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Abstract: The availability of free and open data from Earth observation programmes such as 
Copernicus, and from collaborative projects such as Open Street Map (OSM), enables low cost artificial 
intelligence (AI) based monitoring applications. This creates opportunities, particularly in developing 
countries with scarce economic resources, for large–scale monitoring in remote regions. A significant 
portion of Earth’s surface comprises desert dune fields, where shifting sand affects infrastructure and 
hinders movement. A robust, cost–effective and scalable methodology is proposed for road detection 
and monitoring in regions covered by desert sand. The technique uses Copernicus Sentinel–1 
synthetic aperture radar (SAR) satellite data as an input to a deep learning model based on the U–Net 
architecture for image segmentation. OSM data is used for model training. The method comprises two 
steps: The first involves processing time series of Sentinel–1 SAR interferometric wide swath (IW) 
acquisitions in the same geometry to produce multitemporal backscatter and coherence averages. 
These are divided into patches and matched with masks of OSM roads to form the training data, the 
quantity of which is increased through data augmentation. The second step includes the U–Net deep 
learning workflow. The methodology has been applied to three different dune fields in Africa and 
Asia. A performance evaluation through the calculation of the Jaccard similarity coefficient was 
carried out for each area, and ranges from 84% to 89% for the best available input. The rank distance, 
calculated from the completeness and correctness percentages, was also calculated and ranged from 
75% to 80%. Over all areas there are more missed detections than false positives. In some cases, this 
was due to mixed infrastructure in the same resolution cell of the input SAR data. Drift sand and dune 
migration covering infrastructure is a concern in many desert regions, and broken segments in the 
resulting road detections are sometimes due to sand burial. The results also show that, in most cases, 
the Sentinel–1 vertical transmit–vertical receive (VV) backscatter averages alone constitute the best 
input to the U–Net model. The detection and monitoring of roads in desert areas are key concerns, 
particularly given a growing population increasingly on the move. 

Keywords: synthetic aperture radar; SAR; Sentinel–1; Open Street Map; deep learning; U–Net; desert; 
road; infrastructure; mapping; monitoring 

 

1. Introduction 

The mapping and monitoring of roads in desert regions are key concerns. Population growth and 
an increase in the development of urban centres have led to a corresponding expansion of 
transportation networks [1,2]. These networks are constantly evolving [1,3]. An awareness of the 
location and state of road systems is important to help monitor human activity and to identify any 
maintenance that may be required for the infrastructure. In many desert regions, roads and tracks are 



Remote Sens. 2020, 12, 2274 2 of 27 

used for illicit activities, such as smuggling [4]. Sand drift and dune migration can rapidly bury roads, 
thus necessitating intervention [5–7]. 

Ground techniques used for surveying and monitoring road networks are expensive and time 
consuming [2]. This is especially true for desert regions, given the extensive areas involved, the often 
inhospitable landscapes, and, in some cases, the political instability [8,9]. Remote sensing techniques 
have the ability to acquire information over large areas simultaneously, at frequent intervals, and at a 
low cost [10,11]. The application of emerging technologies, such as big data, cloud computing, 
interoperable platforms and artificial intelligence (AI), have opened new scenarios in different 
geospatial domains [12], such as the monitoring of critical infrastructure, i.e., roads. 

Previously developed algorithms to automatically extract road features using techniques such as 
classification, segmentation, edge and line detection and mathematical morphology are summarised in 
a number of review papers, such as [13–16]. Since deep convolutional neural networks proved their 
effectiveness in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), deep learning 
has significantly gathered pace. Among the first to apply deep learning for road extraction were Mnih 
and Hinton [17]. Saito and his colleagues later achieved even better results with convolutional neural 
networks (CNNs) [18]. Techniques using CNNs are now considered to be standard for image 
segmentation [19] with many studies proposing different CNN architectures for road detection and 
monitoring, e.g., [1,3,20–24]. This is a fast evolving domain, and new research is regularly published on 
architectures and methods to address some of the limitations of CNNs. These include, for example, the 
significant computing and memory requirements [25], the fact that much training data is often needed, 
and the difficulty in adapting models to varying conditions [26]. A particularly effective CNN model 
for semantic segmentation is the U–Net architecture. Devised by Ronneberger and his colleagues for 
medical image segmentation [27], U–Net has become a standard technique for semantic segmentation 
in many applications since it won the IEEE International Symposium on Biomedical Imaging (ISBI) cell 
tracking challenge in 2015 by a large margin. The popularity of this architecture, which consists of a 
contracting path to capture the context and a symmetric expanding path that enables precise 
localisation, is due partly to its speed, and its ability to be trained end–to–end with very few images 
[27]. Many have applied variations of U–Net for road detection, e.g., [2,3,22–24], the majority basing 
their models on dedicated benchmark datasets of optical images for road identification, such as the 
Massachusetts roads data, created by Mihn and Hinton [17]. 

Most remote sensing based techniques for road detection and monitoring have relied on very high 
resolution (VHR) optical data [13]. However, in desert regions the spectral signatures of roads are often 
similar to the surrounding landscape, making them difficult to distinguish. Synthetic aperture radar 
(SAR) data has characteristics which make it efficient in the retrieval of roads in desert regions [9,28]. 
These include the sensitivity of the radar to surface roughness and the relative permittivity of targets, 
and the fact that SAR is a coherent system [29]. Dry sand usually has a very low relative permittivity 
and is therefore not a high reflector of microwave radiation. Sand covered areas are thus usually 
characterised by a very low SAR backscatter. Roads on the other hand may display a very different 
type of backscatter, which can contrast highly with the surrounding sand, even if the roads are 
significantly narrower than the SAR resolution cell [9]. These characteristics can be exploited to retrieve 
roads from SAR amplitude data. SAR coherence can also help to detect roads in desert regions. The low 
relative permittivity of dry sand causes the transmission of the microwave SAR signal into the sand 
volume [30,31]. Coherence is rapidly lost in such areas due to volume decorrelation [32]. This low 
coherence may contrast with the higher coherence of roads, often made from materials with a higher 
relative permittivity, such as asphalt, tarmac, or gravel, which therefore are not affected by volume 
decorrelation. 

