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Abstract: We evaluated six empirical and semianalytical models of the diffuse attenuation coefficient at
490 nm (Kd(490)) using an in situ dataset collected in the Pearl River estuary (PRE). A combined model
with the most accurate performance (correlation coefficient, R2 = 0.92) was selected and applied for
long-term estimation from 2003 to 2017. Physical and biological processes in the PRE over the 14-year
period were investigated by applying satellite observations (MODIS/Aqua data) and season-reliant
empirical orthogonal function analysis (S-EOF). In winter, the average Kd(490) was significantly
higher than in the other three seasons. A slight increasing trend was observed in spring and summer,
whereas a decreasing trend was observed in winter. In summer, a tongue with a relatively high Kd(490)
was found in southeastern Lingdingyang Bay. In Eastern Guangdong province (GDP), the relatively
higher Kd(490) value was found in autumn and winter. Based on the second mode of S-EOF, we found
that the higher values in the eastern GDP extended westward and formed a distinguishable tongue
in winter. The grey relational analysis revealed that chlorophyll-a concentration (Cchla) and total
suspended sediment concentration (Ctsm) were two dominant contributors determining the magnitude
of Kd(490) values. The Ctsm-dominated waters were generally located in coastal and estuarine
turbid waters; the Cchla-dominated waters were observed in open clear ocean. The distribution of
constituents-dominated area was different in the four seasons, which was affected by physical forces,
including wind field, river runoff, and sea surface temperature.
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1. Introduction

The light diffuse attenuation coefficient (Kd(λ)) in aquatic systems is defined by the exponential
decrease in the irradiance with depth [1,2]. Kd(λ) is an ecologically important water property that
provides an estimate of the availability of light to underwater communities, which influences ecological
processes and biogeochemical cycles in natural waters [3,4]. The estimation of Kd(λ) is also critical for
understanding physical processes such as sediment resuspension and heat transfer in the upper layer
of the ocean [5–7].

The in situ Kd(λ) is traditionally measured by the ocean color scientific community at 490 nm,
Kd(490), following the primary studies in the 1970s [8]. Traditional field measurement of Kd(λ) is costly
and time consuming, but recent advances in satellite sensors have provided synoptic and frequent
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measurements of various bio-optical products on large scales, considerably improving spatial and
temporal resolution compared to in situ data [9]. Today, several empirical and semianalytical
models of Kd(490) are commonly used to derive the Kd(490) maps from satellite sensors such
as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) [10,11], Moderate Resolution Imaging
Spectroradiometer (MODIS) [4,12], and the Medium Resolution Imaging Spectrometer (MERIS) [6,13].

However, no Kd model can be applied globally. For example, no model developed for Case 1 open
ocean waters can be used in turbid coastal environment [2,11,13].

The Pearl River is well known for its complex river networks, low lying terrain, and intense rainfall
events. The water composition varies widely both spatially and temporally in the Pearl River estuary
(PRE). Given the need to understand the light environment in the PRE waters, we aimed to evaluate
the accuracy of six total empirical or semianalytical models for Kd(490) retrieval. Brief descriptions of
the models are given in Section 2.2.4. The model that performed best was selected to construct Kd(490)
maps in PRE based on long-term MODIS/Aqua imagery. Seasonal variability and spatial distribution
of Kd(490) were analyzed by applying season-reliant empirical orthogonal function (S-EOF) analysis.
The dominant water constituents in different regions were determined using grey relational analysis
(GRA). The influences of physical factors on the Kd(490) were also discussed.

2. Materials and Methods

2.1. Study Area

The PRE is located in the northern South China Sea (NSCS), known as a subtropical and high
biological productivity estuary. The PRE is characterized by a complicated hydrodynamic system
regulated by many physical factors, including bottom topography, river discharge, wind field, and a
coastal current [14]. The PRE is influenced by the East Asia monsoon system, characterized by
prevailing northeasterly and southwesterly winds in winter and summer, respectively [15,16]. In this
study, season refers to those for the northern hemisphere, for example, summer refers to June, July,
and August. As China’s third largest river, the Pearl River flows into the PRE through eight main
outlets [17], carrying a large amount of organic and inorganic suspended matter, with an annual
average discharge of 105 m3

·s−1 [18]. With increasing human activity, the PRE is contaminated by
industrial pollution, agricultural runoff, and domestic sewage [19,20].

