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Abstract: This work presents a regridding procedure applied to the nitrogen dioxide (NO2)
tropospheric column data, derived from the Copernicus Sentinel 5 Precursor Tropospheric Monitoring
Instrument (S5P/TROPOMI). The regridding has been performed to provide a better comparison with
punctual surface observations. It will be demonstrated that TROPOMI NO2 tropospheric column
data show improved consistency with in situ surface measurements once the satellite retrievals
are scaled to 1 km spatial sampling. A geostatistical technique, i.e., the ordinary kriging, has been
applied to improve the spatial distribution of Level 2 TROPOMI NO2 data, which is originally sparse
and uneven because of gaps introduced by clouds, to a final spatial, regular, sampling of 1 km ×
1 km. The analysis has been performed for two study areas, one in the North and the other in the
South of Italy, and for May 2018-April 2020, which also covers the period January 2020-April 2020 of
COVID-19 diffusion over the Po Valley. The higher spatial sampling NO2 dataset indicated as Level
3 data, allowed us to explore spatial and seasonal data variability, obtaining better information on
NO2 sources. In this respect, it will be shown that NO2 concentrations in March 2020 have likely
decreased as a consequence of the lockdown because of COVID-19, although the far warmest winter
season ever recorded over Europe in 2020 has favored a general NO2 decrease in comparison to
the 2019 winter. Moreover, the comparison between NO2 concentrations related to weekdays and
weekend days allowed us to show the strong correlation of NO2 emissions with traffic and industrial
activities. To assess the quality and capability of TROPOMI NO2 observations, we have studied
their relationship and correlation with in situ NO2 concentrations measured at air quality monitoring
stations. We have found that the correlation increases when we pass from Level 2 to Level 3 data,
showing the importance of regridding the satellite data. In particular, correlation coefficients of Level
3 data, which range between 0.50–0.90 have been found with higher correlation applying to urban,
polluted locations and/or cities.

Keywords: TROPOMI/S5P; nitrogen dioxide; air quality; ordinary kriging

1. Introduction

Nitrogen dioxide (NO2) and nitrogen oxide (NO), together indicated as nitrogen oxides (NOx = NO
+ NO2), are significant trace gases in the Earth’s atmosphere. They are emitted in the atmosphere
because of natural (lightning, fires, soil microbial processes) and anthropogenic (traffic, biomass and
fuel combustion) processes and/or activities. In the presence of sunlight, NO is converted into NO2

through a photochemical process involving ozone (O3) on a time scale of minutes. For this reason,
NO2 can be considered as a robust measure for concentrations of NOx [1]. NO2 is a trace gas present
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in both the troposphere and stratosphere. The tropospheric NO2 is a pollutant, which can severely
affect air quality; hence, human health [2]. The gas has a strong reactivity, especially in the presence of
OH, and contributes to the formation of tropospheric ozone and aerosol [3–5].

In the stratosphere, NO2 is mainly produced from the oxidation of nitrous oxide (N2O).
The stratospheric NO2 enters important catalytic reactions, which can destroy the ozone layer [6]
but can also suppress ozone depletion by converting hydrogen compounds into unreactive reservoir
species such as nitric acid (HNO3), that constitutes one of the significant aerosol sources. Tropospheric
NO2 is mainly present in polluted regions, where it can account for 50%–90% of the total column
amount [7].

Moreover, we know (e.g., [8–16]) that the daily evolution of the Planetary Boundary Layer (PBL)
height can affect the vertical mixing ration profile of NO2 and its diurnal cycle. The PBL height can at
most reach an altitude of 1–3 km (e.g., [11,12]); usually, it rapidly increases in the morning because
of sunlight and tends to stay at or below ≈1000 m at night. Above the PBL, NO2 concentrations
approach zero (e.g., [11]). Apart from short-time scale events such as tropospheric lightning and
aviation traffic, the main sources of NO2 are at or near the ground. As a result of the evolving PBL
and the intense photochemical activity of nitrogen dioxide, its concentration near the surface tends to
decrease in sunlight.

For this reason, satellite observations need to discriminate between tropospheric and stratospheric
nitrogen dioxide to get a better insight into detecting pollution in the lower atmosphere. In this
respect, satellite observations are usually performed in the UV–VIS spectral regions to exploit the
absorption mode remote sensing, which has weighting functions, which do not drop to zero at the
surface. Examples of instrument sensing the near-surface in absorption mode include the Global Ozone
Monitoring Experiment (GOME), onboard the European Remote Sensing 2 (ERS-2) satellite [17,18],
the Scanning imaging Absorption Spectrometer for Atmosphere Chemistry (SCIAMACHY), aboard the
Envisat satellite, launched in 2002 [19]. Today, tropospheric NO2 is monitored from space with a series
of instruments, such as the Ozone Monitoring Instrument or OMI, launched aboard the Earth Observing
System (EOS)—Aura in 2004 [20], the GOME-2 instruments onboard EUMETSAT’s Meteorological
Operational Satellites (MetOp) A, B and C launched in 2006, 2012 and 2018, respectively [21] and the
TROPOMI instrument, in orbit aboard the Sentinel 5 Precursor in 2017 [22].