Some studies nonetheless have demonstrated methodologies for road detection and monitoring 
using SAR data. A good review of many of these is provided by [14]. More recently, a few studies have 
successfully applied deep learning techniques for SAR based road detection, e.g., [1,2,21], but these 
have mainly focused on relatively small, local areas, in developed landscapes, where good ground truth 
and training data have been available. Some have also used SAR for detecting roads and tracks in desert 
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regions, e.g., Abdelfattah and his colleagues proposed a semi–automatic technique for SAR based road 
detection over a local area in the Tunisian–Libyan border [4], but again, this was applied to a specific 
area, and was not fully automatic. 

Robust methodologies are required for operational road detection and monitoring in desert 
regions over large areas without the need to acquire expensive reference data. Many desert areas are 
situated in developing countries, such as in North Africa, where accurate and abundant training data 
are not available, and budgets for infrastructure surveying are low. 

The work presented in this paper aims to demonstrate a methodology for road detection and 
monitoring in desert regions, using free input and reference data that can be scaled to desert regions 
globally. This approach takes input SAR data from the free and open Copernicus Sentinel–1 satellite 
constellation over the area to be surveyed. The input data comprises both the amplitude and coherence 
averages from a time series of around two and a half months acquired in the same geometry (around 
seven scenes). The time series average contributes to removing image speckle and improves the model 
performance. The reference data on the other hand includes freely available Open Street Map (OSM) 
data. The combined use of OSM and Earth observation (EO) data in semantic segmentation has been 
much discussed, e.g., [33–35], but in most cases it has been used either with very high resolution (VHR) 
EO data, or for general classes with much less class imbalance than the road, no–road distinction. Roads 
are then extracted using a version of U–Net. With its architecture consisting of a contracting path to 
capture the context and a symmetric expanding path that enables precise localisation, U–Net has the 
well–known advantages that it can be trained end–to–end with very few images, and is fast [27]. This 
makes it suitable for cases where abundant, high quality reference data may not be available. One of 
the many versions of this architecture adapted to Earth observation data includes one proposed by Jerin 
Paul that was previously applied successfully to VHR optical data [36]. This was the version adopted 
in this methodology. Despite the fact that it was developed for use with optical data, it performed well 
on SAR based inputs with similar class imbalance. This U–Net model is trained with SAR amplitude 
and coherence averages, with OSM reference masks, for each desert region. The model is then applied 
to detect roads in each of the desert areas for which is was trained. 

The method proposed here for SAR based deep learning segmentation, trained on OSM data, has 
been applied to a number of test areas in various deserts in Africa and Asia. The high accuracy of the 
results suggests that a robust methodology involving the use of freely available input and reference 
data could potentially be used for operational road network mapping and monitoring. 

This study has been carried out in the framework of a joint collaboration between the European 
Space Agency (ESA) Φ–Lab, and the European Union Satellite Centre (SatCen) Research, Technology 
Development and Innovation (RTDI) Unit. The ESA Φ–Lab carries out research in transformative 
technologies that may impact the future of EO. The SatCen RTDI Unit provides new solutions 
supporting the operational needs of the SatCen and its stakeholders by looking at the whole EO data 
lifecycle. 

2. Materials and Methods 

This section presents the methodology for road detection and monitoring using free and open data. 
The process can be divided into two steps: The first is a SAR pre–processing step, to obtain temporal 
averages of the calibrated backscatter amplitude and consecutive coherence for each time series, over 
each area. The second is the deep learning workflow. In this second step, the input SAR layers are 
divided into adjacent, non–overlapping patches of 256 × 256 pixels. Each patch is matched with a 
corresponding mask of the same resolution and dimension showing the location of any OSM roads. In 
these masks, pixels coinciding with roads have a value of 1, while all other pixels have a value of 0. All 
SAR patches, which included OSM roads in their corresponding masks, were used to train the U–Net 
model, initiated with random weights, using the OSM data as a reference. Subsequently, the model was 
applied to all patches in each area of interest (AOI) to extract the roads not included in the OSM dataset. 
The AOIs included three areas in three different desert environments in Africa and Asia, each the size 
of one Sentinel–1 IW scene (250 × 170 km). 



Remote Sens. 2020, 12, 2274 4 of 27 

While the OSM was used as the reference for model training, a more precise dataset was needed 
for an accuracy assessment. The reference masks only recorded roads present in the OSM dataset. The 
possibility existed that roads were present in the coverage of any given reference mask patch, but not 
included in the OSM. Moreover, due to the varying quality of the OSM and the varying width of roads, 
precise overlap between the model detected roads and OSM reference masks was difficult to achieve. 
To maintain automation and ensure the scalability of the method, there was no manual editing of these 
patches. Nonetheless, for the purpose of model training, the procedure to use the OSM as the reference 
worked well. For a reliable accuracy assessment however, a more rigorous technique was adopted: a 
subset area was randomly selected in each desert region in which all roads were manually digitised. 
These data were then used as the reference for a more precise accuracy assessment. 

2.1. Areas of Interest (AOIs) 

Three AOIs in different types of sand covered deserts were chosen to apply the method. These 
include most of the North Sinai Desert of Egypt, a large part of the Grand Erg Oriental in the Algerian 
and Tunisian Sahara, and the central part of the Taklimakan Desert of China (see Figure 1). The size of 
each of these three areas corresponds to the extent of one Sentinel–1 interferometric wide swath (IW) 
scene: 250 × 170 km, covering an area of 47,500 km2 in each desert region. They were chosen for their 
geographic and morphological variety, each having very different sand dune forms and local 
conditions. 

Map of AOIs 

 

Figure 1. Map showing the location of areas of interest (AOIs) on an ENVISAT MERIS true colour 
mosaic, in a geographic latitude, longitude map system, World Geodetic System 1984 (WGS84) datum. 
Insets show a close–up of the AOIs. Each AOI and inset has the dimension of one Sentinel–1 IW footprint 
(250 km East–West, 170 km North–South). Credits: CHELYS srl for the world map and the European 
Space Agency (ESA) GlobCover for insets. 

The North Sinai Desert, in the north of the Sinai Peninsula, is composed mainly of aeolian sand 
dune fields and interdune areas. The sand dunes include barchan, seif or longitudinal linear dunes 
trending east–west, transverse and star dunes [37]. Linear dunes are the main aeolian form in North 
Sinai [5]. The climate of the study area is arid. The average annual rainfall is about 140 mm at El Arish 
[38], but drops in the south, where it does not exceed 28 mm per year [5]. 

