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Abstract: Archaeologists engaging with Airborne Laser Scanning (ALS) data rely heavily on manual
inspection of various derived visualizations. However, manual inspection of ALS data is extremely
time-consuming and as such presents a major bottleneck in the data analysis workflow. We have
therefore set out to learn and test a deep neural network model for classifying from previously
manually annotated ancient Maya structures of the Chactún archaeological site in Campeche, Mexico.
We considered several variations of the VGG-19 Convolutional Neural Network (CNN) to solve the
task of classifying visualized example structures from previously manually annotated ALS images
of man-made aguadas, buildings and platforms, as well as images of surrounding terrain (four
classes and over 12,000 anthropogenic structures). We investigated how various parameters impact
model performance, using: (a) six different visualization blends, (b) two different edge buffer sizes,
(c) additional data augmentation and (d) architectures with different numbers of untrainable, frozen
layers at the beginning of the network. Many of the models learned under the different scenarios
exceeded the overall classification accuracy of 95%. Using overall accuracy, terrain precision and
recall (detection rate) per class of anthropogenic structure as criteria, we selected visualization with
slope, sky-view factor and positive openness in separate bands; image samples with a two-pixels
edge buffer; Keras data augmentation; and five frozen layers as the optimal combination of building
blocks for learning our CNN model.

Keywords: relief mapping; visualization; archaeology; convolutional neural networks; deep learning;
computer vision; airborne laser scanning; lidar; VAT; image classification

1. Introduction

Archaeologists engaging with airborne laser scanning (ALS) data rely heavily on manual inspection.
For this purpose, raw data is most often converted into some derivative of a digital elevation model
that the interpreter regards useful for visual examination [1–6]. In our own study of ancient Maya
settlements, manual analysis and annotation of visualized ALS data for an area of 130 km2 took about
8 man-months (the equivalent of a single person working full-time for 8 months) to complete.

Practice shows that manual inspection is extremely time-consuming [7,8] and as such presents a
major bottleneck in the data analysis workflow. Continuing along this path without a more efficient
solution, it is not only going to be impossible to keep up with ever-increasing data volumes but also
very difficult to remove the inherent bias of the human observer [9]. This gives rise to a pressing
need for computational methods that would automate data annotation and analysis and thus replace
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or at least considerably speed up manual work, saving time that can be used to do actual research.
Although a machine learning algorithm can not completely eliminate the biases of people preparing
and annotating the dataset that the computer learns from, such an algorithm can at least average out
the biases of individual contributors, who are affected by their individual experiences, knowledge,
observations and expectations [9].

Deep Convolutional Neural Networks (CNNs), the computational methods currently dominating
the field of computer vision, are state-of-the-art tools-of-choice for tasks such as image classification
and object detection [10–13]. While the majority of existing CNN models are trained on (and used
with) realistic photographic images “of everyday life” as input [14–17], these models can be adapted to
perform just as well on datasets with images highly specific to narrow domains [18–23] with use of
transfer learning, and of different modalities [24–27]. Many such CNN models have been adapted
for medical imaging, for instance, for classification of Magnetic Resonance Imaging (MRI) [28,29] and
Computed Tomography (CT) scans [30], some of which surpass the classification capabilities of an
expert in the field [31,32]. Pre-trained CNNs also allow us to use these techniques for tasks that do not
have a large number of training samples available, as is often the case in archaeology. While there have
been many applications of CNNs in remote sensing [22,25,33–41], only a few of these concern ALS
data in archaeological prospection [42–48].

The main objective of this paper is to determine whether we can successfully classify the three
most common types of ancient Maya structures against natural terrain by using a CNN model with
an ALS visualization as an input. We set out to compare the performance of CNN models using
six different ALS visualizations. Additionally, we wanted to know how to best prepare the image
samples; specifically, we wanted to know if sample images of individual structures that include some
of their immediate surroundings lead to CNNs that perform better as compared to CNNs that work
with images where surroundings are excluded. We also examine how data augmentation improves
the performance of the CNN model because the number of our samples is significantly lower (in
the order of thousands) than the number of samples usually used for training CNN models (in the
order of millions). Since we start with an initialized network with pre-trained weights, we were
interested to find out how the number of neural network layers frozen during training impacts the
final model performance.

