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Abstract: Fog degrades horizontal visibility causing significant adverse impacts on transport systems.
The detection of fog from satellite data remains challenging especially in the presence of higher
clouds, dust, mist, or unknown underlying soil conditions. Observations from Meteosat second
generation Spinning-Enhanced Visible and Infrared Imager (MSG SEVIRI) over the United Arab
Emirates (UAE), an arid area on the Arabian Peninsula, from 2016 to 2018 (two fog seasons) are
used in this study. We implement an adaptive threshold-based technique using pseudo-emissivity
values to detect nocturnal fog from SEVIRI. The method allows the threshold to vary spatially
and temporally. Low clouds are detected with the analysis of the vertical temperature gradient.
Fog classification was verified against four stations in the UAE, namely Abu Dhabi, Dubai, Al Ain,
and Al Maktoum, where visibility and meteorological observations are available. The probability of
detection (POD) (false alarm ratio (FAR)) was 0.81 (0.40), 0.83 (0.50), 0.83 (0.33), and 0.77 (0.44) at
Abu Dhabi, Dubai, Al Ain, and Al Maktoum, respectively. In addition, the spatial frequency of fog is
presented, which provides new insights into the fog dynamics in the region.
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1. Introduction

The detection of fog and low cloud (FLC) from satellite data remains challenging despite advances
in methodologies and technology. However, satellite products remain beneficial and informative
in areas where there is a low density of observations, which is often the case in desert areas [1].
Satellite-based approaches of fog detection make use of channel brightness temperature difference.
In the case of dense ground observation networks, fog detection could rely on surface observations.
A combination of satellite- and ground-based observation is also possible to enhance fog detection and
tracking. In such contexts, ground observations could be invaluable in the case of obstruction by higher
clouds [2] or in the presence of mist or haze, which could lead to false alarms in the satellite products.

The most widely satellite-based approach implemented to detect FLC is the brightness temperature
difference method (BTD). This method was first implemented on polar orbiting satellites [3,4], but has
since been adapted to geostationary instruments including the Spinning-Enhanced Visible and Infrared
Imager (SEVIRI) on board Meteosat [5–7]. In brief, the brightness temperature difference between
the 10.8 and 3.9 µm channels is calculated based on the theory that fog droplets produce a lower
emissivity at 3.9 than 10.8 µm [5–7]. As described by Cermak and Bendix [6], a threshold value can be
identified from the BTD distribution, which distinguishes clear sky from FLC as they are located on
different parts of the distribution. This threshold is then applied to the BTD producing a FLC mask
image. Two limitations of this method are that it is only effective at nighttime and that fog cannot be
distinguished from low cloud.
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The problem at daytime is that the reflectance of sunlight from clouds overrides the brightness
temperature signal in the infrared channels. Twilight hours can also be challenging as sunlight can
reflect off the top of the atmosphere. To overcome this, some studies define separate algorithms for
night and day (e.g. [5,6]) or develop new methods for daytime detection (e.g. [7–10]).

One option to distinguish fog from low cloud is to use real time observations or forecasts of land
surface temperature (LST) and to compare it to satellite surface brightness temperature usually at
10.8 µm that could be considered as a proxy for LST [11]. The assumption is that observations at the
10.8 channel represent cloud top temperature. In the absence of low cloud or fog, observations at the
10.8 channel should be close to the LST. Hence, a significant difference between simulated LST and
cloud top temperature should eliminate low cloud from the classification. If these differ beyond a
threshold value it is then assumed that FLC is low cloud and not fog.

An alternative methodology to BTD was proposed which makes uses of the same channel information,
but calculates a pseudo-emissivity for channel 3.9 µm (ems(3.9)) [11,12]. The pseudo-emissivity method
has been shown to return higher skill scores than the BTD method [11] on the GOES-R Advanced Baseline
Imager (ABI). In this approach, the blackbody radiance at 3.9 µm is calculated using the brightness
temperature from the 10.8 µm channel. This is then used, along with the radiance at 3.9 µm, to calculate
the pseudo-emissivity. Like the BTD, the theory behind this method is that small cloud droplets in fog
have a smaller emissivity at 3.9 than 10.8 µm. The approach in calculating the threshold ems(3.9) is similar
to BTD. A frequency distribution of ems(3.9) is calculated where the peak frequency represents clear sky
and fog conditions occur to the left of the peak [6]. The threshold is a point that divides these parts of
the distribution. This method has the same limitations as the BTD method: it is effective at night and it
requires the removal of low cloud from the classification.

This study is a continuation of the above-mentioned effort to detect fog using satellite observations.
This study introduces an adaptive threshold-based method that accounts for the temporal and spatial
variability of fog conditions and their spectral signatures [5,6]. We test the pseudo-emissivity method
for nighttime fog detection over a desert area in the UAE and expand it to SEVIRI observations after
being tested on Geostationary Operational Environmental Satellite-R Series Advanced Baseline Imager
(GOES-R ABI) data. Eventually, the developed fog detection approach leads to a better understanding
of fog dynamics and climatology across the UAE.