As regards the NO2 data obtained by the predecessors of TROPOMI, such as the OMI instrument,
various downscaling techniques have been introduced to improve their spatial resolution. In [23], for
example, a downscaling technique applied to OMI NO2 vertical column density (VCD) data has been
developed, using regional air quality model information and also applying averaging kernel (AK)
information to adjust the vertical structure. Results have shown best agreement with ground-based
observations when downscaling and AK are applied to OMI NO2, with a correlation coefficient of
R = 0.89. In [24] an approach to improve the spatial resolution of OMI NO2 data, by applying local
scaling factors from a global three-dimensional model, has been presented. Validation results show
that the correlation between OMI-derived surface NO2 and the ground-based measurements, above all
in polluted areas, is significant (R2 � 0.86). Moreover, there are several works based on regression
techniques. For example, in [25] a land-use regression technique to OMI NO2 data has been applied.
In particular, in situ concentration measurements and information about surrounding land-uses to
estimate concentrations for non-measurement locations were used. In [26] a land-use regression
technique was also used for estimating within-urban variability in air pollution at a spatial resolution
of 100 m. In [27] the spatial resolution of OMI NO2 was improved through the combined use of a
geostatistical technique, the universal kriging, and a land-use regression technique. Other studies,
instead, exploit the information relating to the air mass factor, a value needed to convert the slant
column measurement into a vertical column amount, to obtain a high resolution of NO2 data. Between
these, in [28] a high spatial resolution model simulation was used, constrained by in situ aircraft
observations, to calculate tropospheric air mass factors and to better estimate tropospheric NO2 data.
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All the above studies demonstrated that downscaled NO2 data better capture the spatial variability
compared to the original datasets.

In this work, a regridding technique has been, instead, applied to the newly available
Sentinel-5P/TROPOMI NO2 tropospheric column data. In particular, month averaged NO2 data
have been re-gridded from the TROPOMI spatial resolution (7 km × 3.5 km at the sub-satellite point)
to the finer resolution of 1 km × 1 km, obtaining Level 3 data, to possibly improve their accuracy and
capture the spatial variability to an even more appreciable spatial sampling. The chosen regridding
technique is the ordinary kriging, a geostatistical technique that respect to other approaches, provide
several advantages, such as the capability to provide both data estimations and associated errors and
of giving satisfactory results also in the presence of few input data. Moreover, the main advantage of
the kriging with respect to other deterministic techniques lies in the fact that not only information from
geometric distribution of the known points is used, but also the knowledge of the spatial structure of
the correlation between observations. The results allowed us to analyze the monthly variability of
NO2 concentration concerning two study areas, one in the North and the other in the South of Italy,
and also to highlight different levels of NO2 comparing weekdays and weekend days, and, finally,
COVID-19 (Corona Virus Disease 2019) to non-COVID-19 times.

In addition, the correlation between satellite-based NO2 data and in situ NO2 concentrations
measured by different air quality monitoring stations have also been analyzed. Recent work has
already dealt with this issue finding a significant correlation (R2 = 0.68) between Level 2 TROPOMI
NO2 products and ground-based observations and a weekend NO2 level smaller than those observed
during weekdays by about 30% in Helsinki [29]. OMI NO2 observations have also been used to
examine the NO2 weekly load over urban cities [30,31].

Both TROPOMI NO2 Level 2 and Level 3 data have been correlated against ground-based
observations. In particular, ten air quality monitoring stations were considered for the area in the
North of Italy, while thirty-seven air quality monitoring stations for the area in the South of Italy.

The paper is organized as follows: Section 2 provides a description of the data used for
the implementation and the validation of the regridding procedure; it also describes the applied
methodology, focusing on the construction of the empirical semi-variogram. Section 3 shows the
results obtained from the application of the regridding method to Level 2 TROPOMI NO2 data and
their validation. In Section 4 we further discuss our results and methodology, and finally, conclusions
are drawn in Section 5.

2. Materials and Methods

2.1. TROPOMI NO2 Observations

TROPOMI is a single payload on board of the Copernicus S5P, one of the European Sentinel
satellites dedicated to the monitoring of atmospheric composition, launched on the 13 October 2017.
S5P is a near-polar sun-synchronous orbit satellite flying at an altitude of 817 km with an overpass
time at ascending node of 13:30 and a repeat cycle of 17 days. TROPOMI operates in a push-broom
configuration with a wide swath of about 2600 km, along-track of 7 km, which became 5.6 km from 6
August 2019, and a daily global coverage [32]. The instrument is a four spectrometers system that
measures in the ultraviolet (UV), UV–visible (UV–VIS), near-infrared (NIR) and shortwave infrared
(SWIR) spectral bands. From these spectral bands, several important air quality and climate-related
atmospheric constituents can be retrieved, including NO2. In particular, the NO2 columns retrieval
algorithm developed by the Royal Netherlands Meteorological Institute (KNMI) exploits the UV–VIS
TROPOMI measurements in the 405–465 nm wavelength range [33]. The TROPOMI NO2 processing
system is based on the DOMINO, an algorithm previously used for the OMI instrument [1,34,35].
The retrieval of the total NO2 slant column density from the Level-1b radiance and irradiance spectra
measured by TROPOMI is based on a Differential Optical Absorption Spectroscopy (DOAS) method [36].
The NO2 slant column density is separated into a stratospheric and a tropospheric part based on
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information coming from a data assimilation system based on the TM5-MP chemical transport model.
Tropospheric and stratospheric slant column densities are converted into vertical column densities by
applying an appropriate air-mass factor (AMF) based on a look-up table of altitude-dependent AMFs
and information on the vertical distribution of NO2 from the TM5-MP chemistry transport model at a
resolution of 1 × 1 degree and a time step of 30 min [37]. The altitude-dependent AMF depends on the
satellite geometry, terrain height, cloud fraction and height and surface albedo.

In this work, the reprocessed Level 2 NO2 tropospheric column data for the period May 2018–April
2020 have been used. The reprocessed version is the latest version of data that ensures uniformity of
the data processing [1,38]. Two other versions of data are also available: the near-real-time stream,
available within 3 h after data acquisition, and the offline stream, available within a few days after
acquisition. A useful variable contained in NO2 products, the quality assurance value (qa_value),
a continuous variable ranging from 0 to 1, was also taken into consideration. In particular, a qa_value
greater than 0.75, recommended removing cloud scenes covered by snow/ice, errors and problematic
retrievals, was used as a pixel filter.