The paper first describes our case study area, ALS data and processing procedures (Section 2.1).
This is followed by description of the image annotation process (Section 2.2). We proceed with a
description of the experimental setup, specifically with an explanation of how we generated the
dataset for the classification task (Section 3.1), selected the CNN architecture (Section 3.2) and set
up the experimental design (Section 3.3) for learning and testing CNN models. We present the
model performance results for all scenarios in Section 4 and discuss these in Section 5; we analyze
misclassifications (Section 5.1), compare results of different visualizations (Section 5.2), examine the
influence of the buffer size (Section 5.3) and the number of frozen layers (Section 5.4), evaluate the
effects of data augmentation (Section 5.5) and discuss the feasibility of the model to replace manual
annotation work (Section 5.6). Our conclusions are summarized in Section 6.

2. Data and Methods

2.1. Study Area, Data and Data Processing

The research area covers 230 km2 around Chactún, one of the largest Maya urban centers known so
far in the central lowlands of the Yucatan peninsula, located in the northern sector of the depopulated
Calakmul Biosphere Reserve in Campeche, Mexico (Figure 1). The area is characterized by low hills,
“bulging” a few tens of meters (typically not more than 30 m) above the surrounding seasonal wetlands
(bajos). It is completely covered by tropical semi-deciduous forest (Figure 2). The overall elevation
range is only from 220 m to 295 m (or 300 m when buildings are included).
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Figure 1. Location of the scanned area in the Calakmul Biosphere Reserve, Campeche, Mexico. The
area is entirely covered by forest, the exploitation of which ceased when the Biosphere Reserve was
declared in 1989.

Figure 2. The study area is covered by a natural, unmanaged forest and bushes, whose heights rarely
exceed 20 m (a). Annotated buildings and platforms are concentrated in the lower part of the study
area, while aguadas have been annotated throughout it (b). Terrain samples are shown in (c). Samples
of all four classes were separated into the training set and the test set, according to their geographical
locations. Each individual sample was placed in the train set if it was located entirely within the
boundaries of the training area, or placed in the test set if it was located entirely within the boundaries
of the test area.

Chatún’s urban core, composed of three concentrations of monumental architecture, was discovered
in 2013 by prof. Šprajc and his team [49]. It has several plazas surrounded by temple-pyramids, massive
palace-like buildings and two ball courts. A large rectangular water reservoir lies immediately to the
west of the main groups of structures. Ceramics collected from the ground surface, the architectural
characteristics and dated monuments indicate that the center started to thrive in the Preclassic period (c.
1000 BC–250 AD), reaching its climax during the Late Classic (c. 600–1000 AD) and had an important
role in the regional political hierarchy [49,50]. To the south of Chactún are Lagunita and Tamchén, both
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prominent urban centers, as well as numerous smaller building clusters scattered on the hills of the
research area [51,52].

Airborne laser scanning data around Chactún was collected at the end (peak) of the dry season
in May 2016. Mission planning, data acquisition and data processing were carried out with clear
archaeological purposes in mind. The National Centre for Airborne Laser Mapping (NCALM) was
commissioned for data acquisition and initial data processing (conversion from full-waveform to point
cloud data; ground classification) [53,54], while the final processing (additional ground classification;
visualization) was performed by ZRC SAZU. The density of the final point cloud and the quality of the
derived elevation model proved excellent for detection and interpretation of archaeological features
(Table 1), with very few processing artifacts discovered.

Table 1. ALS scanning parameters of the region around Chactún, Calakmul Biosphere Reserve,
Campeche, Mexico.

Scanner Type Optech Titan

platform fixed-wing
date 17–20 May 2016

laser bandwidth (3 channels) (nm)
1550 (Infrared);

1064 (Near Infrared);
532 (Green)

swath width (m) 600
flying height (m) 800–900

overlap (%) 50
average last and only returns per m2 on a combined dataset 32.4

average classified ground returns per m2 on a combined dataset 14.7
spatial resolution of the final elevation model [m] 0.5

ALS data© ZRC SAZU

Ground points were classified with the Terrascan software, and algorithm settings were optimized
to remove only the vegetation cover and leave remains of past human activities as intact as possible
(Table 2). Ground points therefore also include remains of buildings, walls, terracing, mounds, chultuns
(cisterns), sacbeob (raised paved roads), and drainage channels. The average density of ground
returns from a combined dataset comprising information from all flights and all three channels is
14.7 pts/m2—enough to provide a high-quality digital elevation model (DEM) with a 0.5 m spatial
resolution. The rare areas with no ground returns include aguadas (artificial rainwater reservoirs)
with water.

Table 2. Ground classification processing parameters.

