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Abstract: Non-contact vital signs monitoring using microwave Doppler radar has shown great
promise in healthcare applications. Recently, this unobtrusive form of physiological sensing has also
been gaining attention for its potential for continuous identity authentication, which can reduce the
vulnerability of traditional one-pass validation authentication systems. Physiological Doppler radar
is an attractive approach for continuous identity authentication as it requires neither contact nor
line-of-sight and does not give rise to privacy concerns associated with video imaging. This paper
presents a review of recent advances in radar-based identity authentication systems. It includes
an evaluation of the applicability of different research efforts in authentication using respiratory
patterns and heart-based dynamics. It also identifies aspects of future research required to address
remaining challenges in applying unobtrusive respiration-based or heart-based identity authentication
to practical systems. With the advancement of machine learning and artificial intelligence, radar-based
continuous authentication can grow to serve a wide range of valuable functions in society.
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1. Introduction

Doppler radar has been used in widespread applications, including weather forecasting, vehicle
speed measurement, structural health monitoring, and the monitoring of air and sea traffic [1].
This technology has most recently been recognized for promise in healthcare applications though long
term unobtrusive physiological monitoring [2–6]. The fundamental Doppler principle is illustrated in
Figure 1a, where a reflected signal undergoes a phase shift due to the subtle movement of the chest
surface caused by heartbeat and respiration [4–8]. Doppler radar remote life sensing of humans has been
widely reported, with proof of concepts demonstrated for various applications [7,8]. This non-contact
and non-invasive form of measurement has several potential advantages in medicine, especially
for the monitoring of neonates or infants at risk of sudden infant death syndrome [9], adults with
sleep disorders [10], and burn victims [11,12]. In addition, separation of respiratory signatures in
a multi-subject environment has also been investigated [13–16]. Moreover, this form of respiration
monitoring reduces patient discomfort and distress as electrodes need not be attached to the body.
The inherent advantage of this unobtrusive non-contact measurement technique broadens potential
applications beyond healthcare to include occupancy sensing [17] and related energy management in
smart homes [18,19] and baby monitoring [20].
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Figure 1. Basic principle of Doppler radar physiological sensing (a), and non-contact continuous 
identity authentication concept (b). A radar system typically consists of a transmitter and a receiver. 
When a transmitted signal of frequency ω is reflected its phase changes, φ (t), in direct proportion to 
the subtle motion. 

Growing interest in physiological motion sensing through radar has led to the development of 
new front-end architectures [20,21], baseband signal processing methods [22], and system-level 
integration [21,23] to improve detection accuracy and robustness [24]. A review of recent advances 
in Doppler radar sensors has been reported by Li et al. [25]. One example is the application of this 
non-invasive technology to monitor infants for sudden infant death syndrome (SIDS) [26,27] which 
is one of the leading causes of infant mortality. Moreover, Doppler radar has also been implemented 
to monitor the health and behavior of terrestrial and aquatic animals [28–30]. Sleep monitoring is 
another emerging application where radar alleviates the measurement interference introduced by the 
conventional use of obtrusive devices such torso straps and or spirometers [31]. A clinical study was 
performed to comparatively monitor patients suffering from sleep apnea using a radar sensor in 
conjunction with traditional intrusive sleep monitoring equipment, where the radar was found to 
provide stand-alone detection of most apnea events, as well as complementary detail to facilitate 
conventional diagnostics [31]. Furthermore, Food and Drug Administration (FDA) approval for the 
first commercial use of wireless, non-contact respiratory devices in the Unites States was granted in 
2009 [32]. 

Beyond health sensing, Doppler radar also holds great promise to enhance system security and 
privacy, particularly in the area of user authentication as illustrated in Figure 1b. Existing system 
authentication methods predominately employ a one-off, interruptive approach, which authenticates 
only at the initial log-in of a session [33–36], with users actively engaging an input device or biometric 
reader. Such designs are vulnerable to open session exploitations and may interfere with user activity. 
There have been many studies focused on continuity in user authentication. Several have explored 
sensing technologies to acquire common physiological traits, including fingerprint [37], palm print 
[38], and iris [39], used to monitor and authenticate users throughout a session. Recent advancements 
in wearable sensors and pattern recognition further enable system architects to collect more subtle 
physiological patterns, such as those associated with electroencephalogram (EEG) [40], finger-vein [41], 
and gait [42], to verify users implicitly and continuously. Compared to these contact-based solutions, 
continuous authentication using non-contact, unobtrusive techniques, such as Doppler radar, can 
further improve system usability and expand the range of applications into domains with known 
privacy concerns [43,44]. For example, various visible and thermal-based cameras are employed to 
acquire face and gait features for user verification [45–47]. However, image-based approaches suffer 
from several irreconcilable dilemmas, including a lack of privacy and degraded performance under 
a low light ambient conditions [48,49]. Alternatively, a solution leveraging unobtrusive radar 
measurement of cardiopulmonary motion can be immune to such deficiencies and achieve consistent 
and reliable recognition under privacy-sensitive conditions [49–54]. 