The two target areas are shown in Figures 1 and 2. The first area is the Po Valley, located in the
North of Italy (Figure 1, yellow box), bounded in longitude between 7◦ E and 13◦ E and in latitude
between 44◦ N and 46◦ N. The second region is located in the South of Italy (Figure 2, yellow box),
bounded in longitude between 13◦ E and 19◦ E and in latitude between 39◦ N and 42◦ N.
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2.2. Ground-Based Observations

For inter-comparison and validation, both Level 2 and Level 3 NO2 TROPOMI data are compared
vs. NO2 observations obtained by air quality monitoring stations distributed on the two target
areas. The stations are managed by Agenzia Regionale per la Protezione dell’Ambiente (ARPA) of
Basilicata, Campania, Puglia, Lombardia and Emilia-Romagna Regions [39–43]. The network consists
of 10 monitoring stations for the study area in the North and 37 in the South of Italy (see Figures 1
and 2), respectively. The surface concentration of NO2, measured in µg

m3 , is available on a time slot
of 1 h. From these data, hourly values have been extracted, and daily/monthly averages have been
computed, as well, for comparison with consistent satellite observations.

The method used for the in situ measurement of NO2 is based on the chemiluminescence reaction
between NO and O3, which produces excited NO2, which subsequently returns to its fundamental
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state by emitting electromagnetic radiation in the UV region. Through a catalytic converter, the NO2

present in the air sample is reduced to NO. In this way, the total concentration of NOx is obtained,
while the measurement of NO2 is derived from the difference between total oxides and NO alone.

The instruments installed in the various considered air quality monitoring stations are constantly
subjected to checks, aimed precisely at ensuring the proper functioning of the equipment over time
and the reliability of the product data.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 23 
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2.3. Averaging and Remapping Operations

The native horizontal spatial resolution of NO2 TROPOMI data is 7 km × 3.5 km, and, of course,
based on a single daily satellite overpass, we cannot improve the spatial resolution because we cannot
increase information just by acting with mathematical tools. Information can be improved only on
the basis of additional physical information. We mean other sources of satellite or correlative data,
which is not the case for this study because our methodology relies on satellite data alone and suitable
mathematics; no additional physics is used. It should be noted that if the implemented mathematical
technique is inappropriate to solve a given problem, it could lead to loss of information [44,45].

One way to improve information is to accumulate satellite data from consecutive overpasses for a
given spatial region and for a time slot larger than the satellite repeat time. Our accumulation time slot
width is one month. Since satellites on polar orbits revisit a given area at different angles and the Field
of View (FOV) pattern does not point exactly at the same footprints, by accumulating data on a month
makes it possible that a given region of extent less than the basic 7 km × 3.5 km grid mesh is visited
more times with overlapping satellite FOVs. This is exemplified in Figure 3, which compares the
clear sky footprints of just one TROPOMI overpass for an area of the Po Valley, and the accumulated
overpasses over a whole month. It is seen that after one month, the clear sky footprints are much more
densely distributed over the area than the single overpass.

The vast data gaps in Figure 3a are because of cloudiness, which makes it impossible to perform
the retrieval for NO2. In contrast, the mosaic of overpasses accumulated over a monthly basis improves
spatial data sampling, hence the colocation with in situ observations. These overlapping observations
can be used to recover a map with improved spatial sampling. This can be done by acting with a
suitable averaging filter (to smooth the effect of outliers) and remapping the data to a regular finer
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mesh grid than the original ones. These averaging and remapping operations are performed with our
kriging methodology, which we will show in the next section.

After kriging operation, the data are labeled as Level 3, in contrast to the original (Level 2) sparse
data. It is understood that, because of averaging, the kriging interpolation will happen at the expense
of time resolution. In the presence of persistent processes, i.e., the continuous release of pollutants
into the environment, this is not a serious drawback. In effect, air quality safety regulations do not
look at a single, isolated event, which goes beyond thresholds for a few minutes, when at a persistent
phenomenon that remains above limits for days or months. In this respect, our methodology is aiming
at looking at persistent processes, which are those which can cause more risks for the health of human
beings and the natural environment.
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2.4. Regridding Technique

This section briefly presents the ordinary kriging method used to pass from Level 2 NO2 data at a
spatial resolution of 7 km × 3.5 km to Level 3 NO2 data at a spatial grid-resolution of 1 km × 1 km.
The methodology is quite general and can be applied to any set of data.

The regridding technique, used to estimate a variable of interest at a given spatial location, is
based on the spatial autocorrelation of data [46].

Let Z(s) be a spatial process, whose values or realizations are known at a set of spatial locations,
say, s = {s1, . . . , sn}, where s j denotes the spatial coordinate, e.g., (longitude, latitude) in a case of 2-D
process. Our objective is to estimate the process at a point s0 < s = {s1, . . . , sn} for which no observation
is available. The estimate, Ẑ(s0) of Z(s0) is obtained according to [46]

Ẑ(s0) = λZ(s), (1)

where λ is a vector of real weights and Z(s) represents the process at points where it is known. In order
to have an unbiased estimate, the additional condition of weights normalized to unity is assumed, i.e.,

n∑
i=1

λi = 1. (2)

The weights must be properly determined to minimize (in the least Squares sense) the estimation
of the variance and to ensure the estimator has no bias. In practice, the weights are determined based
on the correlation properties of the process Z(s). These properties are described through a functional,
called semivariogram, which yields the variance of the differences between pairs of the variable under
study at two different sites si and s j [46,47]. The semivariogram is defined according to:
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γ
(
si, s j

)
=

Var
(
Z(si) −Z

(
s j
))

2
. (3)

The semivariogram is a continuous function in the origin, but, in practice, it is often observed
that γ(0) , 0. This situation is known as nugget effect (γ(0) = τ2 is called nugget), and it is linked
to measurement errors or spatial resolution issues, which in turn affect the variogram value at very
small distances.