Maximum Building Size (m) 30
terrain angle (◦) 89

iteration angle (◦) 9
iteration distance (m) 1.4

reduce iteration angle edge length (m) <5

2.2. Data Annotations

We used visualization for archaeological topography (VAT) [6] and a locally stretched elevation
model to annotate buildings and platforms, as well as local dominance [55] to annotate aguadas.
Local dominance shows the slightly raised embankments on the outer edges of aguadas, which does
not exist around natural-occurring depressions.

The exact boundaries were drawn on the outer edges of walls or collapsed material.
Due to the configuration and state of structures, it was not always possible to delineate each
construction—therefore, a single polygon may encompass several buildings (Figure 3). We annotated
aguadas in the whole study area and buildings and platforms in its southern part (130 km2).
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Figure 3. Chactún core area with annotated structures.

Figure 4 shows annotated buildings, which include pyramids (a), ball-courts (b), palace-like
buildings (c), remnants of dwellings (d) and other architectural features supporting roofed areas (e).

Figure 4. Different building types as evident visualization for archaeological topography (VAT) with a
0.5 m resolution. The scale varies.

Artificial terrain flattenings, elevated from the surrounding ground, were annotated as platforms
(Figure 5). We only annotated platforms that were not used for agricultural purposes, i.e., we excluded
agricultural terraces.

Figure 5. Different man-made platforms as evident in a 0.5 m resolution VAT. The scale varies.

Aguadas are structures specific to and typical of ancient Maya lowland landscape. They are
artificial modifications (deepening) of the terrain, usually with pronounced (slightly raised) edges.
They functioned as water reservoirs—artificial ponds or lakes (Figure 6). For annotation of aguadas, we
sometimes used additional visualization that accentuated embankments, for instance, local dominance
or flat terrain VAT (Figure 7).
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Figure 6. Various aguadas and water reservoirs as evident in a 0.5 m resolution VAT. The scale varies.

Figure 7. The same aguadas and water reservoirs as in Figure 6, as evident in a 0.5 m resolution flat
terrain VAT. The scale varies. Some have a very pronounced embankments, seen as bright hallos (a,b,d),
while others less so (c,d).

3. Experimental Setup

We developed a classification model, based on CNN, that distinguishes among four different
classes: building, platform, aguada and terrain. To this end, we produced thousands of smaller image
samples for each class, cut from the ALS visualizations over the study area. These generated samples,
rather than the visualization of the whole area, were then used as inputs for learning and testing the
CNN models. The scale is not uniform.

3.1. Generating the Dataset for the Classification

We determined a square bounding box with an additional edge buffer (2 and 15 pixels, respectively,
for two dataset variants)—a patch—for every anthropogenic structure, and exported that part of the
visualization as a sample for either a building, a platform or an aguada (Figures 4–6, respectively).
Along with the image samples of the three classes representing anthropogenic structures, we added
terrain as a fourth class representing a “negative class” (the background). Terrain (Figure 8) was not
annotated; therefore, square patches were randomly selected from the whole study area, making
sure the patch contained no (part of) annotated structures. Terrain samples are all 128 by 128 pixels
so that they are comparably sized to samples of structures and match the input size of our neural
network. We generated enough terrain samples to match the combined count of building, platform and
aguada samples. When generating terrain samples, we had to make sure that they did not intersect an
annotated structure, and that the selected patch did not have any no-data pixels. The same was true
for structure samples as well; patches at the edge of the study area that included no-data pixels were
omitted when generating datasets. For this reason, the testing set for aguadas with a 15-pixels buffer
contains four samples less (one aguada less) than the testing set with a 2-pixels buffer. The same is true
for platforms and buildings; there are a few samples less in the 15-pixels buffer dataset.

Figure 8. VAT visualizations of generated terrain samples. A hill slope with a stream bed in a flat,
narrow valley (a), low walls and possible quarries on a lever, raised ground (b), a bajo and a steep slope
(c), a baho and a steep slope with a possible sink hole (d), and a bajo (e). The scale is uniform.



Remote Sens. 2020, 12, 2215 7 of 20

In total, we produced 8706 samples of buildings, 2093 samples of platforms and 95 samples of
aguadas. Because the total count of the latter was very low, we produced three additional image
samples for each aguada by rotating the visualizations by 90◦, 180◦ and 270◦, generating 380 aguada
samples in total. For visualizations where hillshading was used, we also adjusted the sun azimuth so
that shading direction is preserved and consistent across all final image samples (Figure 9). The scale
is uniform.

Figure 9. Image samples of original aguada (a) and rotated aguadas (b) by 90◦, (c) by 180◦ and (d)
by 270◦. The rotated image samples have shadows that are cast in the same direction (315◦ azimuth,
orange arrows) as that of the original.