This paper reviews recently reported research efforts in identity authentication based on the use 
of dedicated microwave Doppler radar or WiFi devices in a bi-static radar configuration for 
recognition of cardiopulmonary signatures, heart activity patterns, and respiratory features. This 
paper also critically evaluates the practical adoption of the proposed solutions and discusses future 
requirements for solving some of the remaining challenges needed for practical application. 

Figure 1. Basic principle of Doppler radar physiological sensing (a), and non-contact continuous
identity authentication concept (b). A radar system typically consists of a transmitter and a receiver.
When a transmitted signal of frequency ω is reflected its phase changes, φ (t), in direct proportion to
the subtle motion.

Growing interest in physiological motion sensing through radar has led to the development
of new front-end architectures [20,21], baseband signal processing methods [22], and system-level
integration [21,23] to improve detection accuracy and robustness [24]. A review of recent advances
in Doppler radar sensors has been reported by Li et al. [25]. One example is the application of this
non-invasive technology to monitor infants for sudden infant death syndrome (SIDS) [26,27] which is
one of the leading causes of infant mortality. Moreover, Doppler radar has also been implemented
to monitor the health and behavior of terrestrial and aquatic animals [28–30]. Sleep monitoring is
another emerging application where radar alleviates the measurement interference introduced by
the conventional use of obtrusive devices such torso straps and or spirometers [31]. A clinical study
was performed to comparatively monitor patients suffering from sleep apnea using a radar sensor
in conjunction with traditional intrusive sleep monitoring equipment, where the radar was found
to provide stand-alone detection of most apnea events, as well as complementary detail to facilitate
conventional diagnostics [31]. Furthermore, Food and Drug Administration (FDA) approval for the
first commercial use of wireless, non-contact respiratory devices in the Unites States was granted in
2009 [32].

Beyond health sensing, Doppler radar also holds great promise to enhance system security and
privacy, particularly in the area of user authentication as illustrated in Figure 1b. Existing system
authentication methods predominately employ a one-off, interruptive approach, which authenticates
only at the initial log-in of a session [33–36], with users actively engaging an input device or biometric
reader. Such designs are vulnerable to open session exploitations and may interfere with user activity.
There have been many studies focused on continuity in user authentication. Several have explored
sensing technologies to acquire common physiological traits, including fingerprint [37], palm print [38],
and iris [39], used to monitor and authenticate users throughout a session. Recent advancements
in wearable sensors and pattern recognition further enable system architects to collect more subtle
physiological patterns, such as those associated with electroencephalogram (EEG) [40], finger-vein [41],
and gait [42], to verify users implicitly and continuously. Compared to these contact-based solutions,
continuous authentication using non-contact, unobtrusive techniques, such as Doppler radar, can further
improve system usability and expand the range of applications into domains with known privacy
concerns [43,44]. For example, various visible and thermal-based cameras are employed to acquire
face and gait features for user verification [45–47]. However, image-based approaches suffer from
several irreconcilable dilemmas, including a lack of privacy and degraded performance under a low
light ambient conditions [48,49]. Alternatively, a solution leveraging unobtrusive radar measurement
of cardiopulmonary motion can be immune to such deficiencies and achieve consistent and reliable
recognition under privacy-sensitive conditions [49–54].
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This paper reviews recently reported research efforts in identity authentication based on the use of
dedicated microwave Doppler radar or WiFi devices in a bi-static radar configuration for recognition
of cardiopulmonary signatures, heart activity patterns, and respiratory features. This paper also
critically evaluates the practical adoption of the proposed solutions and discusses future requirements
for solving some of the remaining challenges needed for practical application.

The remainder of this paper is organized as follows: Section 2 describes cardiopulmonary diversity
and physiological motion measurement. Section 3 describes research publications on the identification
of people from dedicated radar and WiFi-based bi-static radar measured cardiopulmonary patterns
and evaluates the applicability and limitations. Section 4 provides concluding remarks.

2. Cardiopulmonary Diversity and Physiological Motion Measurement

Doppler radar detects motion that occurs due to physiological events, including heartbeat, arterial
pulsation, and breathing [55]. This physiological motion is concentrated in the thorax, where the heart
and lung lie, but also includes the abdomen, which moves with respiration, and superficial pulses,
which are present at any points in the body [55–58]. Torso deformation, due to respiratory effort,
is a complex, three-dimensional pattern and it varies greatly with subject parameters and activity
context [59,60]. Respiratory effort motion can come from one of the two primary regions: chest or
abdomen, known as thoracic and diaphragmatic breathing, respectively [61]. When the heart contracts
to generate the pressure that drives blood flow, it moves within the chest cavity, hitting the chest
wall, and creating a measurable displacement at the skin surface that can be detected with Doppler
radar [54–57]. Non-contact Doppler radar can operate at frequencies where primarily skin-surface
motion is detected [54]. Changes in the volume and shape of the heart during systole move the ribs
and soft tissue near the heart, causing the chest to pulse with each heartbeat [54–57]. Thus, Doppler
radar systems can sense respiratory-related information as well as cardiac patterns.