Another important feature of the semivariogram function is the sill, defined as:

τ2 + σ2 = γ(h) (4)

where σ2 is known as the partial sill (the sill minus the nugget), and h is the distance between two
different observations. In case the sill takes on a finite value, it means that the stochastic process is
weakly stationary; also, if this occurs for a finite value of h = h∗, then h∗ is said the range of the variogram.
The range quantifies the distance over which two different observations can be considered correlated.

Based on the available data we can build up an empirical semivariogram, say γ̂. In doing so, a
fitting model must be considered to extrapolate the spatial behavior of the observed points to the area of
interest. In the literature, there are several theoretical semivariogram models (e.g., linear, exponential,
Gaussian, wave and circular), with known analytical properties and physical meaning of parameters.

In our methodology, we use a set of models, which are specified in Figure 3, and that which is
best suited to our particular process Z(s) is chosen based on a statistical criterion, which selects the
model that best fits the given data.

In this work, the fit criterion described in [48] has been used. This step of the analysis is again
exemplified in Figure 4, where for the case shown, the best model is that spherical. It has to be stressed
that the fit criterion procedure is applied to case-by-case, which means that for the analysis, we are
going to show it has been applied to any single, individual, monthly maps.
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Once, the semivariogram model has been selected, the weights λ can be calculated and used for
the spatial interpolation.

Finally, before finishing this section, it is also worth noting that the ordinary kriging methodology
is a particular case of optimal interpolation and can be looked at as a special implementation of the
most general formalism of Kalman filter (e.g., see [49–52]). This is important because, unlike ad-hoc
interpolation methods, the kriging provides a robust and optimal tool for interpolation processes.

3. Results

3.1. Comparing Satellite Data to in Situ Observations

In this section, we will compare in situ observations against Level 2 and Level 3 (krigged data).
The final aim is to show that krigged data perform better as far as the correlation with ground-based
observations is concerned.

The comparison between satellite data to in situ observations required the space-time colocation
of data from the different sources. In particular, each in situ data have been compared with the spatially
closest Level 2 and Level 3 TROPOMI value. About temporal colocation, each Level 2 TROPOMI
observation is associated with the time of the satellite overpass, and therefore we used the temporally
closest in situ measurement.

Toward this objective, the effects of the kriging procedure on Level 2 data is exemplified in
Figure 5, which shows the scatterplot of time-space collocated values of TROPOMI NO2 and in situ
measurements for the ten validation stations in North Italy (see Figure 1) before and after the kriging
operation. In Figure 5a, the scatterplot refers to the observations accumulated over a month but not
averaged or regridded, therefore they are instantaneous measurements. After the kriging operation,
Figure 5b, the data are resampled monthly at the spatial sampling of 1 km × 1 km. It is seen that the
linear correlation coefficient increases from 0.50 to 0.85.

From Figure 5, we see a good linear relationship extends over the range 10–80 µg
m3 . The results

are showing that the TROPOMI can sense down to the surface and satellite data are capable of
discriminating between low and high pollution load. Furthermore, Level 3 TROPOMI has a far better
correlation with in situ observations. In passing, the good relationship we see for this case study shows
the relatively high homogeneity of the 10 stations. In effect, they are within the bulk area of the Po
Valley, which is affected by more intense and persistent air pollution concerning other regions in Italy.

Figure 6 shows the results for the 37 validation stations in Southern Italy. In comparison to Figure 5,
the correlation coefficient is smaller for both Level 2 and Level 3 data, but, as before, it increases passing
form the Level 2 to 3. The smaller correlation is expected because, unlike the Po Valley target area,
that in Southern Italy has a much more complex orography, and is much less homogeneous as far as
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the air quality conditions. The target area includes large urban areas, such as the city of Naples and
countryside, sparsely populated towns, which results in very large variability of air pollution intensity.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 
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At a different degree, the results in Figures 5 and 6 show that the kriging technique is capable of
improving the spatial sampling and yields a better comparison with in situ observations. However,
the results apply to the whole target area. In contrast, it would be better to check the capability of
TROPOMI to resolve air pollution at the scale of the single station.

Towards this objective, we now come to compare satellite vs. in situ observations at every single
station. For the Po Valley, the results are summarized in Table 1, where the correlation between
TROPOMI Level 3 and in situ observations is shown. In general, we have found that the correlation
improves when we move from Level 2 to Level 3, as exemplified for one of the ten stations listed in Tab.
1, in Figure 7, which shows the results for the Bologna-De Amicis station. The station is located within
an urban area densely populated and with intense traffic all year-round. As said, we observe a poor
correlation with Level 2 data. Conversely, we observe a very high correlation, which reaches the value
of R2 = 0.93 when going to Level 3 data. The same good correlation is also seen when we consider
monthly time series as done in Figure 8. It is seen that the krigged data are capable to follow the
seasonal cycle, showing an increase of NO2 pollution in wintertime months because of the combined
effect of domestic heating and increased traffic.

Overall, the good correlation we have found for the Po Valley is an effect of the better spatial
sampling of L3 data, but we think it is also a consequence of the particular, local, weather conditions,
which govern air circulation over the valley. The Po river flows in a closed valley surrounded by
high mountains, which makes pollution remains trapped, especially in wintertime, when atmospheric
conditions prevent dispersal.
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Table 1. Longitude (deg east) and latitude (deg north) of North Italy ground stations, slope (parameter
a in units of µg m−3 Dobson−1 ) and intercept (parameter b in units of µg m−3 of the linear regression,
regression error (parameter e in µg m−3 ) and correlation (R2).