The Grand Erg Oriental is a sand dune field in the Sahara desert, mainly in Algeria, but with its 
north–eastern edge in Tunisia. It is characterised by four large–scale dune pattern types with gradual 
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transitions between them. These include large, branching linear dunes; small and widely spaced star 
and dome dunes; a network type created mostly from crescentic dunes; and large, closely spaced star 
dunes [39]. The average annual rainfall does not exceed 70 mm [40]. 

The Taklimakan Desert is the world’s second–largest shifting sand desert, located in China, in the 
rain shadow of the Tibetan Plateau [41]. Three types of sand dunes exist in the Taklimakan Desert: 
compound, complex crescent dunes and crescent chains; compound dome dunes; and compound, 
complex linear dunes [42]. The mean annual precipitation varies between 22 and 70 mm [43]. 

2.2. SAR and OSM Data 

To achieve the objective of demonstrating a robust and cost–effective methodology that can be 
applied globally, it was decided to exploit the Copernicus Sentinel–1 archive. The Sentinel–1 data are 
acquired at regular intervals worldwide and are available under a free and open access policy [44]. 
Over each of the AOIs, a time series was obtained of 7 images acquired every 12 days over an 
approximately two–and–a–half–month period (June/July to August/September 2019). The images were 
all interferometric wide swath (IW), all in ascending geometry and dual polarisation: vertical transmit–
vertical receive, and vertical transmit–horizontal receive (VV and VH, respectively). In order to explore 
the use of both amplitude and coherence in road detection, the time series over each area was obtained 
in both ground range detected (GRD) and single look complex (SLC) formats. The spatial resolution of 
the Sentinel–1 IW data is approximately 20 × 20 metres for the GRD and 5 × 20 metres for the SLC. The 
pixel spacing of the GRD data is 10 × 10 metres. Table 1 shows the details of the Sentinel–1 data used in 
each AOI.  All GPT graphs and bash scripts are available on Github (A Github repository has been 
created which contains all scripts that were used in this research, including the Bash files and GPT 
graphs for the Sentinel–1 data processing, and the Python code for the deep learning workflow 
available in a Jupyter Notebook. In this repository are also results in a shapefile format of the road 
detections over each of the AOIs. Supplementary data—Available online: https://github.com/ESA-
PhiLab/infrastructure) [45].  

Table 1. Details of the Sentinel–1 time series used in each of the AOIs. 

AOI Orbit Polarisation Time Series Length 

North Sinai Desert Ascending VV/VH 7 scenes acquired from 4 July to 14 Sep 2019 

Grand Erg 
Oriental Ascending VV/VH 7 scenes acquired from 4 June to 15 August 2019 

Taklimakan Desert Ascending VV/VH 7 scenes acquired from 11 June to 22 August 2019 

 
OSM data, including all roads, was downloaded at continental scale. From the original XML 

formatted osm files, they were converted to vector shapefiles; subsequently, the OSM data were subset 
for each AOI and attribute fields were reduced to the sole roads identification, in order to limit the file 
size. 

2.3. SAR Pre–Processing 

Given that roads in desert areas can be distinguished in both SAR amplitude and coherence, it was 
decided to include both as inputs to the U–Net model. A virtual machine (VM), with Ubuntu as the 
operating system, was used for the Sentinel–1 pre–processing. This VM was connected to the CreoDIAS 
cloud environment, containing archive Sentinel–1 data. Processing was carried out automatically on 
the cloud using the command line graph processing tool (GPT) of the open source ESA Sentinel 
application platform (SNAP) software. Two GPT graphs, including all steps of each of the SLC and 
GRD processing chains, were applied in batch to the time series of data over each area using Linux bash 
scripts. 
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2.3.1. Amplitude Processing 

For the amplitude processing, each Sentinel–1 scene, in a GRD format, was calibrated to 𝜎଴ 
backscatter. The calibrated data was then terrain corrected to the European Petroleum Survey Group 
(EPSG) 4326 map system, i.e., geographic latitude and longitude with the World Geodetic System 1984 
(WGS84) datum. The topographic distortion was corrected with the aid of the shuttle radar topography 
mission (SRTM) 3 s global digital elevation model (DEM). The output pixel spacing was 10 m. The stack 
of calibrated and terrain corrected scenes was then co–registered using cross correlation. The co–
registered stack was averaged into one scene to reduce speckle. This average was finally converted 
from the linear backscatter scale to logarithmic decibel, to improve visualisation and facilitate further 
pre–processing during the deep learning workflow. 

Some very good multitemporal speckle filters exist that preserve the spatial resolution while also 
keeping the temporal backscatter differences, such as the De Grandi speckle filter [46]. This allows for 
the monitoring of temporal intervals of less than the length of the time series. However, the emphasis 
of the study was to demonstrate a robust methodology that uses open data and tools. The most effective 
way to sufficiently reduce speckle while completely preserving the spatial resolution using the tools 
available was to average the data. Figure 2 shows the steps of the processing chain applied 
automatically to the time series of the Sentinel–1 GRD data. 

 
Sentinel–1 intensity processing chain 

Figure 2. The intensity processing chain applied automatically to the Sentinel–1 data in the CreoDIAS 
cloud environment. The numbers below show how the time series of seven images are reduced to one 
layer for each area in which the model is applied. 

2.3.2. Coherence Processing 

For the coherence processing, the interferometric coherence was calculated for each consecutively 
acquired Sentinel–1 image pair in SLC format. For a time series of seven images therefore, six coherence 
images were obtained. These were then averaged to reduce clutter and better distinguish roads from 
the surrounding sand. 

The steps in the coherence generation workflow began with the calculation of precise orbits. The 
three subswaths of each pair were then split to enable back–geocoding, coherence generation and 
TOPSAR–debursting to be carried out per subswath. These were then merged, before the coherence for 
each full scene pair was terrain corrected, to the same map system as used for the amplitude data 
processing. All terrain corrected coherences were co–registered, using a cross correlation, and averaged 
by taking the mean coherence for each pixel. The coherence average was finally resampled to the same 
pixel spacing as the amplitude average for each area, to enable the simultaneous (amplitude and 
coherence) input to the U–Net model. Figure 3 shows the main steps of the processing chain applied 
automatically to the time series of Sentinel–1 SLC data. 

 
Sentinel–1 coherence processing chain 
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Figure 3. The main steps of the coherence processing chain applied automatically to the Sentinel–1 data 
in the CreoDIAS cloud environment. The numbers below show how the time series of seven images are 
reduced to one layer for each area in which the model is applied. 