It has been demonstrated in various clinical investigations that sedentary adult human subjects
exhibit a diversity in respiratory pattern while awake, not only in terms of tidal volume and inspiratory
and expiratory duration, but also in terms of air flow profile [52,55]. Every individual selects to exhibit
one pattern among the infinite number of possible ventilatory variables and air flow profiles [55–57].
These variabilities are non-random and may be explained by either central neural mechanisms or
chemical feedback loops [54,55]. In addition, each individual has a different physical size and shape of
lungs, as well as different rib cage and abdominal muscle strength that contributes to the variations in
breathing patterns [56].

In addition to variations in respiratory features, there is also significant variation in heart-based
geometry [54–57]. In general, the human heart contains two upper cavities (atria) and two bottom
chambers (ventricles) [62,63]. The successive contraction (systole) and relaxation (diastole) of both
atria and ventricles circulate the oxygen-rich blood throughout the whole human body [62,63].
A diagrammatic section of the heart is shown in Figure 2a. The heart drives blood through the lungs
and to tissues throughout the body [54]. Cardiac motion consists of contraction and relaxation of both
atria and ventricles [58]. In one cardiac cycle, ventricles relax and passively fill with blood to 70% of
the total volume from atria through the open mitral valve [58]. At the same time, the atria contract
with heart muscles and pump blood. Figure 2b shows the motion of the heart through the phases of
the cardiac cycle [57]. The cardiac motion cycle consists of five distinct stages including: (1) ventricular
filling (VF), (2) atrial systole (AS), (3) isovolumetric ventricular contraction (IC), (4) ventricular ejection
(VE), and (5) isovolumetric ventricular relaxation (IR) [62,63]. These cycles are significantly unique
because of the different volumes, surface shape, and moving dynamics (speed, acceleration, etc.),
and also deformation of the heart [58,62,63]. These stages or cycles are different for each person
because of variations in size, position, anatomy of the heart and chest configuration, and various other
factors [63,64]. It has also been demonstrated in various clinical investigations that no two persons
have the same cardiac blood circulation [62,63].
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the cardiac cycle, (b) [56]. The arrows indicate direction of blood flow. 
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Figure 2. Diagrammatic section of the heart, (a), [55] and motion of the heart through the phases of the
cardiac cycle, (b) [56]. The arrows indicate direction of blood flow.

Thus, cardiopulmonary motion is a unique identity marker for everyone, due to differences in
physical organ size and shape, and muscle strength [62]. In addition, cardiopulmonary motion is
controlled by central neural mechanisms or chemical feedback, which makes it extremely difficult to
counterfeit or hide a living individual’s motion signature [52].

3. Radar-based Continuous Identity Authentication Research

Identity authentication using microwave Doppler radar is gaining attention as it can add an
extra layer of security to the vulnerable traditional one-pass validation approach (e.g., fingerprint,
password, and facial/iris) [58]. Pattern recognition and unique identification are always challenging
for this non-contact technology because of variations in human breathing patterns due to physical
activity and emotional stress [55]. As future big data analyses emerge and machine learning algorithms
improve, Doppler radar-measured physiological signals can be turned into increasingly useful data
and knowledge [58]. In particular, diverse respiratory motion patterns have good potential to be used
as biometric identifiers [58,64–72].

Identity theft continues to pose everyday challenges for consumers and the associated threat
is increased as traditional identity authentication systems are targeted [58,69]. Traditional identity
authentication methods, such as fingerprint, password, and facial recognition, all require an initial
spot check at the start of user session, which potentially conveys personal information like bank
account, social security number, and credit card and social networking account details [72]. In 2018,
over 14 million people were victims of identity fraud in the United States [69]. Identity fraud can
be significantly reduced by implementing multi-factor authentication systems, which can be further
enhanced through integration of unobtrusive continuous radar-based identity authentication [58].

In this section, radar-based sensing authentication is categorized in two different ways, based
either on breathing-related features, or heart-based features. Breathing motion is generally periodic,
and respiratory-related features can be extracted from the time domain signature of the reflected phase
signal and rate information extracted by performing an FFT [4–6]. Heartbeat motion is modulated on top
of respiratory motion and the larger resulting breathing signal is dominant over the heartbeat signal [4].
This leads to a classical problem in FFT, where the stronger signal at given frequency leaks into other
frequencies and can mask a weaker signal at nearby frequencies [4,5]. Generally, the radar captured
signal is filtered outside the 0.005–0.5-Hz frequency band for extracting respiration information and
0.8–2 Hz for extracting heartbeat-related information. All the All the radar authentication research cited
in this paper is focused on extracting two separate distinguishable features, based on either respiration
or heartbeat. Extracting both simultaneously has the potential for stronger authentication; however,
such a process may increase computational complexity. Table 1 provides a summary of published
work on radar-based non-contact continuous identity authentication considered in this paper. In the
next two subsections, details are provided on these two different unique features (breathing and heart,
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respectively), including related identification demonstrations along with associated challenges for
further development. There have also been attempts to use Doppler modulation of WiFi signals to
authenticate people and this research is described in the third subsection.

Table 1. Systematic review on radar-based non-contact continuous identity authentication.

