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Abstract: Pine Wilt Disease is one of the most destructive pests affecting coniferous forests. After being
infected by the harmful Bursaphelenchus xylophilus nematode, most trees die within one year.
The complex spreading pattern of the disease and the tedious hard labor process of diagnosis
involving field wood sampling followed by laboratory analysis call for alternative methods to detect
and manage the infected areas. Remote sensing comes naturally into play owing to the possibility
of covering relatively large areas and the ability to discriminate healthy from sick trees based on
spectral characteristics. This paper presents the development of machine learning classification
algorithms for the detection of Pine Wilt Disease in Pinus pinaster, performed in the framework of
the European Commission’s Horizon 2020 project “Operational Forest Monitoring using Copernicus
and UAV Hyperspectral Data” (FOCUS) in two provinces of central Portugal. Five flight campaigns
have been carried out in two consecutive years in order to capture a multitemporal variation of
disease distribution. Classification algorithms based on a Random Forest approach were separately
designed for the acquired very-high-resolution multispectral and hyperspectral data, respectively.
Both algorithms achieved overall accuracies higher than 0.91 in test data. Furthermore, our study
shows that the early detection of decaying trees is feasible, even before symptoms are visible in
the field.

Keywords: Pine Wilt Disease; remote sensing; machine learning; classification; multispectral;
hyperspectral; early detection; remotely piloted aircraft systems

1. Introduction

Biotic agents are a significant threat to the sustainability of forest ecosystems worldwide, all the
more so as global trade facilitates their spread beyond original ranges. Pine Wilt Disease (PWD),
caused by the pinewood nematode (Bursaphelenchus xylophilus) offers such an example. Native to
North America, it spread first to Japan in 1905 [1] and later to other Asian countries including China
(1982) and Korea (1988).

Unlike what is observed in North America, where host trees are relatively tolerant, widespread
damage to trees in the affected countries was reported. Despite intense efforts made by the Japanese
government to limit the economic impact of the disease, it is estimated that Japanese forests lost more
than 46 million cubic meters of trees over the last 50 years [2].

In 1999, PWD was first detected in Europe [3], triggering a complex and ongoing containment
effort, which slowed but did not stop the expansion of PWD in Portugal. Authors in [4] concluded that
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temperature plays a crucial role in the development of the PWD: the mean air temperatures should be
higher than 20 ◦C for long periods in order to observe a strong effect of the disease throughout the forest.
Thus, PWD originates from the presence and interaction of the harmful nematode, beetle vector and
favorable environmental conditions. Given the continuous increase of average temperatures around
the Earth in the recent years, it can be deduced that more and more areas on Earth are prone to become
welcoming ranges for PWD, thus the threat posed by the disease is steadily increasing. In [5], it is
shown that the Mediterranean areas might be an especially vulnerable region to global climate change,
while in [6] the authors estimate that the mean temperature increase in Portugal occurred at a rate of
0.52 ◦C decade−1 between 1976 and 2006. This trend in increasing temperatures continues to date, as
revealed by multisource observations such as the ERA5 dataset freely accessible through the European
Union’s Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [7]. For example, the
number of air temperature anomalies relative to the 1980–2010 average plotted in Figure 1 shows that
hot temperature anomalies (in red) are also increasingly dominant over cold temperature anomalies
(blue) in Portugal in the last decade.

Remote Sens. 2019, 11, x FOR PEER REVIEW 2 of 23 

 

average temperatures around the Earth in the recent years, it can be deduced that more and more 
areas on Earth are prone to become welcoming ranges for PWD, thus the threat posed by the disease 
is steadily increasing. In [5], it is shown that the Mediterranean areas might be an especially 
vulnerable region to global climate change, while in [6] the authors estimate that the mean 
temperature increase in Portugal occurred at a rate of 0.52°C decade-1 between 1976 and 2006. This 
trend in increasing temperatures continues to date, as revealed by multisource observations such as 
the ERA5 dataset freely accessible through the European Union’s Copernicus Climate Change Service 
(C3S) Climate Data Store (CDS) [7]. For example, the number of air temperature anomalies relative 
to the 1980–2010 average plotted in Figure 1 shows that hot temperature anomalies (in red) are also 
increasingly dominant over cold temperature anomalies (blue) in Portugal in the last decade. 

 
Figure 1. Portugal surface air temperature anomalies relative to the 1981–2010 average, from January 
1979 to February 2020. The graph shows the running 12-month average anomalies (red = high 
temperature anomaly; blue = low temperature anomaly). 

In Portugal, the favorable conditions for the PWD are thus easily met: the climate is relatively 
warm across the whole year, plenty of Monochamus galloprovincialis beetles (insect vector for PWD) 
roam over large pine forests and, moreover, the country is strongly connected with the worldwide 
maritime trade routes via the commercial ports on the Atlantic coast. The disease was first confirmed 
in the Setúbal Peninsula in 1999 [3], where the nematode was presumably introduced by 
internationally transported goods, which triggered an alarm not only in Portugal, but at European 
level. 

Despite quarantine measures established around the first affected areas, the disease could not 
be stopped from spreading in other parts of the country. Human activities are an important factor 
among those stimulating this spread. As a consequence of infected wood transportation, infected 
trees were also found in Spain in 2008 [8,9]. 

Since the B. xylophilus nematode, carried by the Monochamous beetle, was identified as the cause 
of PWD, consistent research was carried to better describe the dispersal patterns of the disease, the 
nematode itself (e.g., taxonomy, genetic structure, embryology and morphobiometry of the 
nematode), the transmission vector (e.g., biology, ecology, life cycle and development stages of the 
beetle), the nematode–vector–host interactions, the mechanisms of wilting, triggered by the disease, 
the management of the disease (e.g., breeding resistant trees, control of insect populations, chemical 
methods, biological methods), among others. For a detailed coverage of these topics, the reader is 
referred to [10,11] and the references therein. 

One critical goal in the management of the PWD is to identify and remove affected trees from 
site before the disease spreads to other (healthy) trees by the vector insect. Trees with visible 
symptoms can be identified by a human observer due to specific symptoms such as discoloration and 
defoliation. However, the symptoms of the disease usually appear first on top branches, which are 
harder to observe from the ground. The presence of the nematode can be confirmed by laboratory 
analysis after collecting woody samples from trees. In practice, it is impossible to collect samples from 
all trees, which leads to the necessity of identifying infected ones from a distance over relatively large 
areas. Therefore, remote sensing comes naturally into play as a viable alternative to complete this 
important management task. 
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In Portugal, the favorable conditions for the PWD are thus easily met: the climate is relatively
warm across the whole year, plenty of Monochamus galloprovincialis beetles (insect vector for PWD)
roam over large pine forests and, moreover, the country is strongly connected with the worldwide
maritime trade routes via the commercial ports on the Atlantic coast. The disease was first confirmed in
the Setúbal Peninsula in 1999 [3], where the nematode was presumably introduced by internationally
transported goods, which triggered an alarm not only in Portugal, but at European level.