 

2.4. Deep Learning Workflow 

The output of the Sentinel–1 pre–processing included three separate backscatter and coherence 
averages for each of the three desert areas, each covering the extent of one Sentinel–1 IW footprint (250 
× 170 km). These, together with the OSM ancillary data, comprised the input to the second part of the 
methodology, which included the deep learning workflow. This second part was developed in a 
sandbox environment for AI projects, called Sandy, belonging to the ESA Advanced Concepts Team. It 
includes 10 NVIDIA GTX1080 Ti graphics processing units (GPUs), suitable for training deep neural 
networks, although only one GPU was necessary for the model training. The deep learning workflow 
was implemented in Python 3, with Keras and Tensorflow. This Jupyter Notebook is available on 
Github (Supplementary data—Available online: https://github.com/ESA-PhiLab/infrastructure) [45]. 

2.4.1. OSM and SAR Data Preparation for Deep Learning 

For each backscatter and coherence scene average, a corresponding mask was produced of the 
same extent and spatial resolution, in which pixels overlapping with OSM roads have a value of 1, and 
all other pixels have a value of 0. These masks were created by converting the OSM road vectors to 
raster. 

Each SAR derived scene average and corresponding OSM mask were split into 256 × 256 adjacent, 
non–overlapping patches, and the SAR patches were normalised to contain pixel values from 0 to 1. 

2.4.2. Data Augmentation 

Those SAR and mask patches in which OSM roads were present, comprised the samples to train 
the U–Net model. The number of such patches per AOI varied from around 400 to 800. Data 
augmentation was therefore used to increase the number of training samples. The data augmentation 
included a random rotation through a 360–degree range. It also included a horizontal and vertical flip. 
These random transformations were chosen as they preserve exactly the width and backscatter 
characteristics of roads and surrounding features, while changing only their orientation. This was 
considered the best choice given that roads may feasibly have any orientation, while it is uncertain as 
to how much their width and backscatter properties may vary. To fill gaps in the image patches 
following transformation, a reflect mode was selected, i.e., any blank areas, e.g., corners of patches 
following rotation, are converted to the mirror image of the same number of non–blank pixels on the 
other side of the dividing line. This was the best possible fill mode given that the lines are not broken, 
but continue as would be expected with the roads. Figure 4 shows an example of random data 
augmentation for an input SAR patch and its corresponding OSM derived reference mask. 

The data augmentation was implemented through an instance of the image data generator class of 
the Keras library for Python 3.7. 
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Data augmentation. 

 

Figure 4. An example of data augmentation for an input synthetic aperture radar (SAR) patch (upper 
leftmost) and its corresponding reference mask (lower leftmost). Note how the augmented versions 
continue segments without breaking lines, using the “reflect” mode to fill gaps following rotation. 
Contains modified Copernicus Sentinel–1 data 2020. 

2.4.3. U–Net Model 

The deep learning model for image segmentation that was chosen is the modified U–Net 
architecture proposed by Jerin Paul [36]. This architecture has 58 layers, divided into a downsampling 
encoder and upsampling decoder parts, which are connected via skip connections. The convolution 
layers are all 3 × 3, with exponential linear units as the activation and He normal initialiser. The only 
exception to this is the last output layer, which is a 1 × 1 convolution layer with sigmoid activation. In 
between the convolution layers, batch normalisation, max pooling and data dropout layers were 
included. The data dropout layers applied a dropout rate varying from 0.1 to 0.3. The total number of 
parameters were 1,946,993. The trainable parameters were 1,944,049. All models were initiated with 
random weights. 

The input to the network included up to three layers of average backscatter intensity in VV and 
VH, and average coherence. The models returned segmented images for each input patch, with pixels 
ranging in value from 0 to 1. Values closer to 0 have a high prediction probability of belonging to the 
class of non–roads, while values closer to 1 have a high probability of being a road. 

2.4.4. Loss Function and Performance Metric 

Road detection in desert regions is an unbalanced segmentation task, since in any given scene there 
are many more pixels falling into the non–road category than into the road category. The loss function 
applied during model training, and the accuracy metric to assess the performance of the model, need 
to take into account this class imbalance. The loss function that was applied in this case is the soft Dice 
loss. Based on the Dice coefficient, the soft Dice loss normalises for class imbalance. For the accuracy 
metric, it was decided to use the Jaccard index, also known as the Jaccard similarity coefficient, or 
intersection over union (IoU), which likewise considers class imbalance [47]. 

The formulae for soft Dice loss and the Jaccard index for a model predicted class (A) and a known 
class (B) are the following: 

Soft Dice Loss = 1 −  ଶ|஺∩஻||஺|ା|஻| (1) 

Jaccard index = |஺∩஻||஺∪஻|  (2) 
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2.4.5. Hyperparameters and Model Training 

Different approaches were attempted for the model training. One approach was to include the 
available training data from all areas with the aim of training one model applicable to every sand 
covered desert landscape with characteristics similar to those of the test areas. It was soon apparent 
that this was not feasible, due mainly to the greatly varying sand dune forms between different desert 
environments. This led to systematic false detections and almost no positive road detections over any 
area. Another approach was to choose one model, which would be trained for each specific desert 
region, with the available training data from that area. With this approach, even with much less training 
data, the model performed much better. 

In addition to experimenting with the geographic coverage, different types of Sentinel–1 input 
were tested. Various combinations of the VV and VH backscatter and coherence were included as 
inputs to the model, from individual bands, to combinations of two, or all three. 

The model hyperparameters are listed in Table 2. After testing different values for each parameter, 
these provided the best results for all the regions in which the method was applied, and with all the 
options for the SAR inputs. The only area specific parameter to be adjusted is the number of steps per 
epoch, which depends on the amount of training samples over a given region. Apart from the steps per 
epoch, these are the same hyperparameters as is in the model of Jerin Paul [36]. 

Table 2. Model hyperparameters. 

Model Hyperparameters 

Epochs 100 

Steps per 
epoch 

Training samples/Batch size, (minimum of 
50) 

Learning rate 0.0001 

Batch size 16 

 
After randomly shuffling all samples, 10 percent were set aside for validation to assess the 

performance of the model during training, and another 10 percent for testing. After a review of this, a 
second round of training was carried out using all available data. Given the incompleteness of the OSM 
data in any given area, and the poor overlap between the OSM and detected roads discussed above, a 
more reliable accuracy assessment was carried out with the test data comprising manually digitised 
roads over subset areas. This is described in Section 2.5 below. 