Reference Year
of Publication

Hardware
(RF Frequency) Identification Features Outcome

[52] A. Rahman
et al., 2016

2.4 GHz
Doppler Radar

• Respiration-based

# Power
# spectral density
# Packing density
# Inspiratory time

• Accuracy: 90%
• Neural network classifier
• Participants: 3

[58] F. Lin et al.,
2017

2.4 GHz
Doppler Radar

• Heart-based dynamics

# Cardiac-motion cycle
# Five points

• Accuracy: 98.61%
• Support Vector Machine
• Participants: 78

[68] A. Rahman
et al., 2018

2.4 GHz
Doppler Radar

• Respiration-based

# Inhale-exhale area ratio
# Minor component

• Accuracy: 95%
• K-nearest neighbor
• Participants: 6

[70] S. M. M.
Islam et al.,
2019

2.4 GHz
Doppler Radar

• Respiration-based

# FFT-based feature

• Accuracy: 100%
• Support Vector Machine
• Participants: 10
• Only sedentary breathing

[71] S. M. M.
Islam et al.,
2020

2.4 GHz
Doppler Radar

• Respiration-based

# Exhale Area: Air flow
# Breathing depth

• Accuracy: 98.8% (normal)
• Accuracy: 92% (combined)
• Support vector machine
• Mixture of sedentary and after

short exertion breathing
• Participants: 10

[72] S. M. M.
Islam et al.,
2020

2.4 GHz and
24-GHz
Doppler Radar

• Respiration-based OSA patient

# Peak power spectral density
# Linear envelop error
# Inspiratory duration

• Accuracy: 93%
• OSA patient recognition
• Support Vector Machine
• Participants: 6

[73] D.
Rissacher et al.,
2015

2.4 GHz
Doppler Radar

• Heart-based dynamics

# Cardiac motion
# Wavelet based time and

frequency feature

• Accuracy: 82%
• K-nearest neighbor
• Participants: 20

[74] K. Shi et al.,
2018

24 GHz
Doppler Radar

• Heart based dynamic

# Heartbeat signal complexity

• Accuracy: 94.6%
• Support Vector Machine
• Participants: 4
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Table 1. Cont.

Reference Year
of Publication

Hardware
(RF Frequency) Identification Features Outcome

[75] T. Okano
et al., 2017

24 GHz
Doppler Radar

• Heart based dynamics

# Power spectral density

• Accuracy: 92.8%
• Autoregressive analysis
• Participants: 11

[76] P. Cao et al.,
2020

24 GHz
Doppler Radar

• Heart based dynamics
• Short-time Fourier Transform

# Heartbeat
# Energy
# Bandwidth

• Accuracy: 98.5%
• Convolutional

Neural Network
• Participants: 10
• Mixture of normal and

abnormal breathing

[77] J. Zhang
et al., 2016

WiFi router &
Laptop

• Channel state Information

# Gait Pattern

• Accuracy: 93%
• K-nearest neighbor
• Participants: 16

[78] J. Liu et al.,
2020

WiFi router &
Laptop

• Respiration-based
Morphological pattern
• Fuzzy Wavelet based

• Accuracy: 95%
• Deep learning
• Participants: 20

3.1. Radar-Based Identity Authentication through Respiration Related Features

One of the first attempts at radar-based identity authentication using breathing pattern was
reported by a research group at the University of Hawaii, where they integrated a neural network
classifier to recognize individual human beings [52]. In this work they extracted three different
respiratory features (peak power spectral density, linear envelop error, and packing density) from
respiratory motion measurements, as illustrated in Figure 3. A 2.4 GHz quadrature direct conversion.
Doppler radar system was used for this experiment, assembled from coaxial components. A data
acquisition system recorded the data and post processing was performed in MATLAB (MathWorks,
Natick, MA, USA). Three subjects with similar breathing rates were selected and various features
were investigated, such as power spectral density, linear envelop error, and packing density, which
convey the breathing energy and air flow profile related phenomena. The research concentrated on
using the Levenberg–Marquadrt back propagation algorithm to perform classification [52]. Figure 4
illustrates the experimental setup and reported results for training and applying a neural network
classifier to recognition of the Doppler radar physiological measurements [52]. The overall classification
accuracy was above 90%, which clearly illustrates that the proposed technique can be effective for this
application. However, this work was limited to identifying only three participants. Another issue is
that the experiment was entirely focused on measuring a single subject at a time.
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Figure 3. Radar-measured respiratory features from 30 second epochs. Pioneering efforts at recognizing
subject identity from radar measured respiratory signals (a) involved extraction of three different
features: breathing rate (b), linear envelop error (c), and packing density (d). Linear envelop error
shows the peak distribution differences and packing density illustrates the differences in air flow profile
with the inhale and exhale area episodes. Taken from [52].
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Figure 4. Human identification experiment using a radar system. The test set-up is shown, (a), along
with the neural network recognition results, (b). From [52].