Despite quarantine measures established around the first affected areas, the disease could not be
stopped from spreading in other parts of the country. Human activities are an important factor among
those stimulating this spread. As a consequence of infected wood transportation, infected trees were
also found in Spain in 2008 [8,9].

Since the B. xylophilus nematode, carried by the Monochamous beetle, was identified as the cause
of PWD, consistent research was carried to better describe the dispersal patterns of the disease, the
nematode itself (e.g., taxonomy, genetic structure, embryology and morphobiometry of the nematode),
the transmission vector (e.g., biology, ecology, life cycle and development stages of the beetle),
the nematode–vector–host interactions, the mechanisms of wilting, triggered by the disease, the
management of the disease (e.g., breeding resistant trees, control of insect populations, chemical
methods, biological methods), among others. For a detailed coverage of these topics, the reader is
referred to [10,11] and the references therein.

One critical goal in the management of the PWD is to identify and remove affected trees from site
before the disease spreads to other (healthy) trees by the vector insect. Trees with visible symptoms
can be identified by a human observer due to specific symptoms such as discoloration and defoliation.
However, the symptoms of the disease usually appear first on top branches, which are harder to
observe from the ground. The presence of the nematode can be confirmed by laboratory analysis after
collecting woody samples from trees. In practice, it is impossible to collect samples from all trees,
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which leads to the necessity of identifying infected ones from a distance over relatively large areas.
Therefore, remote sensing comes naturally into play as a viable alternative to complete this important
management task.

Coniferous trees infected with B. xylophilus generally display a set of nonspecific symptoms,
which are caused by the disruption of the host’s vascular system. The symptoms include discoloration
(yellow to brown) and wilting of needles as well as a reduction of resin exudation, onsetting usually
from late summer to late autumn [11]. The changes observed in key physiologic variables in infected
trees, including the significant drop in the concentration of pigments, translate into a rapid change
of the reflective spectrum in the visible and near infrared range. The nonspecific set of symptoms,
as observed with the naked-eye, can be classified according to somewhat subjective discoloration or
defoliation levels, as in [12]. Ideally, remote sensing sensors should be able to provide objective and
reproducible decline metrics. Furthermore, the absence of PWD-specific symptoms impedes a field
confirmation of infection by this biotic agent. Instead, laboratorial analyses are required, adding to the
costs and complexity of surveying actions.

Various approaches devoted to the identification and management of the PWD are available in the
literature. In [13], the authors classify the dispersal patterns of the PWD into four categories: jumping,
unidirectional direction, multidirectional extension and static (no dispersal), while a correlation
between the human population density and the annual dispersal distance is revealed. The authors
in [14] also note that approximately 80% of the damaged trees detected in one year are found within a
distance of 60 m from dead trees in the previous year. However, the traveling distances of the insect
vector can be in the order of hundreds or even thousands of meters. Several works also investigate
the PWD detection from a remote sensing perspective, via spectral measurements, although their
number is still limited. A ground-based hyperspectral camera was employed in [15] to detect PWD
symptoms from the spectral signatures of the observed pixels. After analyzing four spectral indices,
it is reported that the measured reflectance at the wavelength of 668 nm is the most useful indicator
in separating the diseased trees from the healthy trees. In [16], the authors note that the spectral
evolution of the diseased trees from a temporal point of view is reflected by important changes of
the measured reflectance in the red and SWIR (short-wave infrared) spectral regions. The ability of
multispectral cameras to detect stress symptoms in coniferous trees is investigated in [17], where the
authors induce an artificial stress to several trees by inoculating them with herbicide. Although this
approach simulates a generic disease outbreak and does not specifically treat the PWD problem, it
proves that the stressed trees can be identified by spectral approaches, particularly in the red-edge
region of the spectrum. An experiment involving controlled PWD inoculation in healthy trees is
presented in [18]. Subsequently, a field spectrometer was used to measure the spectral characteristics of
the monitored trees along a pre-defined period of time and 11 discriminative indices were computed for
all measured points, from which the most discriminative ones are highlighted. The authors also show
that the evolution of the disease over time is clearly noticeable in the spectral region 550–670 nm of the
observed spectra. In [19], the ability of a large set of spectral indices to distinguish between healthy
and decaying pine trees was tested for aerial and satellite imagery, in a buffer area established by the
Spanish authorities in the region of Extremadura, near the border with Portugal. Most of those indices
were found to be informative due to the statistically significant differences found between the sets of
healthy and infected trees. The thermal imagery can also be useful in PWD detection, but it should be
used during hot summer days in order to be relevant, as previously observed for other tree species
affected by pests (e.g., date palm red weevil [20,21]). The authors identify five highly informative
wavelengths among the considered ones, propose the use of high spatial resolution imagery for the
analysis at tree level, jointly with recommendations related to minimum data quality and identify
strategies for the mitigation of high costs in an operational setup, among others, all these contributions
transforming their work in one of the most valuable manuscripts in the area of PWD monitoring.

Our work combines the individual advantages of previous works in various aspects, jointly with an
extension of the tested sets of indices and new classification algorithms. Understanding the distribution
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of PWD using practical methods capable of depicting the situation in multiple scales and even in
remote locations, is critical to develop innovative distribution models to assist the implementation
of control strategies. Similarly to [17–19], the goal of our approach is to detect infected trees based
on remote sensing approaches. We propose the use of two distinct (multi/hyperspectral) cameras in
a temporal experiment covering two consecutive years (2018 and 2019) in order to investigate the
possibility of detecting infected trees at a very early stage of the disease and to capture the temporal
evolution of the affected areas. The set of investigated spectral indices is enlarged in comparison to the
ones from previous studies and we propose new per-pixel classification algorithms, based on Random
Forest approaches, for the detection of infected trees.

In summary, our work explores a variety of scientific directions in order to respond to two fundamental
questions: (i) How accurate are the PWD maps derived from very-high-resolution spectral data acquired
from remotely piloted aircraft systems (RPAS)? (ii) Is the early detection of PWD feasible? In order to find
answers to these questions, our study brought together several strengths in PWD research that can be
summarized as follows: (i) the selected test areas were located in central Portugal, a region where the
presence of the PWD was confirmed; (ii) one multispectral camera and one hyperspectral camera, jointly
with an RGB camera, were deployed in the area, carried by RPAS; (iii) five data acquisition campaigns
were carried out in 2018 and 2019; (iv) the informative metrics were selected from larger sets of spectral
indices than in any previous study; (v) classification algorithms were separately built for the multispectral
and hyperspectral data, respectively; (vi) a new set of informative wavelengths was derived; (vii) the
feasibility of early detection was investigated; and (viii) the potential to capture the temporal evolution of
the disease by spectral cameras mounted on RPAS was analyzed.