Ground Station Longitude Latitude a b e R2

BOLOGNA-DE
AMICIS 11.72 44.36 84.67 9.61 3.75 0.93

BRESCIA 10.22 45.54 42.13 18.34 4.25 0.88
CITTADELLA 10.33 44.79 48.63 8.37 4.81 0.85

GIORDANI-FARNESE 9.69 45.05 57.61 16.80 5.08 0.89
MANTOVA 10.79 45.16 59.71 7.74 8.42 0.76

MILANO 9.20 45.46 42.11 25.05 7.24 0.80
PAVIA 9.15 45.18 55.83 10.95 7.68 0.83

SAN ROCCO 10.66 44.87 36.05 7.28 4.03 0.83
SESTO S. GIOVANNI 9.25 45.53 55.69 18.37 9.42 0.83

VIGEVANO 8.85 45.32 44.69 8.34 5.85 0.84
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TROPOMI data, as well as satellite observations, estimate tropospheric NO2 columns rather
than ground-level NO2 concentrations, which, in turn, is normally measured from in situ stations.
In addition, satellite data cannot resolve the diurnal cycle because of the polar orbits. The good
correlation we observe means that, because of the huge pollution stain over the Po Valley, NO2 tends to
be compressed and trapped within the PBL. We have a persistent phenomenon, which can be measured
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by satellite on consecutive days. The air pollution persistence is an effect peculiar to the Po Valley and
its local weather.

Other Italian regions can have local weather conditions, which can favor the dispersal of pollution.
The complex orography of most of the Italian territory can impact on the PBL dynamics. As a result,
we can observe vertical and horizontal inhomogeneities of NO2 mixing ratio profiles.

In effect, Table 2 (South Italy) shows a picture much more complex. In general, higher correlations
are found for densely populated cities on the East coast (Adriatic Sea) and inner part (mountains).
However, there is not a clear pattern. As a result of the above discussion, the cases of fair correlation
(≈0.50) could be related to the particular orography of the given area, which could influence the local
weather and climate. As an example, for the city of Naples, which we know is an area of intense air
pollution, likely, the local, very complex, orography and the related weather characteristics contribute
to increasing the day-to-day variability of air quality and, much important, increase the vertical and
horizontal inhomogeneity of NO2.

Table 2. As Table 1, but for the South Italy ground stations.

Ground Station Longitude Latitude a b e R2

ACERRA SCUOLA
CAPORALE 14.37 40.94 248.78 −7.41 8.65 0.64

ALTAMURA 16.56 40.83 322.97 −0.69 4.16 0.75
ANDRIA 16.30 41.23 329.19 −3.15 3.33 0.84

AVELLINO 14.78 40.92 175.17 4.17 2.57 0.85
BARI-CALDAROLA 16.88 41.11 450.14 3.15 4.60 0.79
BARI-CARBONARA 16.86 41.07 302.81 −8.49 2.87 0.78

BARI-CAVOUR 16.87 41.12 229.15 17.51 3.17 0.70
BARI-CUS 16.84 41.13 236.72 −2.81 3.36 0.68

BARI-VIA KENNEDY 16.86 41.09 309.28 −0.73 2.16 0.87
BARLETTA 16.28 41.31 267.84 −3.97 2.97 0.83

BENEVENTO 14.78 41.11 716.20 −35.83 4.12 0.90
BRINDISI-VIA CRATI 17.95 40.63 226.60 1.32 1.26 0.74
CAMPI SALENTINA 18.03 40.40 321.67 −10.66 2.34 0.59

FOGGIA-VIA
ROSATI 15.55 41.45 292.48 −4.51 4.50 0.68

FRANCAVILLA 17.58 40.53 337.60 −7.88 5.29 0.59
GROTTAGLIE 17.42 40.54 179.05 −4.62 2.49 0.61

LECCE-VIA
GARIGLIANO 18.17 40.36 627.30 −24.79 4.00 0.55

MADDALONI 14.37 41.04 156.80 2.63 3.42 0.72
MANFREDONIA 15.91 41.63 174.43 8.44 1.59 0.90

MESAGNE 17.81 40.56 259.81 −7.18 1.71 0.74
MODUGNO-ENO2 16.77 41.14 249.02 1.21 1.92 0.87
MODUGNO-ENO3 16.78 41.09 169.26 8.88 1.36 0.83
MODUGNO-ENO4 16.79 41.11 465.30 −11.35 3.47 0.86
MOLFETTA-VERDI 16.60 41.20 297.01 −0.73 2.54 0.89
MONOPOLI-ALDO

MORO 17.29 40.95 461.40 −9.14 3.97 0.81

MONOPOLI-ITALGREEN 17.28 40.96 233.88 −2.77 1.53 0.88
MONTE S. ANGELO 15.94 41.66 85.03 1.53 1.65 0.68

NAPOLI PARCO
VIRGILIANO 14.18 40.79 64.97 3.87 2.34 0.67

NOCERA
INFERIORE 14.64 40.74 267.29 −4.12 10.24 0.52

PORTICI 14.34 40.81 69.06 9.11 3.57 0.76
SALERNO 14.77 40.69 204.27 27.50 7.00 0.60

S. PANCRAZIO
SALENTINO 17.84 40.42 164.45 −3.11 2.25 0.54

SAN SEVERO 15.38 41.69 186.92 −2.46 2.43 0.80
SURBO 18.12 40.41 257.69 −5.14 1.82 0.55
TORRE

ANNUNZIATA 14.43 40.76 77.32 11.18 3.14 0.76

VIGGIANO-COSTA
MOLINA 15.95 40.32 16.80 2.18 0.25 0.63

VIGGIANO 1 15.90 40.33 85.07 −0.71 1.03 0.71

In general, using additional physical information, e.g., see [53], the correlation could also be
improved for stations showing smaller consistency between the tropospheric column and near-surface
measurements. However, this is a task not addressed in this paper, which rather focuses on the direct
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use of TROPOMI observations per se. Nevertheless, it is fair to recall and caution the reader that the
TROPOMI observes NO2 columns rather than ground-level NO2 concentrations, which are closely
related to potentially harmful effects on human health.