Subsequent research by the same group reported on continuous authentication based on dynamic
segmentation where they used inhale and exhale area ratios of the captured respiratory pattern as
unique features for six different participants [68]. Dynamic segmentation evaluates the displacement
and identifying points in the range of 30–70% of both exhale and inhale episodes, which defines four
boundary points of a trapezium [65]. The ratio of these two areas provides a useful feature which
indicates how quickly the next cycle of inhalation begins [68]. Figure 5 illustrates the inhale/exhale area
ratio features for two different subjects, which differ significantly. Based on extracted unique features,
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a K-nearest algorithm was integrated to identify each person, which showed a classification accuracy
of almost 90% [68]. In order to increase the accuracy of the proposed method, minor component
analysis was performed on subject data sets which showed overlapping inhale/exhale area ratios.
For minor-component analysis, a linear demodulation technique was employed [68]. The variation in
minor component shows the radar cross section and high frequency component of respiration and
heart signal modulation. Higuchi fractal dimension analysis was performed on minor components of
the radar captured signals to identify overlapped inhale/exhale area ratios of subjects, which increased
the classification accuracy to 95% [68]. The proposed method clearly shows efficacy. However,
the number of subjects of tested was small and further investigation is required to establish larger data
set functionality.
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Figure 5. Respiratory pattern classifiers used for subject recognition. Dynamically segmented
inhale/exhale area ratios of two subjects significantly differs, (a), as do signal patterns relating to the
dynamics of breathing near the points where the inhale and exhale transition occurs, (b). From [68].

Another limitation of this approach is the reliance on two different parameters (inhale/exhale area
ratio and minor component analysis). Further investigations also demonstrated that, as inhale/exhale
ratio become more similar, false classification may occur [70]. To increase performance further, an FFT
based feature extraction approach was applied with an integrated support-vector machines (SVM)
classifier using a radial basis function [70]. The performance of the proposed system increased as the
FFT based feature extraction approach contains all breathing dynamics related features (breathing rate,
breathing depth, inhale rate, exhale rate and airflow profile). Figure 6 illustrates the FFT based feature
extraction approach used for six different participants. As the data set and number of participants
was small, continued experimentation remains needed to verify the efficacy of the FFT-based feature
extraction approach. For further investigation, the feasibility of the FFT-based approach for extracting
identifying features from radar respiratory traces for sedentary subjects was tested, along with
measurements of the subjects just after performing physiological activities (walking upstairs) [69].
It was found that subject recognition still worked but was not as effective after performing short
exertions as it was for sedentary subjects [71]. Experimental results demonstrated that, after short
exertion, the dynamically segmented exhale area and breathing depth increased by more than 1.4 times
for all participants, which made evident the uniqueness of the residual heart volume after expiration
for recognizing each subject, even after short exertions [71]. They also integrated a machine learning
classifier SVM, with a radial basis function kernel which resulted in an accuracy of 98.55% for subjects
in a sedentary condition and almost 92% for a combined mixture of conditions (sedentary and after
short exertions) [71]. Furthermore, they also investigated identity authentication of patients with
obstructive sleep apnea (OSA) symptoms based on extracting respiratory features (peak power spectral
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density, packing density, and linear envelop error) for radar captured paradoxical breathing patterns,
in a small-scale clinical sleep study integrating three different machine learning classifiers (SVM,
k-nearest neighbor (KNN), and random forest). Their proposed OSA-based authentication method
was tested and validated for five OSA patients with 93.75% accuracy, using a KNN classifier which
outperformed other classifiers [72]. This study was limited to only six supine subjects in the controlled
environment of a sleep center.
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subjects in seated position (b) and FFT-based extracted features up to 10 Hz were used to identify six
different participants (c). From [70].

3.2. Radar-Based Identity Authentication through Heart-Based Features

One of the first attempts at recognizing people from their heart-based features (cardiac cycle)
from Doppler radar was reported on by a research group at Clarkson University [73]. They used a
2.4-GHz heterodyne radar system from which cardiac data was extracted, and an ensemble average
was computed using ECG as time reference [73]. A continuous wavelet transform was integrated to
provide time-frequency analysis of the average radar-measured cardiac cycle and a k-nearest neighbor
algorithm was used to recognize people with an accuracy of 82%. This was the first reported attempt
for applying cardiac-based features using a cardiac-radar system as biometric identification tool [73].
The low classification accuracy occurred as there was overlap in the ensemble average of the cardiac
cycle; therefore, further investigation and experimentation is required to demonstrate efficacy for more
reliable recognition of subjects from radar captured signals.

A study conducted by a research group at the University of Buffalo [58] proposed a continuous
identity authentication system named “Cardiac Scan”. This system used a 2.4-GHz Doppler radar
transceiver with two antennas (one for transmit and another for receive functions) each having a
beam width of 45◦. The radar power consumption was 650 mW with a 5V-volt source and 130 mA of
current [58]. The customized Doppler radar was placed in front of the subject at 1 meter [58]. Figure 7
shows the experimental set up of the proposed cardiac scan system, from which five different points
were extracted from the radar captured respiration patterns which were hypothesized to fully represent
cardiac motion. Based on the hypothesis the experiment illustrated that these heart-based geometry
measures differ from person to person due to difference in size, position and anatomy of the heart,
chest configuration, and various other factors [58]. From their experimental results, it was also clear
that no two subjects had the same heart, tissue, and blood circulation system, as there were significant
differences in their cardiac cycle points measured in the radar data set [58]. Figure 8 illustrates the
cardiac motion marker for one segment captured from the radar respiration measurement. In this
work, the user’s cardiac-motion related features were stored in the system. A SVM with a radial basis
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function (RBF) kernel classifier was employed to uniquely identify different participants. A study of a
78 subject data set was reported, and the proposed system achieved an accuracy of 98.61% and a 4.42%
equal error rate [58]. One of the limitations of the above proposed technique is that the complete study
was performed with healthy sedentary persons and only for single-subject measurements. If subjects
have cardiovascular diseases, unique identification may be problematic as the cardiac cycle would be
affected. Further study is also required to verify that the proposed heart-based cardiac cycle points
remain consistent after subjects perform varying degrees of physiological activity.
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Figure 8. Cardiac motion marker. The cardiac motion cycle defined by five different points (red dots)
within five different points of displacement and timing was calculated as a unique feature for recognizing
people. From [58].