2. Materials and Methods

2.1. Data Preparation

Five test areas, located in central Portugal and accounting for a total area of approximately 23 ha,
were chosen for the study, as illustrated in Figure 2: two sites near the town of Condeixa-a-Nova
(Coimbra district) and three sites near the town of Sertã (Castelo Branco district). PWD is confirmed to
be present in these areas [11].
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Five flight campaigns were organized along two years: June 2018, October 2018, June 2019,
September 2019 and October 2019. After the first campaign, one site near Condeixa-a-Nova (lower left
RGB image in Figure 2) was discarded as it was devastated on October 13, 2019, by post-tropical storm
Leslie, the strongest cyclone to hit the Iberian Peninsula since 1842.

The measurements were scheduled in early summer and mid-autumn due to the temporal flight
pattern of Monochamus galloprovincialis. The flight season of the insect starts in May each year and
lasts until late summer or early autumn, with some interannual variability [22]. Thus, the moments
of the flights correspond to the early infection stage (June), when PWD symptoms in the field are
extremely scarce apart from dead trees infected the previous year, and fully symptomatic infection,
where symptoms at different stages can be observed (October). The flight campaign in September 2019
was interposed in order to check the ability of classification methods to capture variations in the field
on relatively short periods of time (i.e., one month).

Two spectral cameras with distinct characteristics were used to acquire imagery over the test
sites. Both cameras were mounted on RPAS operated by certified pilots from the Flemish Institute
for Technological Research (VITO). During all flights, spectral targets (grey and green colors) were
placed in the field of view of the sensors for calibration purposes. Concurrent with the data acquisition,
spectral measurements were performed in the test areas using ASD FieldSpec4 spectrometers (https:
//www.malvernpanalytical.com/en/products/product-range/asd-range) to allow for subsequent data
quality assessment. Geometric targets were also deployed in the field and their positions, measured
with high-accuracy GPS devices, were used in the preprocessing of the data as ground control points for
improved georeferencing. The raw data, jointly with all auxiliary data, were processed by VITO experts
up to reflectance products which constitute the input for training in the classification algorithms.

The first system used in the experiments is the multispectral camera MicaSense Red-Edge M
(https://www.micasense.com/), benefitting from five spectral bands centered at 475 nm (blue), 560 nm
(green), 668 nm (red), 717 nm (red-edge) and 840 nm (near-infrared) and having bandwidths (FWHM)
of 20 nm, 20 nm, 10 nm, 10 nm, 40 nm, respectively. The MicaSense wavelengths are listed among the
most informative ones for PWD detection in [15,19]. Four of its spectral bands (bands 1, 2, 3 and 5)
largely overlap with Sentinel-2 bands (bands 2, 3, 4 and 8), while the fourth band partially overlaps
with the fifth band of Sentinel-2, meaning that a large number of spectral indices can be computed for
MicaSense in a way which is similar to Sentinel-2. The MicaSense RedEdge was mounted on a DJI
Phantom 4 Pro quadcopter alongside its integrated 20 MP RGB camera.

The second system used for data acquisition is the MicroHyperSpec A-series VNIR–Visible and
Near Infra-Red (https://www.headwallphotonics.com/hyperspectral-sensors) hyperspectral pushbroom
scanner. This camera samples the spectral region 380–1000 nm in 324 spectral bands with a spectral
resolution of 1.9 nm and FWHM of 5.8 nm. The large number of bands allows for the calculus of more
spectral indices than in the case of multispectral cameras. The MicroHyperSpec was mounted on an
Aerialtronics ATX-8 Zenith coaxial octocopter platform.

Flights were planned at a fixed flying height on average 45 m above the canopy level at the highest
terrain point in each area of interest (i.e., around 80 m above the highest ground level), with 85%
overlap set in the forward and lateral direction for RGB and multispectral imagery and 30% lateral
overlap between hyperspectral scan lines. In general, five ground control points markers (GCPs) were
installed in each area of interest and measured with Real Time Kinematic (RTK) Global Navigation
Satellite Systems (GNSS) in the Portuguese network of continuously operating reference stations Rede
Nacional de Estações Permanentes GNSS-ReNEP (2–3 cm accuracy). The maximum number of GCPs
that could be installed or used was ultimately dictated by the dense forest environment of the areas of
interest. RGB and multispectral imagery was processed separately through a structure from motion
(SfM) photogrammetry workflow in the commercial software Agisoft MetaShape 1.5.x. This workflow
consists of tie-point extraction and matching (alignment), geometric camera calibration and refinement
of the georeferencing based on the ground control points (optimization), reflectance calibration, dense
point cloud generation, dense point cloud classification (into ground, above-ground and noise classes),
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raster digital surface model (DSM) generation based on the ground and above-ground point classes,
raster digital terrain model (DTM) generation based on the ground points only, and orthomosaic
generation based on the DTM. For hyperspectral imagery, the geometric correction is performed using
VITO’s own developed C++ module and is based on direct georeferencing. Input data from the sensor’s
Applanix APX-15 GNSS/INS, the sensor geometric model, boresight correction data and elevation data
are further used during the geometric correction process. Orthomosaicing was then done per flight
line based on the photogrammetrically derived DTMs. The photogrammetric processing resulted in
georeferenced reflectance cubes for both data types: ENVI files (pairs of .img and .hdr files) for the
hyperspectral data having a spatial resolution of 10 cm, and GeoTIFF (.tif ) files for the multispectral
data and RGB with a spatial resolution of 5 cm. RGB mosaics in GeoTIFF format were also created
from data acquired by the RGB camera at a resolution of 2 cm. All imagery types were finally projected
to Universal Transverse Mercator (UTM) coordinates.

Intensive monitoring of the five sites was performed along the two experimental years. Ground
teams from University of Coimbra identified and monitored more than 120 trees. These trees were
identified in the RGB imagery and used as the basis for the training stage of the classification algorithm.
Figure 3 shows the distribution of training points in one site from Sertã.
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Figure 3. Training points (trees) identified in one site near Sertã.

During the monthly surveys, infected trees were mapped, when still at stage II or III of decline,
as defined in [22]. A subset of these trees was selected for laboratorial analyses using the protocol
described in [19]. If PWN was detected in the analysis, the tree was assigned to the class “infected”.
Trees in close proximity to infected (spatial and temporal) and displaying similar symptoms but not
tested were classified as “suspicious”. Trees showing no symptoms (green) were classified as “healthy”.
The solution is based on a compromise between sampling effort and representativity.