We divided the sample images of all four classes into training and testing sets, containing roughly
80% and 20% of the image samples, respectively (Table 3). The dataset was not split randomly, but
according to the geographic location (Figure 2). There were two reasons for this: (1) Buildings were
often built on top of platforms and platforms often contained multiple buildings. Therefore, the image
samples of buildings and platforms overlap. We had to assure images with overlapping objects are all
in the same dataset, either in the training or the testing set, but not split between them. (2) Because
terrain samples were generated randomly, some parts of the terrain could be contained in multiple
image samples. Again, the best solution is to split the generated image samples according to location,
so no two images of the same area could be in both the training and the testing set. Despite the random
selection of terrain patches, the same locations were used for testing of all visualizations.

Table 3. Sample count for each class in the training set and the test set for datasets with a 2-pixels and
15-pixels edge buffer (around structure polygons). The rotated samples are included in the aguada
sample count. The number of samples per class is lower for the dataset with a 15-pixels buffer. Samples
were omitted from the dataset because the larger buffer intersected the border of study area and thus
included no-data pixels.

Dataset 2-Pixels Edge Buffer 15-Pixels Edge Buffer
train test train test

aguada 300 80 300 76
building 6737 1969 6728 1954
platform 1650 443 1649 438
terrain 8148 2168 8148 2168

total 16835 4660 16825 4636

3.2. CNN Architecture

We used the VGG network [56], a deep CNN architecture, for transfer learning. There are two
variations of the network, the VGG-16 (13 convolutional layers and three fully connected layers) and
the VGG-19 (16 convolutional layers and three fully connected layers), and both use very small (3 by
3) convolutional filters. There have been previous uses of the VGG network, where solutions (CNN
architecture) either fully or partially rely on the VGG network, in other remote sensing studies [57–61].

Our CNN model, based on VGG-19, was implemented in Python with the Keras and TensorFlow
libraries. Image samples were scaled to the input size of 128 by 128 pixels before they were fed into the
network. We decided to use pre-trained weights and fine-tune the network, rather than fully train it,
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as similar remote sensing studies pointed out that this tends to be the best performing strategy [62].
We initialized the network with weights pre-trained on ImageNet [14] and froze the first few layers
of the network so that their weights were not updated during backpropagation. We can freeze the
pre-set weights for neurons of the top (first) few layers that recognize lines, edges and simple geometric
shapes. These visual features are not domain-specific, and the weights set for these neurons have been
thoroughly trained on millions of images. However, the weights of neurons at the bottom (end) layers
of the network still need to be fine-tuned [63] for our specific task of classification of anthropogenic
objects on ALS visualization; therefore, these layers remain trainable.

Our training dataset consists of roughly 17,000 images (rather than millions that would be required
ideally). This is a rather small training set for image recognition tasks. With such cases, measures to
prevent a model from overfitting the training set should be implemented [64]. For this purpose, a
dropout layer was inserted towards the end part of the network. In the dropout layer, neurons and
their connections are randomly dropped out (in our case 50% of them, which is a common practice).
This regularization method prevents the network from memorization of training samples and instead
encourages the network to learn more general representations. Generalization capabilities are thus
improved—leading to better model performance on unseen data—resulting in the final model being
more robust [65].

3.3. Experimental Design

We trained and tested the neural network in different scenarios, examining how different
combinations of parameters and visualizations used affect the predictive capabilities of the
resulting model.

To find the best visualization for the image classification task, we compared image inputs,
generated from the following visualizations:

• Visualization for archaeological topography (VAT); a visualization that blends analytical hillshading,
slope, positive openness and sky-view factor into a single grayscale image [6,66].

• Flat VAT; VAT with visualization parameters adjusted to show minute topographic variations in a
level surface.

• VAT-HS; VAT without analytical hillshading (HS), as one grayscale composite (one channel).
• VAT-HS channels; slope, positive openness and sky-view factor—where layers are not combined,

but fed into separate channels of the image/input layer.
• Red relief image map (RRIM); often used for manual interpretation, because it is

direction-independent and easy to interpret. It overlays a slope gradient image, colored in
white to red tones, with the “ridge and valley index” computed from positive and negative
openness in a grayscale colormap [67,68].

• Local dominance (LD) is well suited for very subtle positive topographic features and depressions [2].
We included it to test its performance against flat VAT.