In another reported study, cardiac measurement of different persons was used to uniquely identify
each using a 24-GHz continuous wave radar system employing six-port measurement technology [71].
Figure 9 represents the hardware setup used for this experiment. A six-port measurement system
consists of two input ports and four output ports. The two input signals are superimposed to extract
phase shift information due to chest displacement. This particular work focused on extracting heartbeat
signal information for each participant, as the exact position and angle of the heart in the thorax,
as well as the anatomy of the thorax itself, is a little different for every person due to varying tissue and
muscle/fat components [74]. Due to these differences, the radar-captured heartbeat signal involved
different propagation and attenuation characteristics. As each person has a different heart position and
dimensions, dominant features exist in the heartbeat signal which form a complex and unique pattern.
Figure 10 illustrates the heartbeat signal variation for each participant. Initially a 5-second heartbeat
signal was used for identifying unique features for each participant. Integrated machine learning
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classifiers were also used to recognize people. A quadratic SVM outperformed other classifiers, with an
accuracy of 74.2%. To increase the accuracy, a 7-second heartbeat segment was used, which increased
the classification accuracy to 94.6%. The study provides a clear indication that heart-based geometry
can be used as a unique feature to identify people. However, validation for this study only included
four different participants. Thus, further investigation is required for larger data sets having varying
conditions, especially those involving measurements made after physical activities.
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Another study used a 24-GHz radar system to extract heartbeat related unique features to
recognize eleven different participants [75]. An autoregressive (AR) model-based frequency analysis
was introduced, which is superior to FFT, having a window length of 100 milliseconds, from which
power spectral density could be calculated [75]. Each peak in this analysis represents the contraction
and extraction of the heart. The first peak was used as a reference and then a period of 0.2 s before and
after, 0.4 s, was used as a template. Template matching was used to detect all heartbeats. The average of
the power spectral density was used as a unique identification number for each participant. Figure 11
illustrates the power spectral density features extracted from the radar respiration signal and PSD
profile for eleven different participants. The success rate was 92.8%. The proposed method clearly
demonstrates heart-based PSD feature extraction efficacy for recognizing people. However, if the
position between the radar and human subject changes or the heart rate fluctuates greatly then the
proposed method produces false classification. Motion artifacts and multi-subject scenarios were not
considered and remain a significant challenge for this approach.
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Figure 11. Measured 24-GHz heartbeat patterns for autoregressive PSD analysis based subject
recognition. Measurement of heartbeats are shown for electrocardiogram (reference) (a), Doppler radar
(b), PSD of Doppler sensor output (c), and (d) PSD for 15-s Doppler radar for eleven participants [75].

Recently, another study demonstrated the efficacy of radar-based identity authentication using a
short-time Fourier Transform (STFT) [76]. Each person sat a 1.5 m distance and physiological signatures
were recorded for about 6 seconds of the breathing pattern, using a 24-GHz continuous wave radar.
An STFT was used to characterize the micro-Doppler signature of ten different participants, followed by
basic image transformation methods like translation, rotation, zoom, mirror, and cropping. The STFT
image was used to represent heart-based features for each different subject. A deep convolutional
neural network (DCNN) was used to classify subjects based on their radar captured micro-Doppler
signatures. Figure 12 illustrates the STFT images for four participants which are significantly different
for each subject and include unique features for identification. From the spectrogram, three different
heart-based features were extracted, such as the period of the heartbeat, the energy of the heartbeat,
and the bandwidth of the signal. A deep convolutional neural network was then trained, and the
resulting classification accuracy was almost 98.5%.

To extract heart-based or respiratory information, data segmentation generally plays an important
role. Segments correspond to the FFT window size and should contain at least one full respiration cycle
and multiple cardiac cycles [58,70]. The number of segments used for a data set also plays an important
role for authentication time and accuracy [58]. Increasing the FFT window size will bring a benefit in
resolution as a higher number of samples are included in the operation, but this will also increase the
time delay and complexity of authentication and is not generally justified for real-time operation.



Remote Sens. 2020, 12, 2279 13 of 22Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 

 

 
Figure 12. Short time Fourier transform (STFT) of four different participants for extracting micro-
Doppler signatures. The images for four different participants clearly have significantly different 
spectral content. From [76]. 