2. Materials and Methods

2.1. Study Area

The United Arab Emirates (UAE) is an arid country located on the northeastern edge of the
Arabian Peninsula (Figure 1). It has sparse to bare vegetation and the main soil type is sand and
loamy sand. It has a mean spatial annual rainfall of about 78 mm/year [13], and the dominant land
cover type is bare or sparsely vegetated desert. The UAE experiences radiation fog, most frequently
in winter months [14,15]. Low visibility events are more often associated with humid atmospheric
conditions than with dry and dusty conditions [16,17]. The Persian Gulf is a warm and shallow water
body and is located to the north of the UAE which is a source of water vapor in the atmosphere [18,19].
Fog formation requires that moisture be advected over the land from the Gulf during the day [20,21].
During the night, the land cools down quickly due to the high albedo of the desert and radiative
cooling [20]. Fog forms mostly at night with peak fog occurring around sunrise [14]. Fog quickly
dissipates after sunrise, although thick fog can persist until 10:00 h local time. Fog is often associated
with a strong surface inversion layer [22,23]. Fog occurs most frequently over the land with a clear
boundary at the coastline. The air over the Gulf is warmer at night and dew point temperature is
seldom reached. Although marine fog does occur, it is less frequent than fog over the land.
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Figure 1. (a) The United Arab Emirates (UAE) is located on the Arabian Peninsula. (b) Terrain (m.a.s.l.)
and location of meteorological aerodrome report (METAR) stations used for verification.

2.2. Datasets

2.2.1. SEVIRI Data

SEVIRI data from Meteosat-10 situated over 9.5 ◦E was utilized for this study. Channel data from
channel 4 (IR 3.9 µm) and 9 (IR 10.8 µm) were used in the fog detection algorithm [11,12]. The scene
was subset to the region of interest and the resolution is around 3 km. Although SEVIRI data are
available every 15 minutes, only hourly data (top of the hour) were used in the verification process,
as they are coincident with meteorological aerodrome report (METAR) observations. The final fog
mask field was further clipped to the borders of the UAE.

2.2.2. METAR Data

Meteorological aerodrome reports (METAR) were downloaded from NOAA National Climatic
Data Center (NCDC) database in the integrated surface data (ISD) format. Data from four stations were
used for verification, namely Abu Dhabi (OMAA, 54.65 E, 24.43 N), Dubai (OMDB, 55.33 E, 25.25 N)
Al Ain (OMAL, 55.60 E, 24.25 N), and Al Maktoum (OMDW, 55.17 E, 24.90 N). These four stations
have the highest frequency of fog events in the UAE [16]. Hourly and special reports (sub hourly)
were used to identify fog events based on the weather description codes that indicate fog and where
visibility was below 1000 m.

2.2.3. ERA5 Data

Land surface temperature from ERA5 data was used in the process of low cloud removal. ERA5 is
a global atmospheric reanalysis product which is available from 1979 until the present [24,25]. Data is
available hourly and at a resolution of 30 km. The data is the result of an ensemble of models, combined
with observations. The land surface temperature field was downloaded from the Copernicus Climate
Data Store for the months of interest [24].

2.3. Fog/Low Clouds Detection

We test a threshold-based method for detecting fog/low cloud from SEVIRI data. The method uses
pseudo-emissivity (ems(3.9)), as described by Calvert and Pavolonis [11,12], to detect fog and low cloud.
It uses adaptive threshold values that are determined on a pixel basis and vary monthly. The threshold
was determined dynamically by modifying the method described by Cermak and Bendix [6]. In this
method, the frequency distribution of pseudo-emissivity is calculated on a pixel basis. A threshold
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value along the distribution indicates a change in frequency, which represents a change in sky conditions.
The assumption is that this threshold separates clear sky from fog cases. The threshold-based method
in [6] was applied to the entire scene without accounting for potential spatial and temporal variabilities
of the determined thresholds. In the present study, the threshold-based method is applied on a pixel
basis while accounting for the monthly variability.

Our hypothesis is that the distribution should change in space, and thus a single threshold value
across space will result in biases. A histogram of ems(3.9) was calculated per month for each pixel
using a bin size of 0.032 and ranging from 0.4 to 1.072.

Pseudo-emissivity was calculated using equation (1) [11].

ems(3.9) =
RObs(3.9)

B(3.9, BT(10.8))
, (1)

where RObs is the radiance at 3.9 µm observed in the satellite data, BT is the brightness temperature at
10.8 µm, and B is the Planck function defined in equation (2) [26].

B(v, t) =
C1v3

eC2/v − 1
, (2)

where B(ν,t) is the blackbody radiance (mW/m2-sr-cm−1), C1 = 1.19104 × 10−5 (mW/m2-sr-cm−4),
C2 = 1.43877 × 10 (K cm),ν= wavenumber (cm−1),λ= wavelength (µm), and t = blackbody temperature (K).

Nighttime hours from 20:00 to 06:00 h local time were included in the sample size. The threshold
value was determined from the first two values after the maximum count in the histogram, depending
on which had the largest decrease in counts compared to the adjacent bin. In other words, if;

(count(indexmax)-(count(indexmax-1)) > (count(indexmax-1)-count(indexmax-2));
then

ems[index(countmax)-1] (line 1 in Figure 2);
else

ems[index(countmax)-2] (line 2 in Figure 2).

