the results outperform the low-resolution 0.5 m mosaic
(Figure 2). The upscaling to 0.125 m brings a slight further improvement of the precision compared
to the 0.25 m mosaic at native resolution. Recall and F1 are not as meaningful for this comparison,
as the total number of detected boulders increases in the higher resolution image. The higher precision
exists despite several obviously false detections in empty cells, and the detection of isolated boulders
in several previously empty cells. Figure 5a shows an example where a previously only faintly
visibly object can be interpreted as a boulder following upscaling, causing a reclassification of the
corresponding grid cell that is an improvement above the original classification. In contrast, Figure 5b
displays an instance where a water column artefact is interpreted as a false positive following upscaling.
It may be argued that the absence of false positive detections, i.e., a high precision, especially in empty
cells is more important than a high recall of the actually available boulders, which is not possible to
achieve. The precision in the zero boulder classes is above 0.9 in all cases, with less than 4% wrongly
classified empty cells (Figure 6). This indicates, as also observed in Figure 11, that widespread water
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column stratification artefacts are not wrongly interpreted as objects following the upscaling procedure.
In summary, for the creation of boulder density grids to the current standard of 0.25 m input mosaic
resolution, it is suggested that a re-surveying of areas may not be necessary if data exists at least in
a resolution of 0.5 m and can be upscaled. The upscaled mosaics deliver similar performance to the
native resolution in this study. A noticeable drop in performance is observed when upscaling by a
factor of 4, suggesting that mosaics of 1 m resolution are not suitable as a base for boulder detection.

4.2. Impact of Seafloor Facies

To better understand the range of seafloor facies where the upscaling and automatic detection is
feasible, and for many applications, such as ecosystem research on reef structures [35] or determination
of hard ground settlement area [36], the detection of individual boulders is required. Regarding the
impact of different seafloor facies on individual boulder detection, a drop in performance towards
more complex seafloor, with a higher number of smaller objects, is observed (Table 2). The drop
in performance is chiefly controlled by a lack of recall, with the human expert continuously finding
a higher number of objects compared to the automated detection. Especially for the 0.25 m @ × 4
mosaic, recall values remain at approximately 25% of the human interpretation. The performance
of the 0.25 m @ × 2 mosaic is affected most in the area with many small boulders, indicating that
the super resolution fails to restore very small, clustered objects, a trend that is commonly observed
in other areas of application [17]. On the other hand, and important for practical application, few
false positives are introduced and the precision exceeds 0.85 for all natural facies, and a drop in
performance depending on the background sediment, as observed in previous studies using Haar-like
features for boulder detection [3], was not observed. However, in contrast to the good performance on
natural seafloor, many false positives around plough marks created by anthropogenic impact exist,
comprising a noticeable percentage of the total number of detections by the model between 2% and
4%, depending on the mosaic. The problem is already prevalent in the native mosaic resolution of
0.25 m [8]. The poor performance is neither improved nor made worse by the upscaling procedure
(Table 2). While further improvements of the training database to include more plough marks may
improve performance, encoding additional information such as bathymetry or derived parameters
such as the bathymetric positioning index as additional image channels should be pursued in the
future, similar to the application of multispectral satellite images [16]. In the meantime, complex
morphological areas such plough marks need to be manually quality checked for practical applications.

4.3. Impact on Small Object Detection

Next to the performance in complex seabed compositions, the challenge for individual boulder
detection is that a large percentage of boulders (size class 26.5 cm to 4.1 m [37]) is by definition at or
even below the pixel resolution of available acoustic mosaics, which are mostly available in resolutions
of 1.0 to 0.25 m in the German Baltic Sea and North Sea. The recording of higher resolution data
by MBES or SSS quickly becomes infeasible due to low ranges and required low ship speeds [19,22].
In addition, recent research demonstrates that the minimum boulder size which can be detected by
acoustic remote sensing systematically depends on survey geometries [36], and thus a complete picture
cannot be achieved. While statistics of boulder size distribution over larger areas are rare, it was found
that the number of cobbles with less than 20 cm in diameter may exceed the number of cobbles and
boulders larger than 20 cm by a factor of 6, and a relationship of ca. 10:1 exists between boulders and
large boulders in the North Sea [38]. A generally similar relation may be expected in the Baltic Sea,
since boulders in both seas originate from glacial ice advances [39], although the exact composition will
be different depending on erosion, transport and source area of the boulders [40]. In any case, it may
be expected that the majority of objects is located at the fine end of the boulder spectrum, and effort
should made to detect as many small objects as possible without introducing an undue amount of
false positives.
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The expectation of an increasing number of small boulders is clearly not reflected in the bounding
box distribution based on any of the considered mosaics (Figure 12). The decrease in small objects
is not primarily related to anchor box parameters of the object detection framework. The smallest
anchor box of 32 × 32 pixels corresponds at a standard threshold of areal overlap of 0.5 (not accounting
for ratios setting) to a minimum object size of 23 × 23 pixels. Because sub-images of 25 m × 25 m
were used as input images and were upscaled to 800 pixels height and width internally by RetinaNet,
23 × 23 pixels corresponds to a minimum area of ca. 0.5 m2 in the input images regardless of mosaic
resolution. At a score threshold of 0.3, the smallest objects identified on the 0.125 m @ × 2 mosaic
(0.53 m2) correspond to the theoretical minimum and small object detection may have benefited from
smaller anchor boxes. Detections based on all other mosaics are not affected.