2.2. Data Sources and Processing

2.2.1. In Situ Measurements

A cruise was conducted on 5 June 2012 to collect water samples and the water spectrum.
Positions for all sampling stations are plotted in Figure 1. The field spectral measurements were
composed of two parts: the above-water remote sensing reflectance (Rrs) and the downwelling
irradiance within the water column. To obtain the background water column conditions, water samples
from the 15 sampling stations were used for measurement of chlorophyll-a (Cchla), total suspended
sediment (Ctsm), absorption coefficient for phytoplankton (ap(λ)), and colored dissolved organic matter
(CDOM, ag(λ)) (Table 1).

The above-water Rrs was measured using a spectroradiometer (USB4000, Ocean Optics, Inc.,
Dunedin, FL, USA) following the National Aeronautics and Space Administration (NASA) ocean-optics
standard protocol [21]. The upward radiance (Lu), downward sky radiance (Lsky), and radiance from
standard spectra on a reference plaque (Lpla) were measured, and Rrs was calculated using the following
equation:

Rrs(λ) = ρpla(λ)
⌊
Lu(λ) − ρ f (λ)Lsky(λ)

⌋
/
⌊
πLpla(λ)

⌋
(1)

where λ is the wavelength, ρpla is the reflectance of the plaque provided by the manufacturer (Ocean
Optics, Inc., Dunedin, FL, USA), ρf is the water surface Fresnel reflectance, where a value of 0.028 was
taken for wind speeds of less than 5 m·s−1.
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To evaluate the MODIS-based Kd(490) retrieval models, in situ Rrs was aggregated to simulate
MODIS/Aqua Rrs according to the following equation [22–24]:

Rrs(Bi) =

∫ λn

λm
RSR(λ) ∗Rrs_meas(λ)dλ∫ λn

λm
RSR(λ)dλ

(2)

where Rrs(Bi) denotes the simulated Rrs for the ith band of MODIS/Aqua, with integration from λm

to λn; Rrs_meas(λ) denotes the field-measured Rrs(λ); and RSR(λ) denotes the MODIS/Aqua spectral
response function.Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 20 
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Figure 1. Study area and the location of sampling stations during the survey on 5 June 2012.

Table 1. Background Pearl River estuary (PRE) water column conditions from field measurements.
The level of absorption coefficients in the PRE are represented by ap(443) and ag(443).

Period n ap(443) (m−1) ag(443) (m−1) Ctsm (g·m−3) Cchla (mg·m−3)

5 June 2012 15 0.31–1.61 0.12–0.58 4.16–25.70 1.52–9.67

Downwelling irradiance within the water column was measured with a TriOS-RAMES
hyperspectral spectroradiometer (TriOS GmbH, Oldenburg, Germany). The spectroradiometer
recorded irradiance signal in the range of 320 to 950 nm with a wavelength resolution of 3.3 nm.
The TriOS-RAMES instrument was slowly hand-lowered at a stable speed from the surface to a water
depth of about 5 m and set to a sampling rate of one sample every five seconds. Meanwhile, a pressure
sensor recorded the corresponding depth of water. By releasing the TriOS-RAMES instrument (TriOS
GmbH, Oldenburg, Germany) into water twice, two profiles of the downwelling irradiance were
collected. The two profiles were averaged to minimize the effect of near-surface wave focusing.
The natural logarithm of the measured irradiance was plotted against depth, and an estimate of Kd(λ)
was acquired from the resulting slope [25]:

Kd(λ, z) = ln[Ed(λ, z)/Ed(λ, z + ∆z)]/∆z (3)
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where λ is the wavelength, Ed(z) is the downwelling irradiance at depth z, and ∆z is the infinitesimal
thickness at depth z.