Figure 2. Schematic indicating how the threshold value was selected based on the histogram of
pseudo-emissivity at each pixel.

A further condition was activated if ems[index(countmax)-2] was selected, where half the bin size,
0.016 was added to the pseudo-emissivity value. A schematic of this approach is presented in Figure 2.
This approach is dynamic and returns varying threshold spatially, which should result in increased
verification scores.
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The determination of the threshold described above is conducted by running an optimization
process on the satellite data over the selected test sites. In this process, a range of threshold values
for our verification sites is applied to obtain the first guess of the thresholds that should provide the
best POD and FAR (described in Section 2.5) when compared to observed fog cases. Furthermore,
the sensitivity of the obtained thresholds to the bin size was accounted for. Calvert and Pavolonis [11]
proposed a bin size of 0.02. In this study, we found that the larger bin size of 0.032 along with the
method for finding the threshold performed best for our region.

2.4. Low Cloud Detection

In the final analysis, fog and low cloud were distinguished from each other using a temperature
difference method. This method makes use of an observed or proxy surface temperature value and the
brightness temperature of the 10.8 channel. Similar approaches have been described by Ellrod [27] and
Calvert and Pavolonis [11]. The theory here is that the window channel (10.8) is an approximation
of land surface temperature for non-cloudy scenes, and cloud top temperature for cloudy scenes.
When scenes are cloud free the temperature should be close to each other and when scenes contain
cloud they should be further apart. ERA5 data was used in place of land surface temperature (LST)
observations and 10.8 µm as the satellite brightness temperature (BT). Low cloud was defined when BT
(10.8)-ERA5(LST) < −4 K. The threshold values were compared to fog cases and found to be suitable
for our region. This threshold should be region-specific. An overview of the methodology is provided
in Figure 3.

Figure 3. Overview of the Spinning-Enhanced Visible and Infrared Imager (SEVIRI) fog detection
methodology. Gray boxes represent data layers and white boxes represent data processing. The numbers
on the arrows represent the path on the first and second iteration, respectively. This method was
applied per pixel and over a one-month period for each month in the study period.

2.5. Verification

An assessment period of ten months, from December 2016 to March 2017 and October 2017 to
March 2018, was used to determine the thresholds using a combination of collocated satellite and
METAR records. This period is representative of two fog seasons. The satellite product was assessed
over a 6-hour window from 00:00 to 06:00 h local time over the 10 month period. A hit is recorded when
fog occurs in the METAR in any of the six hours and in the airport pixel from SEVIRI for any of the six
hours (Table 1). This window was chosen as it was the period that fog was most active and it avoided
sunlight hour events (solar zenith angle was greater than 90 at all verification points). Hourly matches
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were avoided as there was frequent contamination from higher thin cloud which affected the overall
statistics. The aim was to assess daily fog frequency and not to assess hourly performance.

Table 1. Contingency table.

METAR Fog Yes METAR Fog NO

SEVIRI fog yes Hits False Alarms
SEVIRI fog no Misses Correct Negative

The probability of detection (POD), which is sometimes called hit rate, was calculated as follows:

POD =
Total hits

Total hits + total misses
, (3)

where 1 is a perfect score. A score of 0.8 can be interpreted as 8 out of 10 observations are correctly
identified. The false alarm ratio was calculated as follows:

FAR =
Total f alse alarms

Total hits + total f alse alarms
, (4)

where 0 is a perfect score as it would indicate no false alarms and the theoretical maximum is 1 (all
events were false alarms). A score of 0.4 can be interpreted as 4 out of 10 identified events were
false alarms.

3. Results and Discussion

3.1. Histograms

A comparison between the optimal threshold and the calculated threshold at Abu Dhabi for
January 2018 is shown in Figure 4. The optimal threshold was calculated as 0.80 (POD = 1, FAR = 0.2),
while the calculated threshold was 0.82 (POD = 1, FAR = 0.33). Other months and sites (not shown)
provided similar results. The similarity between the optimal and calculated thresholds demonstrate
that the method used to determine the threshold value is suitable.
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Figure 4. (a) Example of calculated optimal threshold at Abu Dhabi (OMAA) for January 2018. Here
the optimal threshold is 0.80 (POD = 1, FAR = 0.2). (b) The calculated threshold was 0.82.

Initially our threshold value was indexmax-1. After the optimization, the thresholds were revised
to allow lower values in some cases, which led to the inclusion of indexmax-2 (i.e., line 1 and 2 in
Figure 2).
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The ems(3.9) histogram shows a large spread in threshold values, which is due to the monthly
variability of the calculated ems(3.9) values (Figure 5). Calvert and Pavolonis [11] found the optimal
threshold to be 0.7. However, our results range from 0.78 to 0.85.
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Figure 5. Histogram of ems(3.9) at (a) Abu Dhabi (OMAA) (b) Dubai (OMDB), (c) Al Ain (OMAL)
and (d) Al Maktoum (OMDW). Monthly threshold values are indicated by closed circles on the
pseudo-emissivity plots. Placement on the y-axis is arbitrary for these dots in order to avoid concealment
from overlap.