2.4.6. Post–Processing and Final Map Generation 

Over each area, having trained the model with the image patches containing the available OSM 
data, the model was applied to predict the presence of roads in all patches. The pixels in the resulting 
segmented patches ranged from 0 to 1. Values closer to 0 represented a high probability of belonging 
to the no–road class, while those closer to 1 were considered likely to be roads. To create binary masks, 
all pixels with a value of less than 0.5 were converted to 0, and those greater than or equal to 0.5 were 
converted to 1. The patches were then put together to reconstruct the original image scene. Finally, the 
resulting single raster mask was converted to a vector layer containing all the predicted roads as 
polygon vectors in one shapefile. 

2.5. Performance Evaluation 

A performance evaluation of the methodology was carried out by manually digitising all the roads 
in subset areas within each AOI, and comparing these with the model detections through the 
calculation of the Jaccard similarity coefficient and the rank distance. The rank distance in turn is a 
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measure which combines the completeness (percentage of reference data covered by model detections), 
and correctness (percentage of model detections covered by reference data) [48]. A performance 
evaluation with manually digitised reference data was necessary given the following limitations of 
using the OSM data as a reference. 

1. The quality of the OSM data varied, in some cases road meanders were represented by 
straight lines (see Figure 5). This caused a misregistration between actual and OSM roads. 
In these cases, the U–Net model could still associate the same roads in the SAR and OSM 
masks by downscaling through layers of convolution filters, but for the automatically 
calculated IoU, the misregistration could mean no overlap (unless large buffers are used), 
and hence the SAR and OSM roads would not match. 

2. In addition to the misregistration between the modelled and reference data, another 
challenge was the missing roads in the OSM data. The intention of the methodology was 
to detect roads unrecorded in the OSM dataset, but in the same geographic area. The 
chances of roads being missed in many of the reference OSM mask patches was therefore 
high. In the interest of demonstrating a robust and scalable methodology, manual editing 
to improve the mask patches was avoided. 

Figure 5 demonstrates the success in using, in some cases, low quality OSM data to train the U–
Net model (accurate detections despite misregistration of the OSM with actual roads), while also 
highlighting the various problems with using OSM data as a reference for performance evaluation: the 
varying width of roads, missing roads in the OSM data, misregistration of the OSM. The top part of this 
figure shows the mask of detected roads over a part of the North Sinai AOI, while the lower part is a 
true colour Sentinel–2 image acquired on 2 August 2019 (roughly in the middle of the Sentinel–1 time 
series used as an input to the model). White lines in the mask correspond with road detections. In this 
case the model detected the correct location of the road despite the misregistration of the OSM, which 
was used to train the model. Roads branching off the main road segment are not in the OSM dataset, 
but have been detected by the model (apart from one branch which was not detected). 

Discrepancy between OSM, detected and true roads 

 

Figure 5. Above: mask of detected roads. Below: Sentinel–2 image. Red line shows the Open Street Map 
(OSM) road data overlaid. The yellow arrows highlight the misregistration between the OSM road and 
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both detected (mask) and actual (Sentinel–2) roads. Green arrows show roads which are not in the OSM 
dataset. Blue arrows point to a road which was neither in the OSM data, nor detected by the model. 
Contains modified Copernicus Sentinel–2 data 2020. 

These challenges resulted in the automatically calculated Jaccard index rarely exceeding 0.5 during 
model training, and the loss function seldom dropping below 0.3. As a relative assessment of 
performance, this was sufficient for model training and validation. For a more accurate quantitative 
assessment of results however, this was not sufficient, and a more thorough technique was adopted. 

For a more robust accuracy assessment, the following was carried out: For each area, a 0.2 × 0.2 
degree image subset was randomly selected. To avoid subsets with sparse detections, a threshold was 
applied to enable only those with at least 7000 road pixels to be considered. In the selected subsets, all 
roads were manually digitised as vectors, using the Sentinel–1 data and Sentinel–2 data from the same 
date range as the references. The model detected roads for the same area were similarly digitised. The 
resulting vector layers were visually inspected and the model detected vector components were 
assigned labels for true or false positives. All vector layers were converted to raster (one pixel width). 
A confusion matrix was created by quantifying the true and false positives and negatives. Based on this 
confusion matrix, the Jaccard index was calculated. Any OSM roads present in the selected subsets 
were discarded from the analysis since these had been used for training. While this method was suitable 
for quantifying true or false positives and negatives, another metric was required to assess the 
positional accuracy of the detections. For this, buffers of a two pixel width (40 m) were first created 
around both the reference and model detections. The percentage of reference data covered by model 
detections (completeness) and the percentage of model detections covered by the reference data 
(correctness) were calculated [15]. From these, the rank distance was derived, using the formula: 𝑅𝑎𝑛𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≡ ට% ஼௢௠௣௟௘௧௘మା% ஼௢௥௥௘௖௧మଶ  [47] (3) 

The two pixel buffer was necessary to account for the varying width of roads and errors in manual 
digitising, but is a reasonable value when compared to other studies, e.g., [4]. 

The manually digitised reference subsets in each AOI could have been used to assess the accuracy 
of the OSM data. However, each validation subset only had a small quantity of OSM roads—in the 
Taklimakan Desert subset there were none at all (the minimum 7000 road pixel threshold applied only 
to model detected roads). An assessment of the accuracy of these would not have been representative. 
Moreover, there have been several dedicated studies on the accuracy of OSM data, e.g., [49–51]. 

3. Results 

The model performed well in all areas, despite the diverse landscape forms and road conditions 
encountered in each. Especially in VV polarisation, many sand dunes produced a high backscatter. This 
is typical when the incidence angle of the SAR system equals the angle of repose of sand dunes [52]. 
The model proved nonetheless capable of distinguishing roads from sand dunes, rock formations and 
other natural features with similar backscatter characteristics as roads. 