Each of the training points was assigned to one of the following classes: “infected”—trees
confirmed to be affected by the PWD by laboratory analysis; “suspicious”—trees showing symptoms
of the disease at different stages, but not tested in the laboratory for PWD; “healthy”—(green) trees
showing no signs of the disease. The trees in the “infected” class were in level II or III of canopy
degradation, as aforementioned, due to the fact that lab analysis is usually performed on trees that
can be clearly identified as symptomatic, in the absence of other information. However, all the trees
used for training and belonging to the “suspicious” class displayed compatible symptoms and no tree
recovered during the experiment—all of them died after different periods of time. The combination
of symptoms, timing and sampling strategy suggests a very high likelihood of the presence of the
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disease across a high proportion of the “suspicious” trees. Thus, confusions between the “infected”
and “suspicious” classes can be tolerated to certain extent, but the healthy trees should be clearly
separated from the other classes.

Once the set of training points was defined, each tree was identified in the multi-/hyperspectral
imagery and region growing algorithms were employed to extract the respective tree crown.
The corresponding spectra were then extracted from the imagery and stored in the corresponding
training database. This way, two distinct training databases were obtained, corresponding to multi-
and hyperspectral data, respectively. Figure 4 shows examples of delimited crowns and extracted
spectral signatures. Note that, even for one single crown, large heterogeneity of signatures is easily
noticeable with respect to shape and amplitude.
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Figure 4. Example of RGB representation of image part (left: a,d), delimited tree crowns (center: b,e)
and extracted spectra of all crown pixels (right: c,f) for multispectral and hyperspectral data (top and
bottom, respectively); the thick red curves represent averages of extracted spectra.

Table 1 shows an overview of the number of trees (per class) and the corresponding number of data
points extracted from available imagery. Note that the number of infected trees is low in comparison to
the number of suspicious and healthy trees, as only three trees were confirmed to be infected by PWD
following the laboratory analysis, at the time of the training data definition (October 2018). However,
considering the sampling strategy adopted and the overwhelming rate of positive cases in analyzed
trees, it is likely that suspicious cases were equally infected.

Table 1. Number of trees and corresponding number of points available for training.

Data Type
Number of Training Trees Number of Extracted Spectra

Infected Suspicious Healthy Total Infected Suspicious Healthy Total

MS 3 41 34 78 2228 168172 157852 328307

HS 3 37 28 68 2605 78332 112597 193434

2.2. Selection of Discriminative Metrics and Wavelengths

Starting from the reflectance spectra of the training pixels, comprehensive sets of spectral
indices (also named “metrics” in the following) were defined. These metrics were found in the
literature (see, e.g., [19] and the references therein) and in databases of spectral indices available online
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(see, e.g., https://www.indexdatabase.de/). At the end, 25 metrics were built for the multispectral
data, and 74 metrics for the hyperspectral data. These metrics are intended to capture the different
features of the healthy, suspicious and infected trees. However, it is well known that a multitude of
metrics used in classification does not always guarantee a better performance. Some metrics could lack
power of discrimination, while others could be highly correlated. Further, the use of a large number of
parameters implies higher computational burden. Thus, filtering of these metrics is needed before
employing them in a classification scheme.

Two distinct approaches were used for metrics filtering. In multispectral data, an iterative
classification scheme selects metrics from the list based on their correlation with other metrics,
intraclass variation and interclass distances. Specifically, after the values of each metric are normalized
using a peak-to-peak approach, the selection is performed as follows. For every metric, we first
define a discriminative parameter R, calculated as the ratio between the interclass distance and the
intra-class variation. The interclass distance is computed as the average distance between the centroids
of the considered metric in all classes, while the intraclass variation is computed as the average of
the standard deviations of the considered metric in all classes. Second, the Pearson correlations are
computed for all possible pairs of metrics. Third, a threshold T is chosen to define the maximum
allowed correlation between any two metrics. Then, for each pair of metrics with correlation larger
than T, the metric with lower R is removed from the list of metrics. The idea behind this selection
is that the centroids of one metric, computed per class, should be as far as possible from each other,
while the spread of the metric should be as low as possible in each class. Thus, R should be as high as
possible to promote separability of the classes. The result of this iterative selection is a set of metrics
in which the maximum correlation between any pair of metrics is lower than T. After assessing the
performance of various sets of metrics in terms of classification performance, the maximum allowed
correlation was set to T = 0.95 in our experiments. In hyperspectral data, the selection method was
borrowed from the classification methodology of the PROBA-V land cover product [23] and it selects
metrics based on their discriminative power in a classification scenario. At the end, 13 indices were
kept for the training stage for both multispectral and hyperspectral data.

The metrics filtering performed in hyperspectral data is not only intended to reduce the number
of metrics used in classification, but also to derive a set of informative wavelengths that could be used
in the design of a multispectral camera tailored to the specific application of PWD. These wavelengths
are the ones used to compute the selected hyperspectral metrics.

2.3. Classification Algorithms and Postprocessing Strategies

Random Forest classification algorithms [24] were separately developed for the multi- and
hyperspectral data.

Due to the low number of infected trees available for training (shown in Table 1), the sets of
points corresponding to the different classes are strongly unbalanced w.r.t. sizes for both multi- and
hyperspectral datasets. This characteristic could lead to the so-called “accuracy paradox”, i.e., biased
classification output when the overall accuracy is used as the main performance discriminator. In order
to avoid such issues, we have built balanced training sets by randomly selecting spectra corresponding
to the three classes. The number of these spectra is 10% lower than the total number of points from the
“infected” class. Thus, for the multispectral data, a number of 2055 points per class were kept to define
the input dataset, while, for the hyperspectral data, 2344 points per class were selected for the same
purpose. By following this approach, a drastic undersampling of the available training points for the
healthy and suspicious classes was introduced. The algorithms were developed using the Random
Forest Classifier meta estimator from the scikit-learn machine learning library [25] in Python 3.6.8 [26],
with a random split of 70%/30% of data points for training and testing, respectively. Both schemes use
the default parameterization, except for an increased number of trees (500 instead of 100) and enforced
balanced class weights.

To inspect the accuracy of the classification algorithms, we use the following accuracy metrics:

https://www.indexdatabase.de/


Remote Sens. 2020, 12, 2280 9 of 23

Overall accuracy (OA): ratio between the number of correctly classified points and the total
number of points;

Producer accuracy (PA): ratio between the number of correctly classified pixels from a class and
the true number of points assigned to the same class;

User accuracy (UA): ratio between the number of correctly classified pixels from one class and the
total number of points identified by the classifier as belonging to the same class.