The threshold used by Calvert and Pavolonis [11] is intended for the ABI instrument on GOES-R.
This instrument has a narrower bandwidth for the 3.9 µm channel of 0.2 µm compared to the SEVIRI
instrument which has a bandwidth of 0.88 µm for the 3.9 µm channel [28]. SEVIRI also has a broader
bandwidth for the 10.8 µm channel. This will result in different pseudo-emissivity values and alone
may be the reason for the difference in threshold values.

However, three additional possibilities for this discrepancy are proposed. The first is that we use
a dynamic threshold, both spatially and temporally. Our thresholds vary between sites and across the
desert, which may suggest that a static threshold value may not be appropriate for the study case.

The second is a simple trade off. If we went with a more conservative threshold of 0.7, we would
miss some events and decrease the POD score. In our approach we have tried to capture all possible
events that were not affected by cloud cover. As such, the determined thresholds are more inclusive
and may produce more false alarms. However, the third reason is that the study region is mostly
homogenous in comparison to the study area in [11].

The study region in this paper is homogenous in many ways; the land cover is mostly desert,
the terrain where fog forms is mostly flat/not complex, and the cloud phase is mostly warm and occurs
in one season—winter. In comparison [11], study sites cover much more diverse characteristics over a
larger area. As such our thresholds may be optimal for our region. Cermak [8] reported similarly in
their study, that thresholds determined for Namibia may not be transferable to other regions. However,
here we would like to highlight that our method in determining the threshold value is adaptive and
has the potential to be transferred to other regions.
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3.2. Monthly Threshold Maps: ems(3.9)

Monthly threshold maps produce similar spatial patterns of threshold values, with higher
thresholds along the coast and lower thresholds further south at the start of the Empty Quarter (area of
Saudi Arabia directly South of the UAE) (Figure 6). This suggests that the method accounts for the
underlying spatial variation of emissivity from the desert [29], and that a spatially dynamic threshold
is required for fog detection. The method shows gradual changes in spatial distribution from month to
month, supporting that monthly threshold values should be used when identifying fog and low cloud.
The ems(3.9) threshold shows a smooth transition from one threshold to the next along a gradient (i.e.,
there is no obvious inter pixel noise). This could be due to the choice of bin size in the histogram and
the optimization approaches mentioned in the methodology section.

Figure 6. Spatial distribution of monthly threshold value of ems(3.9) from (a–d) December 2016 to
March 2017 and (e–j) October 2017 to March 2018.
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An example of the ems(3.9)-low cloud classification is shown in Figure 7 for an event at 03:00 h local
time on 15 January 2018. This case is compared to the false color composite of the night microphysical
product from EUMETSAT [30]. In this product, red is the difference between 12.0 and 10.8 µm channels
(linear stretch −4 to 2 K), green is the difference between 10.8 and 3.9 µm channels (linear stretch
0 to 10 K) and blue is the 10.8 µm channel (linear stretch 243 to 293 K). This event is interesting as
the fog patch extends across the threshold gradient from north to south, and yet is captured by the
classification. This is true for many more cases (see Figures S1–S6 in the supplementary material)
which corroborate that the reliability of the threshold value method is correct and should not create
any spatial bias in determining fog frequency.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 

 

 
(a) (b) 

Figure 7. a) Example of ems(3.9)-low cloud fog classification in comparison with b) the EUMETSAT 
night microphysical product [30] for 2018-01-15 0300 local time. 

3.3. Assessment Over Two Fog Seasons 

Here, we present the statistical verification of the ems(3.9) method over two fog seasons where 
32 fog days were observed at Abu Dhabi, 12 at Dubai, 24 at Al Ain, and 30 at Al Maktoum. The first 
season is December 2016 to March 2017 and the second is October 2017 to March 2018, comprising 
303 days in total.  

The POD (FAR) was 0.81 (0.40), 0.83 (0.50), 0.83 (0.33), and 0.77 (0.44) at Abu Dhabi, Dubai, Al 
Ain, and Al Maktoum, respectively (Table 2). In all cases the total false alarms exceeded the total 
missed events, which means there is a positive bias in the fog classification. These biases were 34%, 
66%, 25%, and 36% for Abu Dhabi, Dubai, Al Ain, and Al Maktoum, respectively. Of the six missed 
events at Abu Dhabi, three were affected by overhead cloud, two were events that occurred at 06:00 h 
local time (detection has a negative bias at 06:00 h), and one was due to the thick fog being thrown 
out as low cloud. Of the 10 missed events at Dubai, at least two were actual fog events (2016-12-27 
and 2017-12-25), but surprisingly the visibility reported in the METAR was greater than 1 km. An 
inspection of the hourly fog masks revealed that many of the false alarms occurred when Dubai 
airport was on the edge of the fog event. The detection in these cases was larger than the actual event, 
which may be due to haze and mist at the edge of the fog being included in the classification. Thus, 
we suspect that the classification is including haze and mist in some cases. Similar cases of fog edge 
were identified for false alarms at Al Ain, although the performance at Al Ain was the best of the 
verification sites. 