2.2.2. MODIS/Aqua Imagery

The Level-1B MODIS/Aqua ocean color dataset and the geolocation dataset from 2003 to 2017 were
obtained from the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed
Active Archive Center (DAAC). Imagery was preprocessed using the SeaWiFS data analysis system
(SeaDAS, version 7.5.1). The Management Unit of the North Seas Mathematical Models (MUMM)-based
atmospheric correction [26] and an iterative f /Q Bidirectional Reflectance Distribution Function (BRDF)
correction [27–30] were used to acquire accurate Rrs values. Flags were used to mask contamination
from land, clouds, sun glint, and other potential disturbances to the radiance signal.

2.2.3. Ancillary Data

The wind field dataset was obtained from the National Centers for Environmental Prediction
(NCEP) Climate Forecast System Version 2 (CFSv2). The model is fully coupled, representing the Earth’s
atmosphere, oceans, land, and sea ice [31]. The mixed layer depth (MLD), defined as the depth where the
density is equal to the sea surface density plus an increase in density equivalent to 0.8 ◦C, was acquired
from the global ocean Argo gridded dataset (BOA_Argo, provided by the China Argo Real-time Data
Center, ftp://data.argo.org.cn/pub/ARGO/BOA_Argo/) [32]. The monthly river runoff was acquired
from the Chinese River Sediment Bulletin. The Level-3 MODIS/Aqua sea surface temperature (SST)
dataset was obtained from the Ocean Color Website (https://oceancolor.gsfc.nasa.gov/l3/), a website that
provides the derived geophysical variables that have been aggregated/projected onto a well-defined
spatial grid during a well-defined time period.

2.2.4. Models for Kd(490) Retrieval

At present, the standard methods for Kd(490) estimation are roughly classified into three
types: (1) empirical relationship between Kd(490) and apparent optical properties (AOP), including
water-leaving radiance or reflectance [11,33,34]; (2) empirical relationship between Kd(490) and
chlorophyll-a based on regression analyses [35]; and (3) semianalytical approaches based on radiative
transfer models [1,36]. These three types of models, six models in total (Table 2), were evaluated in the
PRE waters using the in situ dataset.

Table 2. Description of different algorithms for Kd(490) retrieval, where nLw denotes normalized
water-leaving radiance, θa denotes above surface solar zenith angle, a denotes absorption coefficient,
bb denotes backscattering coefficient, Kd

clear(490) denotes the model for open clear water, and Kd
turbid(490)

denotes the model for coastal turbid water (AOP refers to apparent optical properties).

Type Form of Algorithm Reference

Empirical model with AOP Kd(490) = 0.016 + 0.15645[nLw(490)/nLw(555)]−1.5401 Mueller, 2000

Empirical model with Cchla Kd(490) = 0.01666 + 0.0773Cchla
0.6715 Morel et al., 2001

Semianalytical model Kd(490) = (1 + 0.005θa)a(490) + 4.18
(
1− 0.52e−10.8a(490)

)
bb(490) Lee et al., 2005

Empirical model with AOP

IFRrs(490)/Rrs(555) ≥ 0.85Kd(490) = 10(−0.843−1.459X−0.101X2
−0.811X3)

with X = log10[Rrs(490)/Rrs(555)]
ELSEIF Rrs(490)/Rrs(555) < 0.85 Kd(490) = 10(0.094−1.302X+0.247X2

−0.021X3)

with X = log10 [Rrs(490)/Rrs(665)]

Zhang and Fell, 2007

Semianalytical model Kd(490) = (1−W)Kd
Clear(490) + WKd

Turbid(490)
with W = −1.175 + 4.512Rrs(670)/Rrs(490)