To determine the optimal preparation of image samples, we tested image samples with two sizes
for the edge buffer around bounding boxes:

• 15-pixels to represent a loose edge that includes some immediate surrounding, and
• 2-pixels for a tight edge. We kept 1 m of surrounding terrain around structures, because of the

positional uncertainty of hand-drawn polygons.

When we generated image samples, as described previously, we always replicated each aguada
three more times with rotations. However, we also used either:

• no additional data augmentation, or
• Keras library data augmentation. Applied augmentations include zoom range, width shift range and

height shift range. We did not use rotation and flip, because these would result in inconsistent
relief shading and distorted orientation of buildings, which are often aligned to a certain direction.
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Finally, we considered two variations of the VGG-19 architecture with different degrees of
trainability. The two neural networks were initialized with either of the architectures:

• 3 frozen (untrainable) layers at the top or
• 5 frozen layers at the top.

We consider the above dimensions as independent. We tested all possible combinations of
visualizations, edge buffer, data augmentation and number of frozen layers, which resulted in 48
different scenarios.

All of the layers of our network are represented in the architecture diagram (Figure 10). Layers at
the top of the network are represented at the left side.

Figure 10. Architecture of our VGG-19 based CNN network, depicted with color-coded layers. The
network accepts images of 128 by 128 pixels as inputs. The first part of the network, the part on the left,
represents the VGG-19 architecture, which consists of multiple blocks of convolution layers (blue) and
max pooling layers (gray). At the end of the VGG-19, we added five extra layers, including flatten layer
(green), dense or fully connected layer (yellow), dropout layer (orange) and dense layer with softmax
function (red). The output of the network is one of the four classification labels (aguada, building,
platform or terrain).

4. Results

For every scenario, the model performance was measured in terms of overall accuracy, precision
for the terrain class and recall for the classes of anthropogenic structures (building, platform, aguada).

Accuracy (overall accuracy) gives us an initial evaluation of model performance in general,
over all classes. While our classes have different numbers of training samples, no anthropogenic
structure is more important than another (and neither is the terrain); we thus opted for non-weighted
average accuracy.

Models with high overall accuracy—in our results many score above 0.95, as shown in
Scheme 1—are good candidates for final model selection, even though the accuracy itself is not
a sufficient measure to evaluate model performance.
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Scheme 1. Test results for all 48 scenarios; overall accuracy (ACC) and terrain precision (TPrec). Note
that terrain precision is often rounded to 1.0 when it is in reality between 0.995 and 1.0 (meaning there
are still some false positive terrain samples, but very rare). Light green rows mark scenarios with test
ACC and TPrec higher than 0.90 and dark green where both are higher than 0.95. For the scenarios
marked, the confusion matrices are presented in Figure 11, e.g., Figure 11a for the VAT-HS visualization,
15-pixel edge buffer, Keras data augmentation and 5 frozen layers.
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Figure 11. Confusion matrices for six selected scenarios. (a) VAT-HS visualization and image samples
with 15-pixels edge buffer, with Keras data augmentation, 5 frozen layers; (b) VAT-HS channels with
2-pixels edge buffer, no data augmentation, 3 frozen layers; (c) local dominance (LD) with 2-pixels
edge buffer, no data augmentation, 3 frozen layers, added as an example of a low performing model;
(d) VAT-HS with 2-pixels edge buffer, no data augmentation, 5 frozen layers, (e) Red relief image
map (RRIM) with 2-pixels edge buffer, no data augmentation, 5 frozen layers; and finally, (f) VAT-HS
channels with 2-pixels edge buffer, with Keras data augmentation and 5 frozen layers.

Ideally, our final model would also:

• minimize false-negative results of anthropogenic structures’ classes since we do not want structures
to go unrecognized. Minimizing these false negatives would result in high recall for building,
platform and aguada classes. Recall (also known as detection rate or sensitivity) can be defined as
the probability of detection; the proportion of the actual positive samples that have been correctly
classified as such.



Remote Sens. 2020, 12, 2215 12 of 20

• minimize false-positive results for the terrain class, since we do not want any structure to be
misclassified as terrain—it is, in fact, better for one type of structure to be misclassified as a
different type of structure. Minimizing terrain false positives leads to high precision for the
terrain class. Precision is the fraction of true positive samples among those that were classified as
positive ones.

Accuracy and terrain precision results are presented in Scheme 1, while Figure 11 shows the confusion
matrices for the four models with highest accuracies (b,d,e,f) and two with lower accuracies (a,c).