We acknowledge that further analysis, such as edge detection, can be applied to filter the false 
alarms and, therefore, improve the statistics which could be addressed in a future work. Other studies 
of nighttime fog detection have achieved lower FAR values after applying additional filters following 
the initial fog detection process [5,9,11,27]. Over Europe, Cermak, and Bendix [5] achieved POD 
(FAR) of 0.47 (0.17) using the BTD method on Meteosat SEVIRI. The low POD (below 0.5) is assigned 
to uncertainty in the observations by the authors. However, an important aspect in their study is that 
they account for the broader bandwidth of the 3.9µm channel in SEVIRI which overlaps with CO2 
absorption. This is possibly more important for scenes over Europe which have a lower viewing 
angle, but we note that we have not applied any such correction for our scene, which covers a much 
smaller area (i.e. CO2 absorption is more consistent across the scene). Application of the BTD method 
over desert regions and using GOES-R ABI produced POD (FAR) of 0.73 (0.14) [27]. Calvert and 
Pavolonis [11] applied the pseudo-emissivity method over the eastern United States (i.e., not desert) 
and reported POD (FAR) of 0.70 (0.15). The results from the last two studies suggest that the narrower 
bands on the GOES-R may allow for more distinct clustering of the histogram. Andersen and Cermak 
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3.3. Assessment Over Two Fog Seasons

Here, we present the statistical verification of the ems(3.9) method over two fog seasons where
32 fog days were observed at Abu Dhabi, 12 at Dubai, 24 at Al Ain, and 30 at Al Maktoum. The first
season is December 2016 to March 2017 and the second is October 2017 to March 2018, comprising
303 days in total.

The POD (FAR) was 0.81 (0.40), 0.83 (0.50), 0.83 (0.33), and 0.77 (0.44) at Abu Dhabi, Dubai, Al Ain,
and Al Maktoum, respectively (Table 2). In all cases the total false alarms exceeded the total missed
events, which means there is a positive bias in the fog classification. These biases were 34%, 66%, 25%,
and 36% for Abu Dhabi, Dubai, Al Ain, and Al Maktoum, respectively. Of the six missed events at
Abu Dhabi, three were affected by overhead cloud, two were events that occurred at 06:00 h local
time (detection has a negative bias at 06:00 h), and one was due to the thick fog being thrown out as
low cloud. Of the 10 missed events at Dubai, at least two were actual fog events (27 December 2016
and 25 December 2017), but surprisingly the visibility reported in the METAR was greater than 1 km.
An inspection of the hourly fog masks revealed that many of the false alarms occurred when Dubai
airport was on the edge of the fog event. The detection in these cases was larger than the actual event,
which may be due to haze and mist at the edge of the fog being included in the classification. Thus,
we suspect that the classification is including haze and mist in some cases. Similar cases of fog edge
were identified for false alarms at Al Ain, although the performance at Al Ain was the best of the
verification sites.
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Table 2. Dec 2016–Mar 2018.

OMAA OMDB OMAL OMDW

Statistic ems(3.9)—Low
Cloud

ems(3.9)—Low
Cloud

ems(3.9)—Low
Cloud

ems(3.9)—Low
Cloud

Total Hits 26 10 20 23
Total Miss 6 2 4 7

Total False Alarms 17 10 10 18
POD 0.81 0.83 0.83 0.77
FAR 0.40 0.50 0.33 0.44

Bias score 1.34 1.66 1.25 1.36

We acknowledge that further analysis, such as edge detection, can be applied to filter the false
alarms and, therefore, improve the statistics which could be addressed in a future work. Other studies
of nighttime fog detection have achieved lower FAR values after applying additional filters following
the initial fog detection process [5,9,11,27]. Over Europe, Cermak, and Bendix [5] achieved POD (FAR)
of 0.47 (0.17) using the BTD method on Meteosat SEVIRI. The low POD (below 0.5) is assigned to
uncertainty in the observations by the authors. However, an important aspect in their study is that they
account for the broader bandwidth of the 3.9µm channel in SEVIRI which overlaps with CO2 absorption.
This is possibly more important for scenes over Europe which have a lower viewing angle, but we
note that we have not applied any such correction for our scene, which covers a much smaller area
(i.e., CO2 absorption is more consistent across the scene). Application of the BTD method over desert
regions and using GOES-R ABI produced POD (FAR) of 0.73 (0.14) [27]. Calvert and Pavolonis [11]
applied the pseudo-emissivity method over the eastern United States (i.e., not desert) and reported
POD (FAR) of 0.70 (0.15). The results from the last two studies suggest that the narrower bands on the
GOES-R may allow for more distinct clustering of the histogram. Andersen and Cermak [9] applied a
diurnal algorithm using SEVIRI over the Namib Desert and achieved POD (FAR) of 0.94 (0.12). In this
case fog and low stratus were included in the verification, as that region experiences a high percentage
of both cloud conditions. We have not included low cloud in our verification as the focus was on fog
events mostly which were verified using METAR surface visibility observations. These comparisons
confirm that the proposed methodology, despite its simplicity, produce a POD that is in the order of
those obtained previous studies and serve as a good basis for further processing to reduce the FAR.