Wang et al., 2009

Empirical model with AOP Kd(490) = 0.011405 + 0.92[Rrs(670)/Rrs(490)] Tiwari et al., 2014

2.2.5. S-EOF and Grey Relational Analyses

The S-EOF analysis, proposed by Wang and An (2005) [37], was applied here to detect the spatial
patterns and temporal variability of Kd(490) in different seasons. The processing steps of S-EOF

ftp://data.argo.org.cn/pub/ARGO/BOA_Argo/
https://oceancolor.gsfc.nasa.gov/l3/
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analysis are as follows: Firstly, the time series of seasonal Kd(490) anomaly was calculated. Secondly,
the EOF was analyzed based on the matrix composed of the four seasons. Finally, each S-EOF mode
containing four spatial modes, which represented the spatial patterns of Kd(490) in the four seasons,
and a corresponding principal component time series were obtained.

GRA is an important part of grey system theory, which is used to determine the relational degree
among factors according to the similarities in their geometry [38]. The GRA was applied here to
identify the dominant water constituents (total suspended matter, phytoplankton, and dissolved
matter) affecting the spatial distribution and temporal variation of Kd(490). In GRA, the reference series
of Kd(490) and comparison sequences (water constituents, including Ctsm, Cchla, and adg(443)) were
constructed in advance to calculate the grey relational grade (GRG), which is a measure of similarity
between the reference sequence and comparison sequences. Details about the calculation of GRG were
described by Liu and Lin (2005) [39] and Wan et al. (2019) [40].

2.2.6. Performance Assessment

To compare the performance of different Kd(490) retrieval models, several statistical parameters
were used: the determination coefficient (R2), root mean square error (RMSE), mean absolute difference
(MAD), and mean absolute percentage difference (MAPD), which are calculated as:

R2 = 1−

∑N
t=1

(
xmt − xpt

)2∑N
t=1(xmt − xm)

2 , (4)

RMSE =

√√√
1
N

N∑
t=1

(
xmt − xpt

)2
, (5)

MAD =

∑N
t=1

∣∣∣xmt − xpt
∣∣∣

N
, (6)

MAPD(%) =
100
N

∑N

t=1

∣∣∣∣∣xmt − xpt

xmt

∣∣∣∣∣, (7)

where xm and xp denote the measured and predicted samples, respectively; xm denotes the mean value
of the measured samples; and N is the number of samples.

3. Results

3.1. Model Performance

We evaluated the six different models with MODIS/Aqua spectral bands or Cchla. The evaluation
was based on the comparison of the model-derived Kd(490) with in situ measured Kd(490) collected
from the PRE on 5 June 2012. Figure 2 shows scatterplots between the in situ measured and different
models’ Kd(490) retrievals, and Table 3 lists the statistical parameters. The results provided by both
Mueller’s and Morel’s models constantly underestimated the Kd(490) compared with the in situ dataset
for the PRE, with RMSEs higher than 1.1 m−1, MADs close to 1.0 m−1, and MAPDs up to 70%. The Morel
(empirical model with Cchla) and Mueller (empirical model with water-leaving radiance) models not
only underestimated the in situ values of the PRE, they had little to no sensitivity along a broad
gradient of in situ values.

By comparison, the other four models appeared to be more effective when applied in the PRE
waters. These four models performed well with R2 values higher than 0.9, RMSEs ranging from 0.31
to 0.70 m−1, MADs ranging from 0.27 to 0.54 m−1, and MAPDs ranging between 25.51% and 37.10%.
We found that Wang’s model, combining Lee’s algorithm for turbid waters and Mueller’s algorithm
for clear waters, was a better choice for Kd(490) retrieval in the PRE waters. Comparison of Wang’s
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model to the other models showed that Wang’s model had considerably lower RMSE and MAD values
and outperformed the other models, especially at relatively higher Kd(490) levels.
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Table 3. Statistical parameters between the in situ measured and different model-retrieved Kd(490);
models with best performing values are in bold.