Instead, it is observed that the minimum bounding box size for the 0.125 m @ × 2, 0.25 m and
0.25 m @ × 2 mosaics correspond to ca. 4 × 4 to 6 × 6 pixels in the mosaics, with smaller objects
not exceeding the score threshold of 0.3. This explains the six-fold increase of detected objects with
bounding boxes smaller than 1.50 m2 on the 0.125 m @ × 2 mosaic. Increased pixel number correlate
to an increased score, with r = 0.46 over bounding boxes from 0 to 10 m2. Therefore, upscaling allows
smaller objects to achieve higher scores and significantly more smaller objects are recognized on the
0.125 m @ × 2 mosaic. As demonstrated by the high precision values of the 0.125 m @ × 2 mosaic, this
does not cause an undue increase of false positive detections.

For larger bounding boxes, the score values of detected boulders reach a plateau (r reduces to
−0.15 considering only bounding boxes above 5 m2), as the increased amount of pixels no longer
contribute to better scores. Figure 12 also demonstrates that above 5 m2, an increasing distinction
between objects with high and low scores exists. This explains that for large bounding boxes, roughly
above the 80th percentile (Figure 12), no performance differences between the 0.125 m @ × 2, 0.25 m
and 0.25 m @ × 2 mosaics are observed. Finally, it should be noted that the upscaling, beyond the
native resolution of the dataset, to 0.125 m resolution also benefitted the manual determination of
smaller boulders (e.g., Figure 9), indicating the human interpreter is still more efficient at detecting
very small objects on the seafloor. However, with an increasing amount of recognized objects the
manual detection becomes even more unfeasible over larger areas. For the 0.25 m @ × 4 mosaic,
upscaling still increases performance above the 0.5 m resolution mosaic, but the performance for
small objects altogether is poor, with the minimum detected object bounding box comprising 2.37 m2.
It can be assumed that fine boulders are not sufficiently imaged in the 1.0 m resolved LR mosaic,
and cannot be restored by upscaling. Examples of fine boulders disappearing in the 0.25 m @ ×
4 mosaics are displayed in Figures 7a and 9a. In summary, upscaling by a factor of 2 causes a marked
improvement in the detection of fine boulders, while no performance difference is observed for larger
objects. However, the expected distribution of bounding box sizes, with a maximum at the smallest
objects, is not achieved.

5. Conclusions

For the purpose of boulder detection, upscaling of backscatter mosaics by a factor of 2 clearly
improved the results both for the creation of boulder density grids and small object detection.
Regarding the continued use of older mosaics (map once, use many times), it is suggested that
0.5 m mosaics may be sufficient to locate boulder fields in the geological setting of the Baltic Sea,
where boulders are typically densely packed. Mosaics of 1.0 m resolution (requiring an upscaling
factor of 4) are found unsuitable for this purpose. However, with the model and training database
used in this study, a quality check by human experts is required in morphologically complex areas of
strong anthropogenic impacts. These areas require tuning of object detection models, the application
of more advanced model architectures and consideration of bathymetric information in the future.



Remote Sens. 2020, 12, 2284 18 of 20

Supplementary Materials: The following materials S1 to S4 are available online at http://www.mdpi.com/2072-
4292/12/14/2284/s1, Figure S1: Manual identification of boulders at 0.125 m for the facies isolated boulders, small
boulders and large boulders. Figure S2: Zipped georeferenced training mosaics, Figure S3: zipped georeferenced
validation mosaics, Figure S4: Used training database with coordinates of boulders used for training of the
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