3.4. Analysis of Fog Frequency

The highest fog frequency of 80 days occurs inland and parallel to the coast, before decreasing to
25 days further inland (Figure 8). This is due to the fog dynamics in the region, which requires moisture
transport from the gulf during the day and radiative cooling over the desert at night. The strip of land
along the coast does not cool down as quickly as the inland desert as it is moderated by the maritime
air. Thus, although it may have higher moisture content, dew point temperature is not reached as often.
The area of highest fog activity is where both criteria are met: moisture is available and the air cools
to dew point temperature. While further inland, fog is limited by moisture content. An interesting
result is the area east of Dubai, where a small fog patch is often observed in the hourly maps that
is disconnected from larger fog patches. This area is a strip of narrow land between the coast and
the Hajar Mountains and most likely has slightly different dynamics in fog formation than the larger,
inland fog patch.
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Figure 8. Fog frequency in days for ems(3.9)—low cloud over the 10 month period. Verification sites
are indicated by red circles.

The spatial distribution of fog days indicates that our verification sites occur outside the area of
maximum fog activity. This supports the earlier statement that the stations are often at the edge of fog
patches. The maximum value reported is 80 days of fog out of a maximum of 303 days in the sample.
This may be an overestimate of 25% to 35 %, in line with the Abu Dhabi and Al Ain results presented
in Table 2. However, this should not affect the spatial distribution, which would remain similar even if
the magnitude was adjusted (i.e., scaled down). Upon inspection of hourly fog masks, we found the
classification to be in line with the distributions seen here. To our knowledge, this is the first time the
spatial distribution of fog over the UAE has been presented and verified.

Information on fog, the timing of fog formation, and its distribution throughout the UAE could
be inferred from Figure 9. Two areas are visible as hot spots for fog formation, which are clearly
demonstrated in the 21:00 h (local time) panel in Figure 9. The first area is situated between the three
verification stations of Abu Dhabi, Dubai, and Al Ain (over the Sweihan desert) and the other is South
West of Abu Dhabi. These areas remain visible up until hour 02:00 h when they merge. Thus, fog onset
is much earlier in these hotspot areas.

The hourly maps do reveal a diurnal cycle that is in line with previously published results from the
METAR observations [14]. Fog frequency increases as night progresses, highlighting the dependence
on radiative cooling for fog formation. This is consistent with the obtained results especially those
related to the spatial pattern of fog frequency, which may suggest that the proposed algorithm for
determining the threshold does not require additional adjustment to account for diurnal variability,
which seems to be correctly captured in Figure 9. Fog is shown to peak at 05:00 h local time and then
decrease at 06:00 h. This is not in line with METAR observations which show that fog frequency is
highest at 06:00 h and 07:00 h [14]. Thus, we should expect 06:00 h to be higher, however, analysis
revealed a systematic bias at 06:00 h. Although we included 06:00 h in the sample as the solar zenith
angle was greater than 90 (below the horizon), it is possible that there is some reflection at the top of
the atmosphere, which increase the ems(3.9) value to increase above the threshold value. This is only
expected to occur in October and March.
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Figure 9. Hourly fog frequency from 20:00 h to 06:00 h local time.

4. Discussion

The following limitations have been identified in this study and are recommended for further
refinement in future studies. The negative bias at 06:00 h can most likely be corrected for by removing
the reflected component of the radiance in the satellite observations. This should be useful as 06:00 h is
still a nighttime hour and it will improve the verification and the diurnal cycle maps.
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The method for removing low cloud could be improved upon. While it appears to work for our
case, we identified potential issues, most notably that there is a diurnal cycle of the difference between
BT(10.8) and LST(ERA5). This makes sense for cloud cases, where there is a lag between surface cooling
and upper air cooling. As such, the constant threshold of −4 K used in this study may need to be
adjusted diurnally. In some cases, low cloud was classified when no cloud was present. This can be for
various reasons, like upper air dust or thin cloud [31], or a bias in the ERA5 data. However, these cases
did not coincide with fog detection, and did not degrade the performance of the fog classification.

Haze and mist were often included in the classification, either in the hours preceding fog onset or
at the edge of fog patches. These could potentially be reduced through a layer thickness approach
similar to Cermak (2012) [8], where they calculate cloud top height to determine cloud thickness.
The assumption here is that haze and mist may return lower cloud top heights than fully developed
fog, but this remains to be tested.