Algorithm Slope Intercept R2 RMSE MAD MAPD (%)

Mueller 0.01 0.26 0.56 1.15 0.96 70.32
Morel 0.01 0.23 0.38 1.18 0.99 73.90
Zhang 0.47 0.33 0.92 0.49 0.37 26.52

Lee 0.60 0.39 0.91 0.31 0.27 25.51
Wang 0.60 0.39 0.91 0.31 0.27 25.51
Tiwari 0.28 0.36 0.92 0.70 0.54 37.10

3.2. Spatial Distribution and Temporal Variation

Given its superior performance of the six considered models, the long-term MODIS Kd(490)
products were derived based on Wang’s model. Significant seasonal variation was identified over
the entire study area from 2003 to 2017 (Figure 3). The mean values for the entire study area were
0.13 m−1 in spring, 0.12 m−1 in summer, 0.14 m−1 in autumn, and 0.21 m−1 in winter. In the coastal
area, the relatively high Kd(490) was observed in Lingdingyang Bay (LB) and western Guangdong
Province (GDP), where the highest value exceeded 4.0 m−1. In summer, the river plume extends
from LB southeastward into the coastal region, resulting in a wider distribution of high-value Kd(490).
The plume waters formed a tongue along the eastern GDP (located 113–115◦E, 22–22.5◦N) in some
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specific years, though this feature was not so remarkable in the seasonal climatological imagery due
to long-term average smoothing. The influence of the terrestrial input of nutrients from the Pearl
River is highest in summer. In addition, a southeast wind prevails and rainfall mainly occurs in
summer. The winds blow from PRE to the middle shelf. The winds control the spatial pattern of Kd(490)
distribution in the PRE. In the eastern GDP, relatively higher Kd(490) values were found in autumn
and winter, whereas lower values were observed in spring and summer. This phenomenon is closely
correlated with the coastal upwelling along the eastern GDP coast [41,42]. Chen et al. (1982) [43]
reported that a radiating current could generate an upwelling in winter near the Jieshi Bay in the
eastern GDP. In open ocean areas, the average Kd(490) values in winter and spring were higher than
that in summer and autumn. The prevailing northeasterly monsoon is stronger in the northern South
China Sea in winter, so the MLD was deeper. The mixing effects are relatively stronger in winter.
Figure 3 shows that the distribution of Kd(490) reveals the significant seasonal variation over the entire
study area during 2003 to 2017.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 20 
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Figure 3. Seasonal distribution of Kd(490) (m−1) from 2003 to 2017.

Due to the different physical factors affecting the variability of Kd(490) in nearshore and offshore
regions, we separated the two regions and analyzed the separate regions’ trends rather than averaging
the entire region for time series analysis (Figure 4). Two subregions, representing the turbid coastal
waters and the clear open ocean waters, were chosen (marked in Figure 1 by green boxes). During the
period from 2003 to 2017, the trend lines of the annual average in coastal and oceanic areas were around
0.3 and 0.1 m−1, respectively. No significant increasing or decreasing trend was observed. However,
in terms of seasonal variability, the average nearshore and offshore Kd(490) showed some differences.
The average Kd(490) in the coastal area was constantly high in the four seasons, with values ranging
between 0.2 and 0.4 m−1. An increasing trend was observed in spring, with a slope of approximately
0.006 m−1 per year. Compared to the coastal region, significant seasonal variability was observed in
the open ocean region. Average Kd(490) values during spring and winter were found to be higher than
during summer and autumn. Trend lines of spring and winter ranged from 0.1 to 0.2 m−1, whereas
those in summer and autumn ranged from 0.04 to 0.08 m−1. In winter, the average showed a significant
decreasing trend, with a slope of approximately −0.005 m−1 per year.
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3.3. GRG of Water Constituents

The optical properties were determined using the absorption or backscattering of different water
constituents. Here, three types of water constituents were considered; the monthly average Ctsm, Cchla,
and adg(443) were obtained based on the same atmospheric-corrected MODIS/Aqua Rrs dataset that
was used for Kd(490) retrieval. A band ratio algorithm was adopted for Ctsm retrieval [17]. The OC3M
algorithm was used for Cchla retrieval [44]. The generalized inherent optical property (GIOP) model
was applied for adg(443) retrieval [45,46]. The GRGs, which can be used to measure the relationships
between the Kd(490) and the three water constituents, were calculated pixel by pixel for the four seasons
(Figure 5).
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Figure 5. Grey relational grades (GRGs) between Kd(490) and water constituents in four seasons.