To extract heart-based or respiratory information, data segmentation generally plays an 
important role. Segments correspond to the FFT window size and should contain at least one full 
respiration cycle and multiple cardiac cycles [58,70]. The number of segments used for a data set also 
plays an important role for authentication time and accuracy [58]. Increasing the FFT window size 
will bring a benefit in resolution as a higher number of samples are included in the operation, but 
this will also increase the time delay and complexity of authentication and is not generally justified 
for real-time operation. 

3.3. WiFi-ID: Non-Contact Human Identification Using WiFi Signals  

Several studies in parallel seek to achieve non-intrusive continuous identity verification using 
off-the-shelf WiFi devices [77–81] (Figure 13). These methods leverage the fact that the majority of 
IEEE 802.11 WiFi protocols have the access point (AP) explicitly sending out known pilot symbols, 
shown in Figure 13(b), prior to the data communication, which allows the receiver(s) to measure the 
wireless channel effect in terms of signal attenuation, e.g., receive signal strength (RSS), plus phase 
offset, e.g., channel state information (CSI), and cancel the channel effect for better reception. Since 
the wireless channel effect is the combined result of scattering, fading, and power decay with 
distance, it is also correlated to body movement if human subjects are present within the environment 
[82,83]. These studies on WiFi sensing aim to distill the physiological patterns from the channel 
measurements via various signal processing algorithms and utilize the patterns for continuous 
identification and authentication, which are briefly surveyed below. 

Figure 12. (a–d) Short time Fourier transform (STFT) of four different participants for extracting
micro-Doppler signatures. The images for four different participants clearly have significantly different
spectral content. From [76].

3.3. WiFi-ID: Non-Contact Human Identification Using WiFi Signals

Several studies in parallel seek to achieve non-intrusive continuous identity verification using
off-the-shelf WiFi devices [77–81] (Figure 13). These methods leverage the fact that the majority of
IEEE 802.11 WiFi protocols have the access point (AP) explicitly sending out known pilot symbols,
shown in Figure 13b, prior to the data communication, which allows the receiver(s) to measure the
wireless channel effect in terms of signal attenuation, e.g., receive signal strength (RSS), plus phase
offset, e.g., channel state information (CSI), and cancel the channel effect for better reception. Since the
wireless channel effect is the combined result of scattering, fading, and power decay with distance,
it is also correlated to body movement if human subjects are present within the environment [82,83].
These studies on WiFi sensing aim to distill the physiological patterns from the channel measurements
via various signal processing algorithms and utilize the patterns for continuous identification and
authentication, which are briefly surveyed below.

In [79], Abdelnasser et al. proposed a non-invasive RSS based WiFi breathing estimator (Figure 14).
The design leverages the fact that inhalation and exhalation can cause a perceivable periodic pattern
in the RSS observed by a device positioned on the chest surface [77]. The pattern can be analyzed to
characterize various breathing-related physical factors [77]. For instance, the authors examine the RSS
with bandpass filtering and fast Fourier transform (FFT) to obtain the subject’s breathing rate and heart
rate. This effect extends to scenarios when the subject obstructs the line-of-sight (LOS) between the
transmitter and the device.
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Figure 14. Wi-Fi sensing of cardiopulmonary motion. Channel state information of four different
subcarriers over time during sleep study are shown (a), along with an overview of the system design
used to capture respiratory biometrics (b) [79].

In [77], Zhang et al. analyzed the channel state information (CSI) to identify people within the
environment. In their experiments, the orthogonal frequency division multiplexing (OFDM) pilot
signal exchanged between a WiFi router and a receiver node (e.g., laptop) are exploited to extract the
CSI, which can be regarded as the aggregated result of the multipath fading. A person walking within
the environment would affect the multipath reflections with the particular gait pattern, thus creating
unique perturbations in the CSI, allowing the system to differentiate individuals via the received WiFi
signal [79].

Similarly, in [78], Liu et al. extracted fine-grained CSI of individual OFDM subcarriers from
off-the-shelf WiFi devices to detect minute movements and provide accurate breathing (inhalation
and exhalation) and heartbeat (diastole and systole) estimation, concurrently. The system, shown
in Figure 14, utilizes multiple CSIs captured at different OFDM subcarriers to differentiate the small
body movement of breathing and heartbeat. Their experiment shows that the CSI granularity in
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commercial devices is sufficient to track the cardiopulmonary vital signs of one isolated person, as well
as two-people in a bed, which covers typical in-home scenarios.

In [78], Liu et al. combined the CSI-based approach with a deep neural network to achieve
continuous, non-intrusive, user verification, as illustrated in Figures 15 and 16. The design collects
respiratory-related patterns in CSI by applying an empirical mode decomposition (EMD)-based
adaptive filter, which mitigates immanent radio interference and other irrelevant body movement [81].
The resulting patterns are further processed through waveform morphology analysis and fuzzy
wavelet packet transforms (FWPT) to construct unique respiratory biometrics, which are input to a
two-hidden-layer neural network for user classification.
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Figure 16. Waveform morphology analysis with EMD. Morphological features representing the
respiratory pattern of two different participants in an experiment are shown, (a,b), along with fuzzy
wavelet-based features which represent the frequency domain components of the respiratory pattern
(c). After EMD filtering much of the noise and interference is removed. From [78].