5. Conclusions

In this paper we present the assessment of the pseudo-emissivity method for nighttime fog
detection using the SEVIRI instrument from Meteosat-10. The method is similar to the one proposed for
the GOES-R ABI which is largely untested with SEVIRI data. In addition, we implement an adaptive
threshold method that allows the threshold to vary spatially and temporally. The spatial variation
reduces the number of false alarms in the fog classification. The study area was the United Arab
Emirates (UAE), a desert region on the Arabian Peninsula that experiences extensive fog during the
winter months. The method verified well, with POD (FAR) ranging from 0.77 to 0.83 (0.33 to 0.5).
We present the fog frequency for 10 months when fog is present over the UAE. This is the first time the
spatial distribution of fog has been presented seamlessly across the UAE using satellite data. Previous
studies relying on scarce station data did not capture the full spatial pattern of fog formation in the
country and its dynamics. The fog classification had a positive bias, ranging from 25% to 66 %, mostly
due to the inclusion of haze and mist in the classification. The hourly frequency is presented and is
in line with in situ measurements, indicating peak fog frequency at 05:00 h local time. The results
confirm that the pseudo-emissivity method is a reliable separator for fog detection in the UAE using
SEVIRI data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2281/s1,
Figure S1. Examples of hits at Abu Dhabi at 2016-12-07 0200 (a–d) and Al Ain at (c,d). Times in UTC. Figure S2.
Example of cloud effected fog days. The cloud in the RGB has a ems(3.9) above the threshold value and is not
captured in the fog mask. Times in UTC. Figure S3. Example of miss at Al Ain. Although this was a miss at one
location, the patch was still well represented and will, correctly, form part of the fog frequency map. Times in
UTC. Figure S4. Example of false alarms at Dubai (a,b) and Abu Dhabi (c,d). Although images a-b are false
alarms in the METAR, a fog patch is visible in the RGB adjacent to the airport. The patch is well represented and
considered correct in terms of the fog frequency. The image c,d has no fog in the RGB and is a total false alarm.
Times in UTC. Figure S5. Example of a false classification outside of airports. Although no fog was classified at
any of the airports, there is a general over estimate of fog in this scene in the interior. This may contribute to an
overestimation of fog frequency. Times in UTC. Figure S6. Examples of underestimation of fog at 06:00 h local
time (UTC+4). This is most likely due to reflection at the top of the atmosphere just before sunrise. Times in UTC.

Author Contributions: Conceptualization, methodology, validation, formal analysis, writing—original draft
preparation, M.W.; conceptualization, methodology, writing—review and editing, supervision, M.T. All authors
have read and agreed to the published version of the manuscript.

Funding: Funding from Etihad Airways to support the research with focus on fog formation in the UAE.

Acknowledgments: The authors acknowledge the assistance of Mohan Thota for converting data formats of the
satellite data.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2072-4292/12/14/2281/s1


Remote Sens. 2020, 12, 2281 14 of 15

References

1. Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.;
Gharabaghi, B.; et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019,
176, 1869–1921. [CrossRef]

2. Yousef, L.A.; Temimi, M.; Wehbe, Y.A. Total cloud cover climatology over the United Arab Emirates.
Atmos. Sci. Lett. 2019, 20, 1–10. [CrossRef]

3. Eyre, J.R.; Brownscombe, J.L.; Allam, R.J. Detection of fog at night using Advanced Very High Resolution
Radiometer (AVHRR) imagery. Meteorol. Mag. 1984, 113, 266–271.

4. Turner, J.; Allam, R.J.; Maine, D.R. A case-study of the detection of fog at night using channels 3 and 4 on the
Advanced Very High-Resolution Radiometer (AVHRR). Meteorol. Mag. 1986, 115, 285–290.

5. Cermak, J.; Bendix, J. Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data:
A feasibility study. Pure Appl. Geophys. 2007, 164, 1179–1192. [CrossRef]

6. Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 2008,
87, 279–292. [CrossRef]

7. Nilo, S.T.; Romano, F.; Cermak, J.; Cimini, D.; Ricciardelli, E.; Cersosimo, A. Fog detection based on
Meteosat Second Generation-Spinning enhanced visible and infrared imager high resolution visible channel.
Remote Sens. 2018, 10, 541. [CrossRef]

8. Cermak, J. Low clouds and fog along the South-Western African coast—Satellite-based retrieval and spatial
patterns. Atmos. Res. 2012, 116, 15–21. [CrossRef]

9. Andersen, H.; Cermak, J. First fully diurnal fog and low cloud satellite detection reveals life cycle in the
Namib. Atmos. Meas. Tech. 2018, 11, 5461–5470. [CrossRef]

10. Egli, S.; Thies, B.; Bendix, J. A hybrid approach for fog retrieval based on a combination of satellite and
ground truth data. Remote Sens. 2018, 10, 628. [CrossRef]

11. Calvert, C.; Pavolonis, M. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for
Low Cloud and Fog; University of Wisconsin-Madison Space Science and Engineering Center: Madison, WI,
USA, 2010.

12. Pavolonis, M.J.; Heidinger, A.K. Advancements in identifying cirrus and multilayered cloud systems from
operational satellite imagers at night. Appl. Weather Satell. II 2005, 5658, 225. [CrossRef]

13. Ouarda, T.B.M.J.; Charron, C.A. Evolution of the rainfall regime in the united arab emirates. J. Hydrol. 2014,
514, 258–270. [CrossRef]

14. De Villiers, M.; Van Heerden, J. Fog at Abu Dhabi international airport. Weather 2007, 62, 209–214. [CrossRef]
15. TS, M.; Temimi, M.; Ajayamohan, R.S.; Fonseca, R.; Weston, M.; Valappil, V. On the investigation of the

typology of fog events in an arid environment and the link with climate patterns. Mon. Weather Rev. 2020.
[CrossRef]

16. Aldababseh, A.; Temimi, M. Analysis of the long-term variability of poor visibility events in the UAE and
the link with climate dynamics. Atmosphere 2017, 8, 242. [CrossRef]

17. Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappil, V.K.; Aldababesh, A.;
Lyapustin, A.; Chaouch, N.; Hammadi, F.A.; et al. Analysis of a severe dust storm and its impact on air
quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos.
Health 2019, 1–18. [CrossRef]

18. Elhakeem, A.; Elshorbagy, W.; Bleninger, T. Long-term hydrodynamic modeling of the Arabian Gulf.
Mar. Pollut. Bull. 2015, 94, 19–36. [CrossRef]

19. Sheppard, C.; Al-Husiani, M.; Al-Jamali, F.; Al-Yamani, F.; Baldwin, R.; Bishop, J.; Benzoni, F.; Dutrieux, E.;
Dulvy, N.K.; Durvasula, S.R.V.; et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 2010, 60, 13–38.
[CrossRef]

20. Bartok, J.; Bott, A.; Gera, M. Fog Prediction for Road Traffic Safety in a Coastal Desert Region: Improvement of
Nowcasting Skills by the Machine-Learning Approach. Bound.-Layer Meteorol. 2012, 157, 501–516. [CrossRef]

21. Weston, M.; Chaouch, N.; Valappil, V.; Temimi, M.; Ek, M.; Zheng, W. Assessment of the Sensitivity to the
Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region.
Pure Appl. Geophys. 2018. [CrossRef]

http://dx.doi.org/10.1007/s00024-019-02168-6
http://dx.doi.org/10.1002/asl.883
http://dx.doi.org/10.1007/s00024-007-0213-8
http://dx.doi.org/10.1016/j.atmosres.2007.11.009
http://dx.doi.org/10.3390/rs10040541
http://dx.doi.org/10.1016/j.atmosres.2011.02.012
http://dx.doi.org/10.5194/amt-11-5461-2018
http://dx.doi.org/10.3390/rs10040628
http://dx.doi.org/10.1117/12.577640
http://dx.doi.org/10.1016/j.jhydrol.2014.04.032
http://dx.doi.org/10.1002/wea.45
http://dx.doi.org/10.1175/mwr-d-20-0073.1
http://dx.doi.org/10.3390/atmos8120242
http://dx.doi.org/10.1007/s11869-019-00674-z
http://dx.doi.org/10.1016/j.marpolbul.2015.03.020
http://dx.doi.org/10.1016/j.marpolbul.2009.10.017
http://dx.doi.org/10.1007/s10546-015-0069-x
http://dx.doi.org/10.1007/s00024-018-1901-2


Remote Sens. 2020, 12, 2281 15 of 15

22. Temimi, M.; Fonseca, R.M.; Nelli, N.R.; Valappil, V.K.; Weston, M.J.; Thota, M.S.; Wehbe, Y.; Yousef, L. On the
analysis of ground-based microwave radiometer data during fog conditions. Atmos. Res. 2020, 231, 104652.
[CrossRef]

23. Chaouch, N.; Temimi, M.; Weston, M.; Ghedira, H. Sensitivity of the meteorological model WRF-ARW to
planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos. Res. 2016, 187,
106–127. [CrossRef]

24. Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of
the Global Climate, Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online:
https://climate.copernicus.eu/climate-data-store (accessed on 4 May 2018).

25. Hersbach, H.; Bell, B.; Berrisford, P.; Hornyi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.;
Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 17–24. [CrossRef]

26. Cao, C.; Shao, X. Planck Function. Available online: https://ncc.nesdis.noaa.gov/data/planck.html (accessed
on 26 September 2019).

27. Ellrod, G.P. Estimation of low cloud base heights at night from satellite infrared and surface temperature
data. Natl. Weather Dig. 2002, 26, 39–44.

28. Dammann, K.; Mueller, J.; Hanson, C.; Gartner, V.; Flewin, J.; Williams, M. MSG level 1.5 image data format
description. EumetsatDarmstadtTech 2005, 3, 1–129.

29. Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset
(ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976.
[CrossRef]

30. EUMETSAT. Best Practices for RGB Compositing of Multi-Spectral Imagery; User Service Division, EUMETSAT:
Darmstadt, Germany, 2009; p. 8.

31. Weston, M.J.; Temimi, M.; Nelli, N.R.; Fonseca, R.M. On the Analysis of the Low-Level Double Temperature
Inversion Over the United Arab Emirates : A Case Study During April 2019. IEEE Geosci. Remote Sens. Lett.
2020. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.atmosres.2019.104652
http://dx.doi.org/10.1016/j.atmosres.2016.12.009
https://climate.copernicus.eu/climate-data-store
http://dx.doi.org/10.21957/vf291hehd7
https://ncc.nesdis.noaa.gov/data/planck.html
http://dx.doi.org/10.1002/2015GL065564
http://dx.doi.org/10.1109/LGRS.2020.2972597
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets 
	SEVIRI Data 
	METAR Data 
	ERA5 Data 

	Fog/Low Clouds Detection 
	Low Cloud Detection 
	Verification 

	Results and Discussion 
	Histograms 
	Monthly Threshold Maps: ems(3.9) 
	Assessment Over Two Fog Seasons 
	Analysis of Fog Frequency 

	Discussion 
	Conclusions 
	References