Spatially, GRGs between Kd(490) and Cchla or adg(443) were higher in the clear open ocean region
than in the coastal region, but the values contrasted between Kd(490) and Ctsm. The GRGs gradually
decreased from nearshore to offshore, similar to the distribution of Ctsm. Seasonally, the GRG was
higher in summer and autumn than in spring and winter between Kd(490) and Cchla, with most of the
pixels’ values being above 0.8. Similar phenomena were observed in the GRGs between Kd(490) and
adg(443), although the average value was lower than between Kd(490) and Cchla.
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3.4. S-EOF Analysis

An S-EOF analysis was performed after subtracting the long-term monthly climatological average
Kd(490). The first two modes and the corresponding principal components (PC) were separated,
which accounted for approximately 81.16% of the total variance (Table 4).

Table 4. Variance of the first three season-reliant empirical orthogonal function (S-EOF).

S-EOF Mode Single Contribution Rate Cumulative Contribution Rate

1 56.67 56.67
2 24.49 81.16

Figure 6 shows the PC time series of the first two S-EOF modes. All the values of PC1 were
positive, indicating that the seasonal fluctuation was stable. The strength of fluctuation was related
to the magnitude of the positive values. We observed a significant increasing trend during 2003 to
2006, whereas a slight decline was observed during 2007 to 2009. From the beginning of 2010 to 2014,
PC1 reached its highest value. After that, the values began to decline again. PC2 was characterized by
negative values during 2010 to 2014 and positive values in other years.
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Figure 7 shows the spatial distribution of the first mode of S-EOF, which explained approximately
56.7% of the total variance. Relatively high values were observed in LB and the western coast of
GDP in the four seasons, and the average values for spring were significantly lower than in the other
seasons. In summer, the high value area tended to expand to the southeastern LB. From autumn to
winter, we observed a high value area along the east coast of the GDP, whereas this high value area
disappeared in spring and summer.

The second mode of S-EOF explained 24.5% of the total variance. A relatively higher value area
was observed in LB during the four seasons (Figure 8). In summer, the high value area extended
eastward and formed a distinguishable tongue. Compared with spring and summer, higher values
were observed along the whole coastal zone of the PRE. Based on the second mode of S-EOF, we found
that the higher values in the eastern GDP extended westward and formed a distinguishable tongue
in winter.
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4. Discussion

4.1. Evaluation of Kd(490) Models

Both Mueller and Morel’s models were unsuitable for the PRE waters because these two models
were established for clear waters and only use the spectral information from the blue and green
bands. For clear waters where the downwelling attenuation is mainly determined by phytoplankton,
the blue–green band ratio is sensitive to the variability of the Cchla, resulting in a high accuracy
for Kd(490) retrieval. However, for turbid waters where the optical properties are more complex,
the blue–green band ratio demonstrates a lower sensitivity to the variability in Kd(490). The strong
absorption of phytoplankton and CDOM could lead to relatively smaller Rrs in the blue and green
bands [47,48]. In the PRE, the water constituents are from river inputs and coastal erosion. The Cchla,
CDOM, and Ctsm are very high, which may result in both Mueller and Morel’s models being inapplicable
in the PRE.