Of the various SAR input data types, the VV backscatter average alone proved the most effective for 
both the North Sinai Desert and Grand Erg Oriental. Only for the Taklimakan Desert site did all three 
layers of coherence, VV backscatter and VH backscatter yield the best results. Table 3 lists the IoU 
accuracies for each of the single SAR input layers, and for all three input layers for each of the AOIs. The 
fact that the use of all the input layers improved the results in only one area shows that more information 
provided to a model is not necessarily better. The decreased accuracy caused by the inclusion of the VH 
backscatter and coherence is perhaps due to the increase in speckle in these layers. This may have 
hindered the models in distinguishing particularly challenging roads, such as those that may be narrow, 
unpaved, or partially buried. The VV backscatter return over this type of landscape is generally much 
stronger than the VH backscatter, and enables a clearer distinction of roads. The exception of the 
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Taklimakan desert is perhaps due to the predominant type of road surface and surrounding context of 
sand dunes. The results for each area are discussed in more detail in the subsections below. 

Table 3. Intersection over union (IoU) accuracy of road detection models with different SAR input types. 
The best results for each area are highlighted in bold. 

SAR Input to U–Net Model 
IoU Accuracy (in %) 

North 
Sinai 

Grand Erg 
Oriental 

Taklimakan 
Desert 

VV 89 84 68 

VH 65 57 77 

Coherence 64 66 71 

VV + VH + Coherence 74 66 89 

3.1. North Sinai Desert 

Figure 6 shows roads detected by the model over a part of the North Sinai AOI. The area includes 
the location of the randomly selected subset (0.2 × 0.2 degree area) in which a more accurate 
performance evaluation was carried out. This subset is shown in more detail in Figure 7. Figure 8 shows 
the corresponding area of the SAR layer used as a model input, which was the Sentinel–1 multitemporal 
backscatter average of the VV polarisation only. Figure 9 shows a Sentinel–2 true colour image of the 
subset with the available OSM data for this area overlaid. The Sentinel–2 image was acquired on 2 
August 2019, which is approximately in the middle of the Sentinel–1 time series (see Table 1). 

The confusion matrix for the accuracy assessment is shown in Table 4. Table 5 shows the values of 
various accuracy indices. The average Jaccard similarity coefficient is 89% and the rank distance is 80%. 
There were few false positives, i.e., non–roads classified as roads, despite the many natural features of 
high backscatter that could have been misinterpreted by the model as roads, such as sand dune ridges. 
However, there were many more false negatives, i.e., undetected road segments. In some cases, the 
broken segments shown in the mask were correct in that the actual road was partially buried in 
segments (see Figure 10 and arrows in Figures 7–9). 

The VH backscatter over the entire area was much lower, and road features much less clearly 
defined, particularly those that were unpaved and partially sand covered. This may be the reason why 
the VH backscatter input degraded the results. The coherence layer highlighted very clearly the roads, 
but overall had much more speckle, which is possibly why this also reduced the quality of the detection. 
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Detected roads for part of North Sinai AOI. 

 
Figure 6. Detected roads for part of the North Sinai AOI. The yellow rectangle shows a 0.2 × 0.2 degree 
subset over which roads were manually digitised and a performance evaluation carried out. This area 
is shown in more detail in Figure 7. 

Detected roads for randomly selected subset of North Sinai AOI 

 

Figure 7. Detected roads for a randomly selected 0.2 × 0.2 degree subset over the North Sinai area. White 
lines correspond with detected roads. The red arrow points to an example of a buried road segment. 
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Sentinel–1 VV backscsatter average input to North Sinai model 

 
Figure 8. The Sentinel–1 average vertical transmit–vertical receive (VV) backscatter used as an input to 
the model for North Sinai. The area is the same as that of Figure 7. Contains modified Copernicus 
Sentinel–1 data 2020. 

Sentinel–2 image of North Sinai AOI subset 

 
Figure 9. Sentinel–2 image of the same area as in Figure 7. The image was acquired on 2 August 2019 
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red, 
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green, and blue, respectively. Overlaid in red are the available OSM roads for this area. Contains 
modified Copernicus Sentinel–2 data 2020. 

Detail of partially buried road 

 
Figure 10. Close–up of the buried road segment shown in the very high resolution (VHR) optical data 
available on Google Earth Pro. The area corresponds with that shown by the red arrow in Figures 7–9. 
The imagery date is reported to be 5 May 2010. 

Table 4. Confusion matrix for true and detected roads, with only the VV backscatter as input, calculated 
for the same area as in Figures 7–9. 

North Sinai Desert Confusion 
Matrix 

Predicted 
Roads 

Predicted 
Non–
Roads 

True roads 7671 2060 

True non–roads 218 4,881,581 

 

Table 5. Accuracy indices calculated for the North Sinai results. 

IoU Accuracy Rank Distance Completeness Correctness 

89% 80% 71% 88% 

 

3.2. Grand Erg Oriental 

Figure 11 shows the roads detected by the model over a part of the Grand Erg Oriental AOI. The 
area includes the location of the randomly selected subset (0.2 × 0.2 degree area) in which a more 
accurate performance evaluation was carried out. This subset is shown in more detail in Figure 12. 
Figure 13 displays the Sentinel–1 input (VV backscatter) of the same area, and Figure 14 the Sentinel–2 
image with the location of OSM roads overlaid. The Sentinel–2 image was acquired on 23 July 2019, 
which is roughly in the middle of the Sentinel–1 time series (see Table 1). 
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The confusion matrix for the accuracy assessment is shown in Table 6. Table 7 shows the values of 
various accuracy indices. The average Jaccard similarity coefficient calculated is 84% and the rank 
distance is 76%. As with the North Sinai evaluation, there were a few false positives, but many more 
false negatives. However, the evaluation subset area contains infrastructure in addition to roads. A 
large segment of missed detections, for example, includes a road running parallel with a large 
infrastructure installation (see Figure 15). Given the width of the structure, in particular as it appears 
on the Sentinel–1 data (Figure 13), the model may have misinterpreted it as a natural feature. 

As with the North Sinai area, the VH backscatter over the entire area was much lower, with road 
features less clearly defined, while the coherence layer had greater speckle. These may be the reasons 
why the results were better with the VV backscatter alone. 

 
Detected roads for part of Grand Erg Oriental AOI 

 
Figure 11. Detected roads for part of the Grand Erg Oriental AOI. The yellow rectangle shows a 0.2 × 
0.2 degree subset over which roads were manually digitised and a performance evaluation carried out. 
This area is shown in more detail in Figure 12. 
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Detected roads for randomly selected subset of Grand Erg Oriental AOI 

 
Figure 12. Detected roads for a randomly selected 0.2 × 0.2 degree subset over the Grand Erg Oriental 
AOI. White lines correspond with detected roads. The red arrow points to an example of a missed 
detection, perhaps due to mixed infrastructure. 