Before closing this section, we stress that also for the second target area, we have that, in general,
the correlation improves when we go from Level 2 to Level 3. This is exemplified for two stations in
Figures 9–12. The first station refers to the urban area of the Avellino city in the mountains. Figure 9
shows that the correlation clearly improves after the kriging applications to the Level 2 data.
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Figure 12. Ground (a) and Level 3 (b) NO2 monthly time series for the Viggiano station. The analysis
refers to the period of May 2018–May 2019.

The good correlation (Level 3) is also reflected in Figure 10, where we show the comparison
between monthly time series. TROPOMI data are capable of following and reproduce the annual cycle,
with the winter peak due to domestic heating.

Figure 11 shows the scatter plot for the second station, which is the Viggiano-Costa Molina station.
This station is located in a countryside area some km apart from an oil refinery plant. Still, it is far from
urban areas to monitor the supposedly NOx emissions from the industrial plant.

Unlike the former Avellino station, now the correlation coefficient goes to zero in the case of Level
2 data. For this station, we observe no sign of important pollution, as it can be argued by comparing
Figure 11 to Figure 9. Nevertheless, when we pass to Level 3 data, it is seen that TROPOMI is still
sensitive to these very low values of NO2 concentrations. According to the present Italian regulation
the NO2 annual average should not exceed 40 µg

m3 . The monthly averages for Viggiano are smaller by a
factor of ten.

Although relatively small, the correlation found for the Level 3 data is still large enough to
correctly reproduce the salient features of the seasonal cycle, as shown in Figure 12.

3.2. Monthly Spatial Map of Level 3 NO2 Tropospheric Column

With the exceptions and cautions outlined above, the previous section gives us the confidence of
the good reliability of TROPOMI, especially for the Po Valley, to follow the lower tropospheric column
amount of NO2 and related evolution and variations. We now pass to illustrate and describe spatial
patterns of NO2 tropospheric column data, as revealed from the TROPOMI instrument.

To begin with, Figure 13 illustrates the monthly NO2 distribution over the Po Valley area, for the
period between May 2018 to April 2019. These maps show persistent NO2 hotspots over big cities,
such as Milano (star symbol), and widespread NO2 distribution in the colder months, particularly
from November 2018 to February 2019, with peaks three times larger than those reached in the months
of May-August 2018 and April 2019. This situation underlines the fact that NO2 concentrations are
strictly related to a more massive vehicular traffic (because of school season) and domestic heating,
and in addition to less sunlight and colder temperatures, typical of the winter months.
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Figure 13. Monthly maps of Level 3 NO2 tropospheric column (Dobson) over the Po Valley area 
during the period between May 2018 and April 2019. In particular, May (a), June (b), July (c), August 
(d), September (e), October (f), November (g), December (h) 2018 and January (i), February (l), March 
(m), April (n) 2019. The star indicates the city of Milan. 

Figure 14 illustrates the monthly maps of Level 3 NO2 tropospheric column data related to the 
study area in the South of Italy. These maps show a persistent NO2 hotspot in correspondence to the 
city of Naples (star symbol). Moreover, also for this case, we see a seasonal cycle, with a higher level 

Figure 13. Monthly maps of Level 3 NO2 tropospheric column (Dobson) over the Po Valley area during
the period between May 2018 and April 2019. In particular, May (a), June (b), July (c), August (d),
September (e), October (f), November (g), December (h) 2018 and January (i), February (l), March (m),
April (n) 2019. The star indicates the city of Milan.

Figure 14 illustrates the monthly maps of Level 3 NO2 tropospheric column data related to the
study area in the South of Italy. These maps show a persistent NO2 hotspot in correspondence to the
city of Naples (star symbol). Moreover, also for this case, we see a seasonal cycle, with a higher level
of NO2 during the months from October 2018 to February 2019. The comparison between the two
target areas (North and South) shows that the densely populated and heavily industrialized Po Valley
is affected by larger spatial patterns of NO2, with concentration peaks three times larger than those
reached in the Southern area.

As said before, the main reasons for the huge pollution stain over the Po Valley are closely
connected to intense urban and industrial activities and to orographic aspects, which can determine
unfavorable local weather conditions, which make pollution remain trapped, especially in wintertime,
and prevent dispersal.
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Figure 14. Monthly average maps of Level 3 NO2 tropospheric column (Dobson) over the Southern 
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To show the capability of the Level 3 data to detect air quality behavior because of anthropic 
cyclic activities, in this section, we examine NO2 load on weekdays and weekend times. 

Figure 14. Monthly average maps of Level 3 NO2 tropospheric column (Dobson) over the Southern
Italy area during the period between May 2018 and April 2019. In particular, May (a), June (b), July (c),
August (d), September (e), October (f), November (g), December (h) 2018 and January (i), February (l),
March (m), April (n) 2019. The star indicates the city of Naples.

3.3. Weekdays and Weekend Observations

To show the capability of the Level 3 data to detect air quality behavior because of anthropic cyclic
activities, in this section, we examine NO2 load on weekdays and weekend times.