5. Discussion

The results presented in Scheme 1 show that many of the tested models can successfully classify
the three types of anthropogenic structures against the natural terrain, with accuracies of 95% and
above. When using a model with terrain precision of over 99.5% (rounded up to 1.0 in Scheme 1),
only less than 0.5% of anthropogenic structures would be missed by not inspecting samples classified
as terrain. It is also important to note that even archaeologists inspecting ALS visualizations are not
always sure how to annotate a certain feature, as in many cases it is not as obvious whether a feature is
natural or anthropogenic. However, when using models with terrain precision of 0.995 and above,
only 0.5% of anthropogenic structures would be misclassified as terrain, the other errors would include
an anthropogenic structure misclassified as belonging to another class of anthropogenic structures.
From an archaeological point of view, it is better to confuse an anthropogenic structure with another
type of anthropogenic structure, than to misinterpret it as terrain (e.g., for estimating the man-power
needed for construction or for population estimates).

5.1. Analysis of Misclassifications

Here we analyze the misclassifications made by the learned model by the VAT-HS visualization
for generating image samples with a 2-pixel edge buffer around each structure’s bounding box.
This visualization is one of the two that achieved the highest performance and is the one that is visually
most similar to VAT, which was used for the manual annotation in our study, as well as many others.
The CNN model was learned with the top five frozen layers and with no additional data augmentation.
The resulting model achieves 98% overall accuracy (Scheme 1).

It is evident from the confusion matrix (Figure 11) that the most common type of classification
error is misclassifying platforms as buildings, which is also true for most of the other tested scenarios.
Visual inspection reveals that the misclassified platform samples usually contain a single building on a
platform (Figure 12a,b), a string of buildings and multiple buildings on a larger platform (Figure 12c) or
a smaller platform with particularly pronounced edges that in itself resembles a building (Figure 12d).

Figure 12. The most common misclassifications are between platforms and buildings, which is
unsurprising as they frequently overlap on image samples. Examples of a platform misclassified as a
building (a,b,d), and a building misclassified as a platform (c) in the VAT-HS visualization. Scale varies.

Very low platforms are sometimes misclassified as terrain (Figure 13a) or as an aguada (Figure 13b).
Vice versa, certain image samples with a mixture of steep and flat terrain (Figure 13c) and aguadas
with steep banks (Figure 13d) are also misclassified as platforms.
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Figure 13. Misclassification of platforms with terrain and aguadas; (a) a platform misclassified as
terrain, (b) a platform misclassified as an aguada, (c) terrain misclassified as a platform and (d) an
aguada misclassified as a platform. Scale varies.

Some aguadas can be rather easily mistaken for natural formations because many have very
indistinct edges (Figures 6 and 14a). The reverse is even more common; terrain is misclassified as an
aguada in areas with a rougher surface, which we think is a highly porous limestone on the edge of a
bajo (Figure 14b).

Figure 14. Examples of misclassifications between terrain and aguadas; an aguada misclassified as
terrain (a), and terrain misclassified as an aguada (b). Unannotated anthropogenic features among the
terrain samples result in terrain misclassified as an aguada (c) and terrain misclassified as a platform
(d). The scale varies.

Inspection of false positives for the aguada, building and platform classes additionally reveals a
number of terrain samples that contain unannotated anthropogenic structures (e.g., walls, stone piles,
agricultural terraces, tracks, quarries, chultuns), which results in the misclassification of terrain samples
(Figure 14c,d). Some other natural formations could resemble man-made structures as well, but these
do not seem to appear frequently within our study area. They could be either smaller, steep or rugged
formations, the size of a house or a palace, thus resembling ruins of a building; or natural flattening of a
larger area that could be mistaken for a platform. This could present a potential issue for the algorithm,
and sometimes even for the archaeologists doing manual annotation, if the ALS data itself are noisy
or if the archaeological features are too heavily eroded to be easily distinguished. We believe the
model works better when the terrain characteristics are quite different from the archaeological features.
In any case, all terrain samples should ideally be checked for accuracy of annotations, but it is this
time-consuming process we try to avoid with the use of our CNN models. Thus, the best-performing
models are those that achieve not only high accuracy but also terrain precision close to 100%—meaning
there are almost no anthropogenic structures misclassified as terrain. This saves time because double
checking samples classified as terrain is unnecessary, and potentially only visual checking of samples
classified as aguadas, buildings, or platforms is required. Therefore, we want primarily to have high
accuracies for these three structures classes; yet as a consequence, this would also result in better model
performance on the terrain class.