Sentinel–1 VV backscsatter average input to Grand Erg Oriental model 

 
Figure 13. The Sentinel–1 average VV backscatter used as an input to the model for the Grand Erg 
Oriental. The area is the same as that of Figure 12. Contains modified Copernicus Sentinel–1 data 2020. 
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Sentinel–2 image of Grand Erg Oriental AOI subset 

Figure 14. Sentinel–2 image of the same area as in Figure 12. The image was acquired on 23 July 2019 
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red, 
green, and blue, respectively. Overlaid in yellow are the available OSM roads for this area. Contains 
modified Copernicus Sentinel data 2020. 

Detail of mixed infrastructure 

 
Figure 15. Close–up of a road segment in VHR optical data available on Google Earth Pro. The area 
corresponds with that shown by the red arrow in Figures 12–14. The road segment was not detected by 
the model. As evident in the figure, the road runs parallel with other infrastructure, which may have 
affected the ability of the model to correctly interpret the scene. The imagery date is reported to be 13 
September 2013. 
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Table 6. Confusion matrix for true and detected roads calculated for same area as in Figures 12–14. 

Grand Erg Oriental Confusion 
Matrix 

Predicted 
Roads 

Predicted Non–
Roads 

True roads 14,692 6430 

True non–roads 282 4,929,956 

Table 7. Accuracy indices calculated for the Grand Erg Oriental results. 

IoU Accuracy Rank Distance Completeness Correctness 

84% 76% 64% 86% 

3.3. Taklimakan Desert 

Figure 16 shows roads detected by the model over a part of the Taklimakan Desert AOI. The area 
includes the location of the randomly selected subset (0.2 x 0.2 degree area) in which a more accurate 
performance evaluation was carried out. This subset is shown in more detail in Figure 17. Figure 18 
shows the Sentinel–1 input as a red, green, and blue combination of VH and VV backscatter and 
coherence averages, respectively. Figure 19 shows a Sentinel–2 image of the same area. In this subset 
there were no OSM roads. The Sentinel–2 image was acquired on 31 July 2019, approximately in the 
middle of the Sentinel–1 time series (see Table 1). 

The confusion matrix for the accuracy assessment is shown in Table 8. Table 9 shows the values of 
various accuracy indices. The average Jaccard similarity coefficient calculated is 89% and the rank 
distance is 75%. As with the other areas, there were more false negatives than false positives. Compared 
to the other areas, there appear to be more paved roads, with straighter paths. The sand dunes are 
larger and do not have the characteristic lines of high backscatter apparent in the other two areas, 
although some sparse misclassifications still arise over natural features. 

This was the only area where the best results were obtained with all three SAR input layers of 
coherence, VV backscatter and VH backscatter. The backscatter over sand dunes is much lower in VH 
than VV, while the road features are still clearly defined, perhaps due to the high relative permittivity 
of the paved roads. This may be the added value of the VH layer. The coherence layer still displayed 
much speckle over the sand dunes, but the roads were very clearly defined, perhaps again due to the 
material of their construction. 

Sand drift encroachment on roads in the Taklimakan desert is a serious problem and many efforts 
have been made to mitigate the issue [7,53,54]. Figure 20 shows a road segment of the subset in VHR 
optical data available on Google Earth Pro, the date of which is reported to be 26 October 2014. The 
road is partially buried in this image, but the model output shows a continuous, unbroken line. It would 
seem that maintenance had been carried out on this road in between the date of the VHR optical image 
acquisition and the date range of the Sentinel–1 time series used as an input to the model. 
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Detected roads for part of Taklimakan Desert AOI 

 
Figure 16. Detected roads for part of the Taklimakan Desert AOI. The yellow rectangle shows a 0.2 × 0.2 
degree subset over which roads were manually digitised and a performance evaluation carried out. This 
area is shown in more detail in Figure 17. 

Detected roads for randomly selected subset of Taklimakan Desert AOI 

 
Figure 17. Detected roads for a randomly selected 0.2 × 0.2 degree subset over the Taklimakan Desert 
AOI. White lines correspond with detected roads. The red arrow points to an example of a formerly 
buried road segment. 
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Sentinel–1 VH, VV and Coherence input to Taklimakan Desert model 

 
Figure 18. Sentinel–1 colour composite of time series averages of the VH backscatter in red, VV backscatter 
in green, and coherence in blue. This comprised the input to the model for the Taklimakan Desert area. 
The extent is the same as that for Figure 17. Contains modified Copernicus Sentinel data 2020. 

Sentinel–2 image of Taklimakan Desert AOI subset 

 
Figure 19. Sentinel–2 image of the same area as in Figure 17. The image was acquired on 31 July 2019 
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red, 
green, and blue, respectively. Contains modified Copernicus Sentinel data 2020. 
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Detail of partially buried road 

 
Figure 20. Close–up of a road segment in VHR optical data available on Google Earth Pro. The area 
corresponds with that shown by the red arrow in Figures 17–19. The road appears to be partially buried, 
while the output of the model shows a continuous line. It would appear the road was cleared some time 
between the acquisition of this image and the date range of the Sentinel–1 time series used as the model 
input. The imagery date is reported to be 26 October 2014. 

Table 8. Confusion matrix for true and detected roads calculated for the same area as in Figures 17–19. 

Taklimakan Desert Confusion Matrix Predicted Roads Predicted Non–Roads 

True roads 11,077 2622 

True non–roads 428 4,940,949 

Table 9. Accuracy metrics calculated for the Taklimakan Desert results. 