The analysis of weekly cycles captures lower NO2 levels during the weekend days compared to
the weekdays, as a result of reduced emissions from traffic and industrial activities, which are more
intense in urban areas. Differently to previous work [29], we only used two days for weekdays and not
all five days from Monday to Friday to have uniformity with the two days of the weekend.

More in detail, 16 weekdays (Wednesday and Thursday) and 16 weekend days for June and July
were considered for the two target areas. The analysis has been performed in summer so that the
results are not affected by domestic heating. The results are shown in Figure 15 (Southern Italy) and
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Figure 16 (Po Valley), and for both cases, it is possible to note the higher NO2 concentrations over
urban districts, such as Naples and Milan.
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3.4. NO2 Pollution During COVID-19 Epidemic Crisis 

While writing this paper, Italy has been hit by the dramatic COVID-19 epidemic. As a result that 
the science community has drawn attention to the possible interrelationship between COVID-19 
diffusion and air quality, we have assessed the evolution of NO2 pollution over the Po Valley in the 
period Dec. 2019 to Apr. 2020. In this period, COVID-19 has spread and supposedly infected millions 
of people, leading Italian authorities to declare the lockdown of the Po Valley area, which has been 
later extended to the whole Nation. We stress that we just put attention on the NO2 evolution per se; 
in other words, we just show how this evolution has been observed and photographed from space.  

For a proper comparison, the monthly maps of NO2 concentration over the Po Valley for the 
period December to March for both the COVID-19 (that is 2019-2020) and the no COVID (2018-2019) 
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Figure 16. Level 3 NO2 tropospheric column data over Po Valley for (a) 16 weekdays in June–July and
(b) 16 weekends in the same period. The star indicates the city of Milan.

In passing, we draw attention to a striking feature, which can be seen in Figure 16a. If we draw
the diagonal from top left to bottom right, it is seen that the NO2 pollution tends to be higher along
that direction, from the bottom right to the middle of the map. In effect, that is the main direction of
the heavily trafficked Italian A1 highway.

3.4. NO2 Pollution During COVID-19 Epidemic Crisis

While writing this paper, Italy has been hit by the dramatic COVID-19 epidemic. As a result
that the science community has drawn attention to the possible interrelationship between COVID-19
diffusion and air quality, we have assessed the evolution of NO2 pollution over the Po Valley in the
period Dec. 2019 to Apr. 2020. In this period, COVID-19 has spread and supposedly infected millions
of people, leading Italian authorities to declare the lockdown of the Po Valley area, which has been
later extended to the whole Nation. We stress that we just put attention on the NO2 evolution per se; in
other words, we just show how this evolution has been observed and photographed from space.

For a proper comparison, the monthly maps of NO2 concentration over the Po Valley for the
period December to March for both the COVID-19 (that is 2019–2020) and the no COVID (2018–2019)
periods are shown in Figures 17 and 18, respectively. The first striking feature which arises from the
comparison of the corresponding maps for no-COVID-19 (Figure 17) and COVID-19 (Figure 18) is the
sharp decrease of air pollution in 2020 compared to 2019. This has been most likely the effect of the
warmer 2019-20 winter, which has limited the use of heating power for both residential and commercial
sectors. It is to be stressed that according to ECMWF, winter 2020 has been the far warmest winter
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season ever recorded over Europe (e.g., see https://climate.copernicus.eu/boreal-winter-season-1920-
was-far-warmest-winter-season-ever-recorded-europe-0).
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2019. In particular, December 2018 (a) and January (b), February (c), March (d) 2019.
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Figure 19. Monthly NO2 pollution as revealed by TROPOMI for April 2019 (a) and April 2020 (b). 

To sum up, we can say that during the lockdown, NO2 has decreased over the Po Valley. 
However, this decrease is over-imposed to a general decreasing trend because of the favorable 2020 
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By comparing Figure 17 to Figure 18, we see that only January 2019 and 2020 show comparable
NO2 pollution, whereas February 2020 shows a dramatic decrease of NO2 pollution over the whole Po
Valley. This month has been supposedly that of maximum virus diffusion among the population.

In March 2020, when the lockdown was active, we see some 50% decrease of NO2 pollution
concerning the same month of 2019. The same situation also occurs for April, which is shown in
Figure 19.
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To sum up, we can say that during the lockdown, NO2 has decreased over the Po Valley. However,
this decrease is over-imposed to a general decreasing trend because of the favorable 2020 weather
conditions. The general reduction in NO2 pollution during the 2020 winter is also clearly seen at ground
stations and therefore is not an artifact of satellite data. This is exemplified in Table 3, which shows the
percentage variation among 2019 and 2020 winter months as measured at ground stations in Bergamo,
Brescia and Milan, respectively. These three cities are those who share the bulk of NO2 concentrations
over the Po Valley. Furthermore, the negative variations are confirmed with TROPOMI data, as can be
directly checked by the same Table 3.

Table 3. Monthly percentage variations of NO2 concentrations for the month December 2019–April
2020 to December 2018–April 2019, as measured by TROPOMI Level 3 data and in situ stations.