5.2. Comparison of Visualizations

Comparison of the performance of models for different visualizations reveals that no single
visualization is categorically better than others. However, we notice that VAT-HS and VAT-HS channels
(with accuracies of the best models reaching 98% and 99%, respectively) seem to have some advantage
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over VAT and Flat VAT in most of the test scenarios. Drawing conclusions from these results, the
addition of hillshading into the visualization blend seems to be hindering the model performance.
However, hillshading appears to remain a subjective preference for many of the researchers in
archaeology and remote sensing that visually inspect ALS visualizations. This preference may only
exist due to our human real-life experience and a more intuitive understanding of hillshading compared
to other visualizations. Additionally, a person can better inspect a single visualization blend than
three separate visualizations, while the same is not necessarily true for CNN classification models.
The VAT-HS channels visualization that includes slope, positive openness and sky-view factor in
separate channels in most cases performs better than VAT-HS, which blends the three into a single
grayscale image. The preference for VAT-HS or VAT-HS channels does not present an issue in practice
because either can achieve good results. What makes the difference is knowing—or finding—how
to initialize the parameters of the neural network to optimize the performance of the final CNN
classification model.

RRIM visualization performed well, achieving accuracy of up to 96%, while LD produced
unsatisfactory results with accuracy ranging from 45% to 70%. Terrain precision with LD is often
at 100%, meaning there are no false positives for terrain, but that is because almost all samples are
classified as buildings. This could be connected to buildings and platforms appearing too bright
(having a single value) to differentiate details in this particular visualization. Although LD was of
great use for determining the exact boundaries of aguadas manually, this does not seem to translate to
the CNN models, which perform worse with local dominance than with the other visualizations for
all classes.

5.3. Effects of the Edge Buffer

When applying a smaller or larger edge buffer, there are considerable differences in the total
area covered within an image sample. An additional 15-pixels edge buffer is hardly noticeable on
image samples of platforms, which are usually quite large (Figure 15a,b); however, with small building
samples, the added surrounding can present a relatively large portion of the final image sample
(Figure 15c,d). We should also keep in mind that all samples are resized to 128 by 128 pixels before
they are fed into the neural network, regardless of the absolute size of the initial (generated) image
sample. The size of the edge buffer only affects image samples of aguadas, buildings and platforms
because we generated terrain samples of a uniform size.

Figure 15. Comparison of generated image samples for a platform and a building. The left two plates
(a) and (b) show image samples generated for the same platform; one with (a) a 2-pixels edge buffer,
and the second with (b) a 15-pixels edge buffer added to the structure’s bounding box. The two plates
on the right (c) and (d) show building samples with (c) a 2-pixels edge buffer and with (d) a 15-pixels
edge buffer added to the bounding box of a building. Scale varies.

The models trained and tested on image samples with a 2-pixels edge buffer generally perform
better than models with a 15-pixels edge buffer. The exceptions are Flat VAT and local dominance
because their computation relies on a larger convolutional filter—they consider a larger local area
in the calculation of the value for a certain pixel. Slope, for example, typically has a computational
convolutional filter size of 3 by 3 pixels, while local dominance typically includes the local area in a
radius from 10 to 20 pixels and excludes the nearby pixels altogether.
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5.4. Effect of the Number of Frozen Layers on Model Performance

Having tested models with architectures where either the top three or the top five CNN layers are
frozen and untrainable, our results do not show an obvious advantage of one scenario over the other.
Keeping in mind that we only have approximately 17,000 image samples for training, perhaps the
differences in performance would be greater and comparison more reliable if the training dataset had
been larger. We therefore currently do not have enough information to determine the optimal number
of frozen layers for our CNN classification model.

5.5. Effects of Data Augmentation

When training the CNN models with datasets of just thousands or tens of thousands of images,
some form of data augmentation is often used to improve model performance [69,70]. In our tests,
using the data augmentation options from the Keras library did not significantly change the final results,
so the data augmentation advantages observed in other studies were not evident in our experiments.
The restrictive transformations performed on our data could have prevented the data augmentation to
come into its full effect.

5.6. Feasibility of the Model to Replace Manual Annotation

While our high-performing CNN models seem promising, we are, in the end, looking for a model
that will eventually replace manual work, which has been the bottleneck in the data analysis workflow.
If we would want to achieve this with our current CNN models for image classification, the ALS
visualization of the wider area needs to be cut into thousands of smaller image samples that are fed one
by one into the model. For supervised learning within our study, the wider area was cut up according
to the manual annotations in the form of polygons. When using the model on a new (unannotated)
area, cutting the wider image into smaller ones would be done according to a mesh (for example, a
mesh with 128 by 128 squares). Additional difficulties would arise when multiple structures would
be present within the same image sample. Better options for replacing the manual work in terms of
recognition of individual structures from ALS images would then be CNN models for either object
detection [71] or semantic segmentation [72]. The current study is as such more of a feasibility study,
whose results serve as a proof-of-concept that ALS visualizations, especially VAT and VAT-HS channels,
are suitable for distinguishing anthropogenic objects from images with the use of CNNs.