IoU Accuracy Rank Distance Completeness Correctness 

89% 75% 69% 81% 

4. Discussion 

The road detection methodology proposed here aims above all to demonstrate the potential for 
low cost, but reliable mapping and monitoring of road networks, that can easily be adapted and 
transferred to extensive regions. It has been applied to three desert areas, each covering around 47,500 
km2, each corresponding to the footprint of one Sentinel–1 IW scene. The results over all three areas 
have achieved an IoU accuracy of over 80%. This accuracy metric takes into account the class imbalance, 
which is typically the case for road detection in satellite imagery, where in any given area the non–road 
pixels are expected to greatly outnumber the road pixels. The rank distance is over 75% in all the areas 
tested, which demonstrates the proximity (in completeness and correctness space) between the 
reference and model detected roads. The recent study of Abdelfattah and Chokmani [4], who also used 
Sentinel–1 for road detection over a similar area, could be considered a benchmark to assess the 
performance of the methodology described here. The correctness and completeness of detections 
reported in their study are at least 10 percentage points below those described in this paper, for each of 
the AOIs, and despite the fact that the buffers surrounding the reference objects and detections were 
larger (three pixels as opposed to two pixels in the study reported here). However, the authors did 
focus on smaller roads and tracks, while the research of this paper includes major roads in addition to 
smaller unpaved tracks, so this comparison needs to be treated with caution. 
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Each desert area in which the methodology was tested has different characteristics, such as diverse 
sand dune forms, varying predominant road types, and the presence of other infrastructure. Despite 
these differences, the algorithm performs well and therefore demonstrates robustness. Moreover, all 
the required input is free and open, including the satellite data from which roads are detected, and the 
OSM reference data. The methodology is hence cost–effective. To scale to other areas, the model does 
require training. Attempts to apply pre–trained models to the other AOIs resulted in a poor 
performance, probably due in large part to the greatly varying sand dune morphology in each area. 
However, the U–Net model architecture is particularly efficient, and training with one NVIDIA 
GTX1080 Ti GPU never took more than around 25 min. The capability of the algorithm to work well 
over multiple areas with the available OSM data, without manual intervention for reference dataset 
cleaning, demonstrates scalability. 

Despite the success of the model there are some limitations. While there were few false positives, 
a significantly higher number of false negatives were encountered, where the algorithm failed to detect 
roads. This was consistent across all test areas. Many of these false positives were due to the complexity 
of the context in which the road was situated. Some roads, for example, ran alongside other 
infrastructure, which in the resolution cell of the SAR input data could be misinterpreted as natural or 
other non–road features. A possible solution to mitigate these missed detections could be to expand the 
training set to include more OSM training samples over a wider area, or to include additional classes 
with a mixed infrastructure. 

Another limitation is related to the required input data. In order to reduce speckle while 
preserving the spatial resolution, speckle filtering was carried out in the temporal domain. This requires 
processing of a time series, which is computationally expensive, especially for the average coherence 
generation with SLC format data. However, in most cases it was demonstrated that the VV average 
backscatter alone produces the best results. Only in one case did the coherence improve the results of 
the detection, but not significantly. The added value of the coherence is perhaps in those cases where 
there is a high proportion of roads made from material characterised by a high coherence, i.e., those 
that have a stable surface, such as paved roads. These would contrast highly with the surrounding sand, 
where volume decorrelation causes low coherence. In cases where roads are unpaved, or partially sand 
covered, the coherence is perhaps too noisy, despite the multitemporal averaging, and may degrade 
the results. Particularly in less developed areas, where there may be fewer paved roads, the coherence 
processing could therefore be discarded in the interest of a more computationally efficient algorithm. 

The VH backscatter over all sites was much weaker than the VV. As with the coherence, the VH 
backscatter input only improved the detection results over the Taklimakan Desert site. Here, the VH 
backscatter was less pronounced over sand dunes, while still high enough over roads to enable their 
distinction. This may have helped reduce the ambiguity between the high backscatter encountered in 
the VV polarisation at certain sand dune inclinations with roads. Again, the unique suitability of the 
VH channel in this area alone may be due to the high relative permittivity of the roads, causing a high 
enough backscatter even in the weak cross polarisation channel. Elsewhere, however, the low 
backscatter return of the VH over less reflective roads may have contributed to the degradation of the 
results. 

In terms of the utility of the algorithm for operational road detection in desert areas, the low 
number of false positives are advantageous in any alert system. Committing resources to detect human 
activity in remote areas is expensive and time consuming, especially in developing countries such as in 
North Africa where the means for such activities may be limited. As a monitoring system, the chosen 
time series length constrains the maximum frequency of monitoring to at least two and a half months. 
It may be possible to reduce this and still achieve good results. However, any changes significant 
enough to be observed at the spatial scale of the model are unlikely to occur at temporal frequencies 
significantly higher than this. 

The algorithm proposed here is only a prototype. Improvements could be made for example to 
reduce the number of missed detections in challenging areas, perhaps by expanding the training set, 
and including other classes. It could be interesting also to assess the extent to which the Sentinel–1 
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stripmap (SM) mode may improve detections. While the higher resolution SM mode (around 10 x 10 m 
in GRD format) is not as systematically available as the Sentinel–1 IW mode, it may nonetheless be 
useful to detect smaller roads and tracks that may not be resolved in IW mode. This is particularly 
relevant for security applications [4]. However, the methodology applied with Sentinel–1 IW data 
nonetheless demonstrates the potential for regular and large–scale mapping and monitoring of desert 
roads. 

5. Conclusions 

The methodology proposed here for road detection in desert areas, using Sentinel–1 SAR data as 
an input and OSM data for training, has the potential to provide a robust, cost–effective and scalable 
solution for the mapping and monitoring of road networks in desert areas. This methodology is still a 
prototype that has been tested in three areas, each the size of one Sentinel–1 IW scene. More work is 
required to test its performance over a wider area and over different desert landscape types. Possible 
improvements with the Sentinel–1 SM mode could be explored. While the accuracy assessments over 
the AOIs resulted in Jaccard similarity coefficients above 84% and rank distances of over 75%, more 
work still needs to be done to improve the accuracy, in particular to reduce the number of missed 
detections. Future improvements may include the addition of other infrastructure classes, or mixed 
classes, to account for roads in the proximity of other structures. The methodology may be further 
tested to quantify model improvement according to the quantity of training data. Additionally, more 
experimentation can be carried out with additional data augmentation techniques, such as those that 
modify the intensity of pixels, rather than their spatial position alone. More importantly, the utility of 
the system needs to be tested by real end users. Its success should be measured against the available 
systems already in place. Such pre–existing systems are likely to vary between different users and 
geographic regions. Any improvements should be tailored to meet specific user requirements. The 
objective of the work presented here is to assess the benefits of EO and open data in combination with 
deep learning for cost–effective and large–scale monitoring. The ambition is to ultimately improve 
operational road detection and monitoring to support decision–making. With an increasing global 
population, dynamic migration patterns, and with expanding and evolving road networks, the need 
for efficient monitoring systems is ever more critical. 
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