Table 2 shows the confusion matrices, user accuracies, producer accuracies and overall accuracies
for the two algorithms. In this table, note that OA exceeds 0.91 in both cases. Larger confusion can be
observed between the infected and suspicious classes. In practice, this confusion is largely tolerated,
as trees showing PWD symptoms are preferably removed from the field, even if no laboratory analysis
is performed. In Portugal (and Europe in general), the removal of symptomatic trees is actually a legal
obligation of the forest owners.

Table 2. Confusion matrices and accuracies for the multispectral (top) and hyperspectral (bottom)
Random Forest classifiers.

Multispectral data Infected Suspicious Healthy Total User accuracy

Infected 601 19 6 626 0.96
Suspicious 39 556 17 612 0.91

Healthy 2 8 602 612 0.98
Total 642 583 635 1850

Producer accuracy 0.94 0.95 0.95 Overall accuracy: 0.95

Hyperspectral data Infected Suspicious Healthy Total User accuracy
Infected 682 23 1 706 0.97

Suspicious 67 584 49 700 0.83
Healthy 2 42 660 704 0.94

Total 751 649 710 2110
Producer accuracy 0.91 0.90 0.93 Overall accuracy: 0.91

The accuracy metrics from Table 2 are graphically represented in Figure 5 by the Receiving
Operator Characteristics (ROC) curves, per class, produced following the methodology in [25] and the
implementation of the authors available online. The high performances of the classifiers are confirmed
by the ROC curves. The “suspicious” class is in both cases prone to more confusion with the other
classes. The “infected” class is spotted with high accuracy by both classifiers, due to its distinct spectral
characteristics rooted in the class definition (i.e., trees in an advanced stage of degradation). Additional
experiments, not reported here, have shown that this class can be discriminated with higher accuracy
than the other two classes even under suboptimal training conditions (e.g., very low number of training
samples and/or very low number of Random Forest trees), while the accuracy for the other two classes
degrades under such conditions. As shown in Table 2 and Figure 5, the “suspicious” and “healthy”
classes are also detected with high accuracy. Despite the fact that both training and testing pixels were
randomly selected from data acquired in 2018, possible spatial correlation issues that could lead to
the overestimation of the accuracy metrics are largely mitigated due to the following reasons: (i) as a
consequence of the strong undersampling of the “healthy” and “suspicious” classes, the percentage of
training points for these classes was extremely low (1–2%) in comparison to the number of available
points extracted from the imagery, such that relatively large distances between training and testing
points are enforced, even if they might be placed on the same crown; (ii) the data employed in this
study are very high spatial resolution data (5/10 cm for multi-/hyperspectral data), thus the high
heterogeneity of crown pixels illustrated in Figure 4 and induced by factors such as leaf density and
orientation, light scattering and exposed branches, among others, is captured by the pixel spectra.
In this type of data acquired from RPAS, significant spectral differences occur in terms of both shape
and amplitude, e.g., differences larger than 100% in reflectance values, per band, are not uncommon
even for spatial windows as small as 5 × 5 pixels, or 25 × 25 cm2 in multispectral data. All these factors
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contribute to mitigating potential autocorrelation issues. Furthermore, the classification maps obtained
by the designed algorithms in data acquired in 2019 confirm that the classification schemes perform as
expected in newly acquired imagery (see, e.g., Figure 14 in Section 3).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 
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As the classification algorithms are trained exclusively on canopy spectra, pixels that do not
belong to tree canopies could be assigned to any of the considered classes. This is not considered an
algorithmic error, but it might result in maps that are difficult to interpret. In order to remove pixels
falling outside tree canopies from the classification maps, various strategies are adopted, based on
auxiliary data, spectral characteristics and spatial filtering.

First, a canopy height model (CHM) is computed by subtracting a digital terrain model from a
surface terrain model used in the data georeferencing. The CHM thus measures the height of data
pixels and thresholds can be used to remove points with low height. For example, if only ground
pixels should be removed, all points having null CHM would be neglected.

Second, very dark pixels in the image usually correspond to shadowed pixels. Shadows generally
occur below tree crowns, such that their removal does not impede the detection of infected trees, while
ensuring a better visual appearance of the maps. The dark pixels are selected based on their intensity,
i.e., pixels whose sum of band reflectance values falls below a predefined threshold are removed from
the classification map.

Once the low pixels and the dark pixels are removed, noise can still affect the maps. We apply a
window spatial filtering to limit the number of sparsely scattered pixels (i.e., isolated pixels belonging
to one class but surrounded by pixels from other classes). The filtering is ruled by a majority voting
and the window size can be adapted according to the specific user needs. In all the maps presented in
the Results section, the window size is 5 × 5 pixels.

3. Results

In this section, insights on the quality of the acquired data, the selection of informative spectral
wavelengths, performance of proposed algorithms, obtained classification maps and implemented
postprocessing methods are presented. The ultimate goal is to analyze the quality of the derived
classification maps and the feasibility of the early detection of PWD.

3.1. General Review of Data Quality

During all flight campaigns, calibrated tarps were placed in the field of view of the spectral
cameras, in order to allow for an assessment of the data quality. Specifically, calibrated gray and
green tarps produced by Group8 Technology were concurrently scanned by the spectral sensors and
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by ASD field spectrometers with the purpose to ensure traceability of spectral response (see https:
//www.group8tech.com for details on the green and the 36% gray tarps).

We use the average spectra stored by the ground spectrometer as a basis to derive reference
spectra. For the hyperspectral imagery, the reference spectra are obtained by resampling the
averaged ASD spectra to the MicroHyperSpec wavelengths. Starting from the same average spectra,
the reference spectra in multispectral data are obtained by adopting a nearest-neighbor approach
w.r.t. the MicaSense bands.

In order to inspect the data quality from a statistical point of view, spectra of the two tarps were
also extracted from different images, acquired at various dates. Table 3, shows the number of spectra
extracted from the multi- and hyperspectral imagery for both grey and green tarps, jointly with the
dates of the corresponding images.

Table 3. Number of points extracted from the acquired imagery for the grey and green tarps.

Tarp Sensor Number of Spectra Sites and Dates

Grey

MicroHyperSpec 442

Condeixa1(16/10/2018;13/06/2019),
Condeixa2(16/10/2018),

Sertã1(11/06/2019;12/06/2019),
Sertã2(17/10/2018;18/10/2018;

12/06/2019), Sertã3(13/06/2019)

MicaSense 1445

Condeixa1(13/06/2019)
Sertã1(17/10/2018;12/06/2019),
Sertã2(17/10/2018;18/10/2018;

12/06/2019;10/09/2019), Sertã3(18/10/2018;13/06/2019)

Green

MicroHyperSpec 421

Condeixa1(16/10/2018;13/06/2019),
Condeixa2(16/10/2018)

Sertã1(17/10/2018;11/06/2019;12/06/2019),
Sertã2(17/10/2018;18/10/2018;12/06/2019),

Sertã3(13/06/2019)

MicaSense 1993

Condeixa1(16/10/2018;13/06/2019),
Sertã1(17/10/2018;12/06/2019),

Sertã2(17/10/2018;18/10/2018;12/06/2019),
Sertã3(18/10/2018;13/06/2019)

In Figure 6, we plot the following: the reference spectrum (yellow), the mean of all observed
spectra by the spectral camera (blue stars), absolute error computed as the difference between the
reference spectrum and the mean of observed spectra (red), and standard deviation of the observed
spectra, per band, w.r.t. their mean values (vertical blue bars). The plots on the left hand side refer to
the grey tarp, while the plots on the right hand side refer to the green tarp. Top figures are drawn for
the hyperspectral data, and bottom figures are drawn for the multispectral data.