Bergamo Brescia Milano

Month Satellite In Situ Satellite In Situ Satellite In Situ

December −39.3% −37.4% −30.5% −16.0% −29.4% −25.6%
January −9.4% −14.2% −10.6% −9.0% −5.0% −26.08%

February −28.1% −44.4% −33.3% −23.9% −39.2% −18.47%
March −25.8% −49.2% −44.7% −41.12% −21% −33.85%
April −20.0% −30.1% −15.8% −51.8% −16.7% −40.0%

4. Discussion

Kriging and related tools are now of widespread use within the context of Geostatistics and
the analysis of Geospatial data (e.g., [54–56]). Application to the particular area of air quality with
a focus on NO2 has been recently reported in the literature [57,58], which emphasizes the use of in
situ observations. Our application to TROPOMI is quite new, and it has been designed to improve
the spatial sampling of the data, which is inevitably affected by gaps because of cloudy conditions.
In fact, we use a mosaic of TROPOMI overpasses, which is used to estimate the semivariogram that
governs the data structure at the different spatial scales. Once we have estimated the semivariogram,
we perform a regridding of the data on a finer, regular, grid mesh with a step ∆r =1 km. The regridding
fills the gaps in the original footprint geometry and improves the colocation with in situ observations.
We stress that the step ∆r =1 km should not be confused with the spatial resolution of the original data,
which remains fixed to that of the TROPOMI footprint geometry. In fact, in our kriging procedure, there
is no explicit de-convolution of the original observations or information from additional sources of data
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at better spatial resolution. Using regridding we oversample the original TROPOMI footprints to match
the position of ground stations better and perform time-averaging of the data. It could be argued that
this remapping could be performed in many different ways involving mathematical interpolation tools.
The specificity of kriging methods is that they do not only consider the distance between observations,
but they also capture the spatial structure in the data by computing the variogram and using it to
set the weights to perform the interpolation at un-sampled points in the grid. To show the kriging
advantages, we have also produced NO2 maps for the Po Valley using the technique of the nearest
neighbor combined with the ordinary arithmetic mean. In doing so, Level 2 data were accumulated for
each month on a regular, fixed, grid which has the size of the TROPOMI original spatial resolution of
7 km × 3.5 km. For each satellite overpass, the nodes of this regular grid were filled with the spatially
closest Level 2 value (within a maximum distance that refers to the original Level 2 TROPOMI spatial
resolution) and, subsequently, the regularly spatially distributed values were averaged over the month.
In this way, we can obtain at each node a value which is representative of the monthly averaged Level
2 NO2 TROPOMI tropospheric column. The results are shown in Figure 20 for the station of Bologna,
so that they can be directly compared to those of Figure 7. It is seen that we improve the correlation
with respect to Level 2 data, but not concerning kriging for which we observe a correlation of 0.93
against that of 0.80 shown in Figure 20.
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Another important aspect to discuss is that regarding the choice of the grid step ∆r =1 km.
Although there is no general prescription on how to choose the grid step, the case study at hand is
normally suggesting a suitable pragmatic and effective choice. It is normally suggested (see e.g., [56],
section 5.4.2) that ∆r”h∗ (h∗ is the range that for our analysis is of the order of 100 km, e.g., see Figure 3)
and that the number of couples in any grid-box should range between 6-24 (see e.g., [55], Section
5.4.2). In addition, for our application, it is obvious to require ∆r to be smaller than the average radius
of the TROPOMI footprint. Otherwise, as shown in Figure 20, we could not take advantage of the
oversampling, which is allowed with our mosaic of monthly scenes. If we take ∆r larger than the
TROPOMI footprint, there would be no point in oversampling since we could fill gaps with available
clear sky data, if any, for the given scene. Finally, according to [55], at least 6-12 points should be used
for each predicted value. In our case, with ∆r = 1 km we have that each grid box has ≈ 10 neighbor
pairs to be used for interpolation. In this way, for any grid point, considering the four quadrants, there
are some 40 neighbors to be considered for interpolation. This density of satellite observations also
ensures that we have enough points covering the time window of one month. This allows us to take
into account the day-to-day variability, which is needed to have a good estimate of the monthly mean.

5. Conclusions

In this paper, a geostatistical regridding technique, i.e., the ordinary kriging, was applied to
improve the spatial resolution of satellite-based NO2 tropospheric column estimations from the original
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coarser resolution (7 km × 3.5 km) to a final finer grid-resolution (1 km × 1 km). The finer resolution
allowed us to explore spatial data variability, obtaining more information on the main NO2 sources.

The analysis of the consistency between satellite and ground-based NO2 values showed good
correlations that demonstrated the capability of the TROPOMI instrument to well reproduce the
variability of NO2 concentrations in the lower troposphere, especially for the Po Valley. This consistency
has been tested both for the original Level 2 and for the Level 3 NO2 data, obtaining an improvement
of correlation coefficients when we move from Level 2 to 3.

In effect, once properly filtered and remapped with our kriging procedure, TROPOMI NO2

concentration showed good consistency with in situ observations. This consistency was assessed
through the calculation of the linear correlation coefficients, which reached values larger than 0.90
for severely polluted areas, such as those in the Po Valley. This is an important result in that it can
allow us to use TROPOMI data in air quality protocols to check and monitor, e.g., the effect of ad hoc
measures to mitigate and lower the intensity of air pollution. This could have a high impact on the
European Copernicus Program and boost the use of the European satellite platform.

Having said that, we have also found, for the target area in southern Italy, much more mixed
results, which are likely because of an unstable PBL, which could well condition the local weather in a
way to increase the vertical and horizontal inhomogeneity of NO2. For Southern Italy, there remain
cases for which from the satellite data, we can observe pollution spots, whose magnitude and intensity
cannot be easily extrapolated from the troposphere to the air close to the surface.

We have also used TROPOMI data to analyze NO2 pollution during COVID-19 and no-COVID-19
times. We have shown that TROPOMI observations have been sensitive to the lockdown effect on air
quality, showing a general decrease of NO2 concentrations in March and April 2020. However, at the
same time TROPOMI, in agreement with in situ observations, has shown a general decrease of lower
tropospheric NO2 to 2019, mostly because of a warmer 2020 winter that has limited the use of power
for residential and commercial heating.
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