Fundamentally, WiFi setups for human identification can be regarded as bistatic or multistatic
radar systems, in which the transmitter(s) and receiver(s) are separated. Comparing to monostatic
radar systems, such as CW radar, the transmitter(s) and receiver(s) in these configurations operate
independently and lack coherency, which limits radar sensitivity and resolution. The issue is partially
compensated by the packet synchronization mechanism of the WiFi protocol, which, however,
introduces latency in target detection. Methods using RSS are generally less sensitive to subtle body
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movement, compared to CSI-based approaches, due to the lack of phase information. In contrast,
the latter exhibits less tolerance to background noise and synchronization errors. Current research to
improve the reliability of WiFi-based identity verification engages the problem using a two-pronged
approach. The data analytic approach aims to extract more distinguishable and consistent features
from the WiFi signals using state-of the-art machine learning or statistical learning algorithms.
The device-and-spectrum approach aims to suppress the irrelevant signal and directly capture the
physiological signatures by exploiting the frequency and bandwidth advantages of new 802.11 protocol
family members, such as 802.11ad.

3.4. Discussion

Non-contact radar-based continuous authentication systems may ultimately resolve the trade-off

between security and utility that plague existing authentication systems, provided that current reliability
limitations can be overcome. Current implementations in this category are mostly experimental,
with their performance unsatisfactory for practical use. Fundamentally, the difficulty is due to the
narrow margin of tolerances toward false/missed detection during system authentication. Unlike other
non-critical applications, false/missed detections in authentication could result in irreversible credential
revocation and permanent loss of access privilege. This risk is amplified by unpredictable events and
noise within a casual sensing environment. For instance, when multiple subjects present close to the
sensor, identification might be challenging due to the mixture of signal reflection. Existing studies mostly
focus on identification of isolated single subjects without random movement. However, if the system
cannot isolate respiratory signatures reliably for multiple subjects, the identity authentication system
performance will deteriorate in practice. Furthermore, methods intended to separate subjects [13] may
detrimentally discard information that is relied upon for identification. Another potential limitation is
that the sample sizes of existing experimental efforts are often limited. Some respiratory or heart-related
features need to be validated for a large population to show their uniqueness. So far, results based
on small scale studies reported by different researchers appear promising, but further exploration
is required. Finally, authentication measurements are subject not only to natural environmental
interference, but also to intentional subversion which poses further difficulty.

One of the major challenges in radar-based non-contact continuous identity authentication results
from the motion noise produced by random body movement during respiration sensing and by the
presence of multiple subjects [25]. While much research relies on the recognition and exploitation of
common opportunities for analyzing time periods of sedentary physiological motion [84,85], successful
Doppler radar respiration sensing during random body movement has also been demonstrated in the
literature [86–88]. Prior research has demonstrated the efficacy of a Doppler radar sensor with a camera
aided random body movement cancellation technique. In the associated methodology, random body
movement can be mitigated by utilizing three different strategies, such as using (1) phase compensation
at the Doppler RF front-end [88], (2) phase compensation for baseband complex signals [87], and (3)
cancellation during demodulation techniques [86]. It has also been demonstrated that using multiple
transceivers (bio-radar technique), different body movement can be cancelled [86,89]. Additionally,
blind source separation (BSS), or independent component analysis (ICA), has been utilized to extract
breathing rate and heart rate with the presence of two subjects [90] and to cancel random body
movement [91]. Phased array radar systems with beamforming techniques have also been investigated
to isolate the respiratory signature based on estimation of the direction of arrival of the subject [13,92,93].
In addition to that, frequency modulated continuous wave (FMCW) radar integrated with beam
steering technique has been investigated to isolate the respiratory signatures in multiple subject
scenarios [94]. In addition, a portable handheld radar-based cardiopulmonary monitoring system has
also been investigated, where motion compensation was performed by integrating the EMD technique
to reliably extract the respiratory information [22,95,96]. These proposed solutions have demonstrated
the efficacy of radar-based respiration sensing techniques under random body movement or in the
presence of multiple subjects. Future non-contact radar authentication research will likely involve
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the integration of these and other motion-noise suppression techniques to create a robust real-world
continuous authentication solution.

4. Conclusions

This paper reviews principles and research relating to the identification of people from radar
captured cardiopulmonary patterns. Over four decades, there have been significant advancements
in theory and engineering directed to enable biomedical Doppler radar for healthcare monitoring.
However, achieving persistent and reliable measurements and recognition of multiple targets remains
the primary obstacle toward a practical implementation. On this front, there are several promising
results attained under controlled laboratory environments. However, large-scale studies for varying
physiological conditions are yet to be conducted, and solution spaces yet to be explored. With recent
advances in machine learning and artificial intelligence, human identification based on breathing
patterns and heart-based dynamics demand further investigation for the potential to form a sound
alternative to traditional biometric systems. By overcoming this fundamental challenge, microwave
Doppler radar sensors can become common devices for daily activities monitoring. Continued
experimentation and further exploration are required to bring this unobtrusive form of identity
authentication system into real-world application.
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