From Figure 6, it can be observed that the average observed spectra are consistent with the reference
spectra. For the green tarp, the absolute errors are negligible for both multi- and hyperspectral data.
However, the standard deviation, interpreted as an uncertainty envelope around the observed mean
spectra, show in all cases that high variability of the signatures is encountered for both data types.

https://www.group8tech.com
https://www.group8tech.com
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Figure 6. Data quality plots for the acquired imagery: top (a,b)—hyperspectral data; bottom (c,d)—
multispectral data; left (a,c)—grey tarp; right (b,d)—green tarp.

3.2. Informative Metrics and Discriminative Wavelengths

From Figure 7, in which illustrative spectra of healthy and infected trees are shown, it can be
observed that the evolution of the disease is best reflected by changes in the red and near-infrared
spectral regions. Figure 8 shows a different perspective on the difference between healthy and
infected trees. It displays a radar plot of indices computed for the two tree types (green—healthy tree,
red—infected tree), where each axis represents one spectral index.
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From Figure 8, it can be observed that not all indices have discriminative power between the two
considered classes of points. On the one hand, some metrics exhibit similar values for healthy and
infected spectra. On the other hand, there might exist pairs of correlated metrics when considering
larger sets of points. Following the methodology described in Section 2.2, the extracted informative
indices are shown in Table 4 for both multi- and hyperspectral data. These indices are further used in
the training of the classification algorithms.

Table 4. List of selected metrics (left—multispectral data; right—hyperspectral data).

Selected Metrics for Multispectral Data Selected Metrics for Hyperspectral Data

1 Anthocyanin Reflectance Index 1 (ARI1) [27] Modified Soil Adjusted Vegetation Index (MSAVI)
[28]

2 Anthocyanin Reflectance Index 2 (ARI2) [27] Enhanced Vegetation Index (EVI) [29]

3 Normalized Difference Index 45 (customized; normalized
index using bands 4 and 5)

Modified Chlorophyll Absorption in Reflectance
Index 1 (MCARI1) [30]

4 Plant Senescence Reflectance Index (PSRI) [31] Modified Triangular Vegetation Index 1 (MTVI1) [30]

5 Modified Chlorophyll Absorption in Reflectance Index [32] Modified Triangular Vegetation Index 2 (MTVI2) [30]

6 Burn Area Index (BAI) [33] Modified Chlorophyll Absorption in Reflectance
Index 2 (MCARI2) [30]

7 Carotenoid Reflectance Index 1 (CRI1) [34] Soil Adjusted Vegetation Index (SAVI) [35]

8 Chlorophyll Red-Edge Index (CHLRE) [36] Renormalized Difference Vegetation Index
(RDVI) [35]

9 Green NDVI [37] Optimized Soil Adjusted Vegetation Index
(OSAVI) [38]

10 Normalized Green-Red Vegetation Index (GRVI1;
normalized ratio between green and red bands) [39] Triangular Vegetation Index (TVI) [38]

11 Carotenoid Reflectance Index 2 (CRI2; modified CRI1) [37] Pigment Specific Simple Ratio Chlorophyll a
(PSSRa) [40]

12 Plant Senescence Reflectance Index—Near-InfraRed
(PSRINIR) [31] Normalized Difference Vegetation Index (NDVI) [41]

13
Red-Edge Normalized Difference Water Index (RENDWI;

modified NDWI [42] by replacing SWIR with
red-edge band)

Modified Simple Ratio 670 (MSR670) [43]
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The 13 hyperspectral indices listed in Table 4 are computed from only five spectral bands,
corresponding to the following central wavelengths: 400 nm, 550 nm, 670 nm, 750 nm and 800 nm.
In Table 5, we compare this set of wavelengths to the MicaSense wavelengths and to another set of
informative wavelengths, found in literature [19]. Figure 9 illustrates the differences between the three
sampling strategies.

Table 5. Comparison between MicaSense wavelengths, informative wavelengths previously published
and a newly derived set of informative wavelengths.

Sensor/Set Band 1 [nm] Band 2 [nm] Band 3 [nm] Band 4 [nm] Band 5 [nm]

MicaSense 475 560 668 727 840

Literature [19] 450 490 670 710 800

Derived in this work 400 550 670 750 800
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From Table 5 and Figure 9, we conclude that the proposed data sampling is different from
both MicaSense and the sampling proposed in [19]. However, despite the selection of different
wavelengths, the spectral regions (blue, green, red, red-edge, near-infrared) are preserved in all
variants. One difference consists in the red-edge wavelength, where the reflectance at the top is
preferred over intermediate values in our variant. However, the main difference is that, in the proposed
sampling, lower blue wavelengths are recommended (see the 400 nm wavelength). This new selection
of wavelengths could be used for the design of a multispectral sensor tailored specifically to the
PWD detection.

3.3. Output Maps

The output of the classifiers are GeoTIFF images in which every individual pixel is assigned to
one of the three considered classes. From here to the end of this paper, all displayed classification maps
(i.e., Figures 10–14) exhibit the following color scheme: blue = infected, red = suspicious, yellow =

healthy. Before getting into details related to the obtained maps, it is worth noticing once more that the
classifiers are trained exclusively on canopy spectra, thus points falling outside tree canopies could
fall in any of the classes. Figure 10 shows examples of classification maps obtained by the proposed
classification algorithms.
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campaigns performed at different times of the year in the framework of the FOCUS project offer a 
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Figure 12. Highlighting infected trees via classification and postprocessing of the obtained maps: (a) RGB
representation derived from the MS data; (b) classification map; (c) classification map after removing
shadows and low canopy height model (CHM) values; (d) classification map after spatial postprocessing;
(e) visual confirmation of detection accuracy: the trees detected as suspicious in October 2018 are dead by
June 2019. Color code of classified pixels: blue = infected, red = suspicious, yellow = healthy.
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Figure 14. Temporal evolution of the disease, reflected by the classification maps. Color code of 
classified pixels: blue = infected, red = suspicious, yellow = healthy. 