The results presented in this study instill the confidence that more complex CNN-based methods
used with ALS visualizations are worth pursuing. The CNN models that we believe are able to
come closest to replacing the manual annotation work are semantic and instance segmentation
networks [73–75] for detecting archaeological features. While such CNN models are more complex
and time-consuming to train, they produce results in the form of image-overlay with patches, which
define the exact boundaries of individual objects detected (within the ALS visualization—the input
image). This type of output is analogous to the polygons that are produced with manual annotation.
The use of semantic or instance segmentation model would still require annotated (labeled) data for
training. However, annotated data used for our current research are suitable for this task and can be
reused with no to minimal additional manual work required, saving us from the most time-consuming
part of the model development process.

On the contrary, if we were not to use any kind of automation for completing annotations for all of
the anthropogenic structures over the whole area, we would need to manually annotate the remaining
100 km2 (out of 230 km2 total study area) to complete full anthropological analyses. Considering that
annotating first 130 km2 already took 8 man-months, we are looking at potential 6 man-months more
spent on manual work, only for the current study area. We believe we could save time further down
the line by first implementing a sufficiently advanced CNN network, e.g., an instance segmentation
model, and then use it on the remaining unannotated 100 km2 of our study area, as well as on new
(unannotated) study areas where similar terrain and archaeological features can be expected.
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The data we have available for training the model include different types of terrain—a lot of
hilled and flat areas, but rather rare steep features. We expect the CNN model trained on such terrain
to perform with comparable accuracy when used on ALS visualizations of other areas depicting
similar terrain types and containing similar archaeological features. Since our data also lack any
modern man-made structures, they are more suitable for use in remote areas where mostly (or only)
remains of ancient structures are expected. There are thousands of square kilometers of similar areas in
Mesoamerica [3,76,77] for which our CNN model could be later reused, as long as the ALS resolution
and data quality of the recorded areas are comparable to ours. If criteria described in this paragraph
were met, then ideally, the reuse of the model would require only fine-tuning, if at all. This way,
thousands of square kilometers could be automatically examined and annotated in a matter of days or
weeks instead of months. Manual inspection would then be employed for validation of annotations
only and time spent for the whole analysis would still be considerably reduced.

6. Conclusions

We have shown that a CNN model can successfully classify multiple types of ancient Maya
structures and differentiates them from their natural surroundings. We used ALS visualizations of
individual anthropogenic structures and terrain as input images. The resulting image datasets included
samples belonging to four classes: aguada, building, platform, and terrain.

We tested the performance of CNN models learned with six different ALS visualizations
(visualization blends), two variants of edge buffer for the generation of image samples, training
with and without the data augmentation, and deep neural network variants with three or five frozen
layers. We discovered that CNN models using VAT visualization blends without the hillshading
(VAT-HS, VAT-HS channels) generally perform better than models using visualizations that include
hillshading (VAT or Flat VAT). Local dominance produced very poor results, and we consider it by
itself unsuitable for such a classification task. From our results, we can also conclude that models using
image samples with the 2-pixels edge buffer around the structure’s bounding box usually perform
better than those using the 15-pixels variant. For the other parameters (data augmentation, number
of frozen layers), however, one parameter value was not necessarily better than the other, and the
combination of different parameters seemed more important than any one parameter by itself.

Many of the considered scenarios result in models that achieve an overall accuracy of 95% and
above. Based on the overall accuracy, precision for terrain and recall for aguada, building and platform
classes as deciding criteria, we selected VAT-HS channels visualization and image samples with 2-pixels
edge buffer, Keras data augmentation and five frozen layers as the optimal combination for our CNN
model (Scheme 1).

The research presented in this paper is a proof-of-concept that ALS visualizations can be useful
and effective for deep learning-based classification of Maya archaeology from ALS data. Despite the
very high performance of our CNN models, in its current form, image classification CNNs cannot
replace the manual annotation process to the extent that we desire. As such, our current research
presents a stepping-stone towards object recognition and/or semantic segmentation. Future work
will, therefore, include using the whole ALS visualization to recognize and locate each anthropogenic
structure and its exact boundaries, which holds the potential to eliminate the vast majority of manual
analysis and annotation work.
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