Tiwari’s model uses the reflectance ratio at 490 and 670 nm, Rrs(490)/Rrs(670), to derive Kd(490).
Zhang’s model is composed of two independent algorithms: one based on the ratio Rrs(490)/Rrs(555) for
clear waters and another based on the ratio Rrs(490)/Rrs(665) for turbid waters. When tested with the
independent PRE dataset, the predictions of these two models were statistically better compared to both
Mueller’s and Morel’s models. However, the two models also showed a pronounced underestimation
for higher Kd(490) values (>1.0 m−1), which might be due to the strong backscattering of suspended
sediments in the more turbid waters in the PRE. Lee’s model produced a suitable estimation, which uses
a relationship relating the backscattering coefficient at 490 nm to the irradiance reflectance just beneath
the surface within the red band. The performance of Wang’s model was the same as Lee’s, which was
attributed to the same approach used in both models for highly turbid waters. In Wang’s model,
the retrieval method switched to Mueller’s in clear waters, and the bridging of the two types of models
is based on a certain weighting function (W). The spectral information within the red band cannot be
ignored when retrieving Kd(490) for turbid waters. However the values of Rrs(670)/Rrs(490) tended to
be very low and, therefore, values of Kd(490) for clear waters were inaccurate. Therefore, Wang’s model,
which uses a combination of different algorithms for clear and turbid waters, is a better choice for
Kd(490) retrieval in the PRE waters.

4.2. Dominant Contributor to Kd(490) of Water Constituents

Attenuation of light in water depends on concentrations of particulate matter and dissolved matter,
which can be expressed by Ctsm, Cchla, and the absorption coefficient of CDOM [7,49]. The contribution
of these constituents varies for different types of water and within the same water body in different
seasons [50–52]. Since the calculated GRGs between Kd(490) and adg(443) were significantly lower than
the other two water constituents, only the GRGs of Ctsm and Cchla were considered. Figure 9 depicts the
subtraction of both GRGs. Positive values indicate the GRGs of Ctsm were higher than those of Cchla,
which means that Ctsm played a dominant role in Kd(490) variability. In contrast, negative values indicate
that the Cchla had a greater influence. The Ctsm-dominated were waters generally located in coastal
and estuarine turbid areas, whereas the Cchla-dominated waters were observed in open clear ocean.
Notably, waters dominated by adg(443) were rare. The strong absorption of CDOM in the blue bands
influenced the variability of Kd(490), particularly in waters with high CDOM concentrations. The major
sources of CDOM in the PRE were the river water and the human and industrial sewage [53,54].
However, in coastal or estuarine areas with highly turbid waters, Ctsm can reach over 100 g·m−3.
During the survey conducted on 5 June 2012, the range of measured ag(443) was 0.12 to 0.58 and the
range of measured ap(443) was 0.31 to 1.61. The latter was approximately three orders higher than the
former, indicating that the influence of total suspended sediments on Kd(490) was far greater than that
of CDOM.
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The distribution of dominant constituents showed some seasonality. In spring and summer,
the Ctsm-dominated waters were mainly distributed in LB and the western GDP. The Ctsm-dominated
area was confined close to the nearshore areas in the eastern GDP, indicating the impact of Cchla can
extend from offshore to nearshore regions. Compared with other seasons, the most significant feature
in summer was the southward extension of Ctsm from LB to the open ocean, which can probably be
attributed to the increase in river runoff. In autumn and winter, the Ctsm-dominated area was wider
in the eastern GDP than in spring and summer. The underlying reason for the change in area still
requires future research. Currently, the change in area in the eastern GDP during autumn and winter
might be indirectly caused by the decrease in Cchla rather than the variability of Ctsm. In autumn
and winter, the entire eastern GDP is influenced by monsoons. The northeasterly wind-induced
downwelling appears to decrease the amount of resuspension, resulting in the slight decrease in surface
Ctsm, which seems to contradict the expansion of the Ctsm-dominated area. However, the downwelling
also inhibits the growth of phytoplankton. The decrease in surface Cchla may prevent it from becoming
the primary factor affecting the variability of Kd(490).