In Figure 14, Tree #1 appears to be healthy to a human observer in September, although the 
classification algorithm spots suspicious pixels on its crown. In October, this tree exhibits visual 
symptoms (discoloration) and its crown is mostly classified as “suspicious”. Note that this example 

Figure 13. Early detection of the infected tree: (a) RGB—October 2018 (from the RGB camera): note that
no symptoms are visible to the naked eye; (b) RGB representation (from the MS data); (c) classification
map; (d) dead tree in June 2019 (RGB camera). Color code of classified pixels: blue = infected,
red = suspicious, yellow = healthy.
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The classification maps clearly show the presence of infected/suspicious trees. Figure 11 shows
a zoom on multi- and hyperspectral classification maps over the same area. One specific pine tree,
showing symptoms of the PWD, is highlighted in order to show that it was successfully detected in
both imagery types.

Despite the encouraging result illustrated in Figure 11 (i.e., the successful highlighting of the
symptomatic trees), the heterogeneous composition of the forest, given by access paths, bare soil,
constructions, short bushes and ferns, among others, leads to classification maps that can be confusing
for the user, as exemplified in Figures 10 and 11. As a consequence, the postprocessing strategies
described in Section 2.3 are employed for a better visualization of the infected trees. The effects of
those techniques are illustrated in Figure 12. The maps correspond to data acquired in the area of Sertã,
in October 2018. In Figure 12b, notice that it is hard to distinguish locations belonging to trees from
others belonging to the background. However, after postprocessing, a much more meaningful map is
obtained (Figure 12d).

Figure 12e shows that all trees detected as suspicious in October 2018 (marked with green circles in
Figure 12d) died before June 2019. This figure proves, on the one hand, the accurate detection capability
of the algorithm and, on the other hand, the destructive potential of the PWD. However, Figure 12 also
reveals one limitation of the produced maps. Specifically, the areas identified as suspicious, marked
with blue circles in Figure 12d, fall outside tree crowns, thus they belong to the background of the
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image. These image parts were not removed from the postprocessed map due to local artefacts in the
photogrammetric products. There exist two kinds of photogrammetric artefacts that can negatively
impact our subsequent analyses: (1) differing extents of the digital terrain model and digital surface
model, and (2) a local mismatch between the orthomosaics and the CHM. The first artefact occurs
only at the edges of the photogrammetric products, due to different outcomes of interpolation and
extrapolation algorithms in the rasterization of the point cloud, once nonground points have been
removed in areas with only one-sided overlap. The solution here would be to trim the maps down to
the core survey area where sufficient overlap has been detected by the photogrammetric processing,
with a threshold number of overlapping images which guarantees omnidirectional overlap. The second
artefact arises from the projection of the orthomosaics onto the digital terrain model, rather than the
digital surface model, and can occur throughout the generated products, but adds to the problem
especially at the edges where overlap is inherently already low. The terrain model has to be used
in order to project recognizable tree crowns in the orthomosaic, because projecting onto the surface
model causes local distortions leading to many displaced and mixed pixels, rendering a tree crown
hard (if not impossible) to distinguish from its neighbors. However, on very tall objects such as trees,
the image overlap is locally reduced at the top of the objects, which can lead to leaning of the objects
in any direction when projected in the orthomosaic (deviating from a true orthophoto projection).
This leaning will vary from dataset to dataset, and can only be minimized by acquiring datasets with
a very high overlap at the tree canopy level. In practice, this means planning a flight with a higher
than usual overlap (e.g., flight planning software calculates overlap at the ground level, and, when
setting 80% overlap at the ground, the overlap can be reduced to 60% at the canopy level, which will
cause leaning), and flying higher than usual (i.e., adding the canopy height to normally planned flight
height). However, both overlap and flying height are constrained by practical considerations: by
increasing the overlap, the area covered per flight will be reduced, and the flight height has a legal
ceiling. Thus, further efforts to improve the postprocessing will also involve strategies that explore the
intrinsic characteristics of the images, such as segmentation or scene preclassification.

3.4. Early Detection of the PWD

As shown in Section 3.3, the decaying trees are correctly identified by the proposed algorithms.
The maps in Figure 12 are produced based on data acquired in October 2018, when it is reasonable to
suppose that the flight season of the vector had ended or it was close to an end, and the infected trees
were found in a relatively advanced stage of the disease. This is valuable information that the forest
managers can use to better organize field campaigns aiming at the removal of infected trees from the
forest. In Portugal, not only these interventions but also flight campaigns are strictly limited by law in
summer, as wildfire outbreaks occur every year due to the dry and hot weather, and are sometimes
boosted by human activities. Thus, maps like the one in Figure 12, produced in autumn or even winter,
are used before the beginning of a new vector flight season to identify the infected trees that must
be removed.

However, classification maps produced in spring or summer, whenever the legal and practical
conditions are met, could be used to strengthen the control over infected areas. Thus, the early
detection of the Pine Wilt Disease is a highly relevant scope. In our view, “early” means “before
visible symptoms appear” or “before the naked eye could spot an infected tree”. The data acquisition
campaigns performed at different times of the year in the framework of the FOCUS project offer a
great opportunity to check if the early detection is possible. Specifically, if the crown of an apparently
healthy tree is marked as being suspicious and this tree dies later on, it means that the early detection
is possible. Although infected trees might be already relatively frequent before summer, trees in a very
early stage of the disease can also appear late in autumn, sometimes in October. Figure 13 illustrates
such a case, where the classification algorithm is able to spot an infected tree despite the lack of visible
symptoms. In Figure 13c, the red pixels, marking a relatively large number of suspicious points on the
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crown, indicate that the tree is likely to be infected by the PWN, while the tree is reported dead in June
2019. We can conclude that the early detection of infected trees is feasible, based on spectral imagery.

3.5. Temporal Evolution of the PWD

The proposed algorithms can capture the temporal evolution of the disease. In the classification
maps, the transition of one tree through different stages of the disease is reflected by the assigned
class for the individual pixels of the crown. This evolution is illustrated in Figure 14, where two trees
from the region of Sertã are analyzed for two distinct data acquisition times: 10 September 2019 and
9 October 2019.

In Figure 14, Tree #1 appears to be healthy to a human observer in September, although the
classification algorithm spots suspicious pixels on its crown. In October, this tree exhibits visual
symptoms (discoloration) and its crown is mostly classified as “suspicious”. Note that this example
also confirms the ability of the proposed algorithm to spot early symptoms in the infected trees.
The second tree (Tree #2) shows incipient symptoms of the disease in September and these symptoms
are accentuated in October. The classification algorithm marks more “infected” (blue) pixels in October
than in September for this tree, indicating a more advanced stage of the disease.

4. Discussion

The high classification accuracies of the proposed PWD detection algorithm (see Table 2) indicate
that the PWD detection is viable via remote sensing techniques. This goal is achieved by using thirteen
informative metrics, selected from large pools of candidates, for both multispectral and hyperspectral
data. The wavelengths involved in the calculus of hyperspectral metrics can be used to design a
multispectral camera specifically devoted to PWD detection. In comparison to [19], our selections
recommend the use of a lower wavelength in the blue spectral region and a lower near-infrared
wavelength in the red-edge region. It was observed that the performance for multispectral data is
slightly better than the one corresponding to hyperspectral data. This behavior could be related to the
lower spatial resolution of the hyperspectral data in comparison to the multispectral data, as the two
classifiers use sets of metrics derived from an equal number of spectral bands and similar setups for
the classification training.

The illustrative examples presented in Section 3 cover various situations encountered in real
imagery. First, the classification maps obtained for images acquired at different times of the year (June,
September, October) confirm that the detection accuracy is high for the tree crowns (Figure 11). Second,
it is shown that the algorithm is able to spot decaying trees even before visual symptoms appear
(Figure 13). Third, it is shown that the algorithm captures the temporal variation of symptomatic crowns,
such that more pixels are marked as suspicious at the early stages of infestation and an increasing
number of pixels is marked as infected with the evolution of the symptoms in time (Figure 14).

The detection at the very early stages of the infection should, however, be treated with caution.
One positive aspect of the trained algorithm is the sensitivity to slight changes in tree spectra, which,
despite the advantage of allowing early detection, could in turn result in a weak point, i.e., false
positives (healthy pixels marked as suspicious). Moreover, sparse pixels representing false positives,
scattered on tree crowns, could also appear. In real-life situations, a decision regarding the removal of
the tree based on these early maps alone should be avoided. Other possible drawbacks are represented
by drought situations, when the tree canopies are subjected to water stress for relatively long periods
of time, or the presence of mixed pixels composed by tree canopy and background soil. Even in these
situations, the maps can still serve as a solid basis for early planning, but the monitoring of the tree
degradation over time is recommended.

In practice, the ground teams are deployed by forest managers at specific times of the year for
maintenance purposes. In Portugal, the preferred months are in late autumn, winter and early spring
due to various restrictions, e.g., the ban on carrying out forest cuts during the fire season (summer).
This strategy is advantageous from the point of view of PWD detection by remote sensing techniques,



Remote Sens. 2020, 12, 2280 20 of 23

as the flights can be performed at the later stages of the disease, after the flight season of the insect
vector is concluded. Under these circumstances, detection is highly reliable due to the development of
clear symptoms, and the removal of the trees can be done before the new flight season of the insect.
This strategy would largely contribute to the containment of the PWD spread.

At this stage of algorithmic development, the proposed method does not distinguish a priori
between tree crowns and other image parts (background). The direct output consists of full maps in
which every pixel in the imagery is assigned to one of the considered classes. Thus, the presence of
pixels classified as “suspicious” or “infected” in the background pixels is to be expected and does
not indicate classification errors. However, users might find these pixels confusing, as it becomes
more difficult to separate the tree crowns from other categories. To cope with this limitation, various
strategies, based on spectral, spatial and auxiliary data, were developed. These strategies fully apply
to multispectral data, and only partially apply to the available hyperspectral data (as the hyperspectral
processing chain does not generate all the needed auxiliary data). However, hyperspectral cameras
are unlikely to be used in an operational setup due to, e.g., the higher noise, larger efforts needed
from a logistic point of view, recording of much larger datasets implying larger storage capacity and
processing power during data processing. In our work, the hyperspectral data were used to derive key
wavelengths that could be useful to design a multispectral camera dedicated to the detection of PWD.

A large part of the background removal is performed by CHM thresholding. This is an
effective method that, ideally, would suffice to highlight the canopies. However, the actual terrain
and surface models, from which the CHM is derived, sometimes suffer from local displacements.
These displacements are more present at the edges of the images and they are almost nonexistent
towards the interior. Thus, the delineation of canopy areas is better towards the middle of the image
and less accurate at the edges. However, the correction of the surface and terrain models is out of the
scope of this paper and is subject to future work. Despite this limitation, the proposed postprocessing
strategies produce significant improvements in the visual appearance of the produced maps (see, e.g.,
Figure 12d). However, further improvements in the visual appearance of the maps are subject to future
work, based on segmentation/pre-classification methods that exploit the intrinsic data properties,
similarly to works carried out for lower resolution images. Possibilities to enhance the algorithmic
performances based on the exploitation of public datasets such as the Wilt Data Set, similarly to [44],
will also be explored.

5. Conclusions

In this paper, machine learning classification algorithms were proposed for the detection of PWD
from remote sensing spectral data acquired from RPAS at very high spatial resolution. Both multi- and
hyperspectral data were used. These data were acquired during multiple data acquisition campaigns
in two consecutive years (2018 and 2019) in two regions from central Portugal where the presence of
the PWD is confirmed.

Both classification schemes use sets of 13 informative metrics, selected from large pools of
candidate metrics, and are based on random forest strategies. The experimental results reveal that the
proposed classification schemes achieve high overall accuracies (larger than 0.91). The experimental
results fully support this claim, as the infected trees are successfully identified. Moreover, it is shown
that detecting declining pine trees when PWD is the probable cause of decay is possible by using
spectral imagery even before visual symptoms can be identified by the naked eye of an observer.
The temporal evolution of the disease is also visible in the produced maps. Our results clearly prove
the feasibility of PWD detection based on spectral imagery.

This work benefits from a series of strengths, the combination of which makes it unique in
the field of PWD research by remote sensing methods. These strengths are as follows: the data
acquisition campaigns were carried in a temporal fashion, in two consecutive years, across five sites
from two distinct Portuguese provinces (Coimbra and Castelo Branco); two spectral cameras were
concurrently used for data recording; the training points were not selected from the spectral imagery
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based on apparent symptoms, but were based on field and laboratorial work by researchers from the
University of Coimbra; a metric selection was performed to infer the most suitable spectral metrics
from large pools of candidates; five highly informative spectral bands which can be used to design a
multispectral sensor specifically dedicated to the PWD detection were extracted from hyperspectral
data; classification schemes with high accuracy were developed for both multi- and hyperspectral data;
postprocessing techniques, based on spectral, spatial and auxiliary data were employed to improve the
visual appearance of the output maps.

The obtained classification maps can be used by forest managers to plan the removal of infected
trees from the forest. In Portugal, the ideal season for tree removal is the winter, thus data acquisition
campaigns should be performed in autumn or early winter for an optimal timing. Early detection maps,
produced at earlier times throughout the year, can support early planning and updates. Our future
work will focus on further improving the visual appearance of the maps and on the implementation of
interactive, easy-to-use PWD maps.
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