4.3. Influence of Physical Factors on Kd(490) Variability

Figure 3 shows that the Kd(490) values in the PRE waters were markedly different in different
regions and in different seasons, and Figure 9 shows that the spatial variations can be attributed to the
changes in Cchla and Ctsm.

To understand the mechanism through which the seasonal Kd(490) varies, correlation analysis
was performed between several types of physical factors, including wind field, river runoff, MLD,
SST, and seasonal average Kd(490). The results showed that the average Kd(490) was highly correlated
with the wind speed (u-component) in summer, with an R2 of about 0.69. During winter, we found a
significant negative correlation between Kd(490) and SST, with an R2 of –0.66 (Figure 10). Seasonal
anomalies were also obtained by subtracting the seasonal climatological average. In 2007 and 2015,
when the wind speed anomaly (u-component) reached its peak, a distinguishing tongue of Kd(490)
anomaly was observed near the southeastern LB (Figure 11). Inside this tongue region, the Kd(490)



Remote Sens. 2020, 12, 2269 14 of 18

anomaly in the west was higher than in the east, indicating that the variability can be attributed to the
high turbid river plume waters in the surface layer, which are driven by the intense eastward wind.
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Figure 11. Kd(490) and wind field anomalies during summer in (a) 2007 and (b) 2015.

The winter SST cooling in 2004 was the most significant during the whole study period, and was
located in the southeastern PRE, which was about 0.4 ◦C cooler than the winter climatological
average. Within these cooling regions, Kd(490) values higher than the average values were observed,
with anomalies ranging approximately from 0.1 to 0.35 m−1. The observed winter variations in Kd(490)
in the southeastern PRE were strongly consistent with the changes in SST anomalies, and higher values
coincided with lower SST (Figure 12).
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Figure 12. (a) Kd(490) anomaly during winter 2004, (b) SST anomaly during summer 2004.

The variability of Kd(490) in the southeastern PRE was mainly determined by Cchla. The average
values of Kd(490) were higher in winter than in summer. This seasonal variability might be attributed
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to the deepening of MLD in winter. In marine systems, MLD is generally deeper in winter than
in summer [55]. Nutrients are brought from the bottom of the ocean to the surface or subsurface,
which may enhance phytoplankton growth. The strong mixing in winter was demonstrated by the
deepening of MLD, and a significant relationship between SST and MLD provided evidence that
nutrients were supplied from the bottom waters (Figure 13).
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5. Conclusions

Accurate estimation of Kd(490) using ocean color remote sensing imagery is challenging in turbid
coastal waters due to the optical complexity of the water. Several approaches, including empirical
and semianalytical models, were applied to retrieve the Kd(490) in PRE water. The results showed
that Wang’s model was more accurate and is most suitable for PRE water, which uses a combination
of different algorithms for clear and turbid waters. Hence, Wang’s model was selected for deriving
Kd(490) products from long-term MODIS/Aqua imagery.

Derived from long-term MODIS/Aqua imagery, the temporal variability and spatial distribution
of Kd(490) were tracked using S-EOF analysis. The results of GRA showed that both phytoplankton
and suspended sediments were the two dominant contributors to the variability in Kd(490).
The Ctsm-dominated waters were generally located in coastal and estuarine turbid area, whereas the
Cchla-dominated waters were observed in clear open ocean. The influence of wind field on the
variability of Kd(490) was significant near the coastal and estuarine regions in summer. With the
strengthening of the eastward wind, a water tongue of relatively higher Kd(490) values formed in the
southeastern PRE. In winter, the location of the negative SST anomaly and positive Kd(490) anomaly
was strongly consistent, indicating that the sea surface cooling was related to the positive Kd(490)
anomaly. The winter variability might be attributed to the strong mixing, which brought nutrients
from the bottom layer to the surface to enhance phytoplankton growth.

Estuarine and coastal regions are complex ecosystems. To better examine the biogeochemical
responses to physical events, a combination of remote sensing and coupled hydrodynamic–biological
models should be applied in future research.
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