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Abstract: High-resolution optical remote sensing image classification is an important research
direction in the field of computer vision. It is difficult to extract the rich semantic information from
remote sensing images with many objects. In this paper, a multiscale self-adaptive attention network
(MSAA-Net) is proposed for the optical remote sensing image classification, which includes multiscale
feature extraction, adaptive information fusion, and classification. In the first part, two parallel
convolution blocks with different receptive fields are adopted to capture multiscale features. Then,
the squeeze process is used to obtain global information and the excitation process is used to learn
the weights in different channels, which can adaptively select useful information from multiscale
features. Furthermore, the high-level features are classified by many residual blocks with an attention
mechanism and a fully connected layer. Experiments were conducted using the UC Merced, NWPU,
and the Google SIRI-WHU datasets. Compared to the state-of-the-art methods, the MSAA-Net has
great effect and robustness, with average accuracies of 94.52%, 95.01%, and 95.21% on the three widely
used remote sensing datasets.

Keywords: multiscale feature; feature fusion; scene classification; dual attention

1. Introduction

With the rapid development of remote sensing technology and the increasing number of satellites,
more and more solid sources of data-support for land use investigation can be obtained [1–3].
Images used in remote sensing image processing and interpretation tasks contain more complex
structures and have higher resolutions than before. The traditional method based on a single pixel with
physical information is no longer suitable for complex remote sensing image classification. In recent
years, some methods based on the entire image content have been used to extract high-level semantic
information in remote sensing images [4,5].

The method for remote image sensing classification commonly includes two parts: a features
extractor and a classifier. According to the method of extracting features, the methods can generally be
divided into two groups: traditional methods and deep learning (DL) methods. Traditional methods
are usually based on hand-crafted features, which are used to extract low-level features including
surface information such as color and texture. In contrast, DL methods can extract more robust
features through convolution operations and hierarchical structures, which can obtain high-level
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features including abstract information, such as objects in the image. In recent years, DL methods have
gradually become mainstream in many artificial intelligence tasks such as speech recognition [6,7],
semantic segmentation [8,9], and image retrieval [10].

In traditional methods, sparse representations [11,12] and morphological profiles (MPs) [13] are
typically used as the fundamental feature extractor [14–16]. For example, Yin et al. [12] proposed
a remote sensing image fusion algorithm with sparse representations and color matching instead
of the intensity hue saturation (IHS) color model and Brovey transform. Logistic regression [17,18],
decision tree [19], random forest [20], extreme learning machine (ELM), probabilistic neural network
(PNN), and support vector machines (SVM) [21,22] are usually adopted as the classifiers. For example,
Thaseen et al. [23] constructed a multiclass SVM to decrease the training and testing time and increase
the individual classification accuracy. Han et al. [24] compared the behavior of random forest with
ELM, PNN, and SVM for the intelligent diagnosis of rotating machinery, which proved that random
forest outperforms the comparative classifiers in terms of recognition accuracy, stability, and robustness
to features, especially with a small training set. In general, traditional methods often capture shallow
information and so it is difficult for them to achieve excellent performance. Therefore, DL methods are
more suitable for remote sensing image classification with rich semantic information.

As mentioned above, feature extractors and classifiers usually are separated in traditional
methods. In DL methods, classification models are generally end-to-end, so feature extractors and
classifiers are trained and predicted simultaneously. Due to their good performance, DL methods
have also been widely used in remote sensing image processing and interpretation, like hyperspectral
pixel classification [25–28] and scene classification [29,30]. In order to deal with different problems
flexibly, the basic convolution operation also has many variants, such as dilated convolution [31],
deformable convolution [32], and transposed convolution [33]. For example, Rizaldy et al. [34]
introduced a multiscale fully connected network (MS-FCN) with dilated convolution operation and a
fully connected network (FCN) [35] to minimize the loss of information during the point-to-image
conversion. Körez et al. [36] proposed a multiscale Faster R-CNN method with deformable convolution
for single/low graphics processing unit (GPU) systems, which can make up for the limitations of the
anchor’s shape. Wang et al. [33] proposed an anchor-free object detection method with a transposed
convolution operation. It can be seen from the current development that the convolution operation is
an excellent feature extraction method.

In image classification, many classical models have been proposed, such as AlexNet [37],
GoogLeNet [38], and VGG [39]. In addition, there are many improved classification methods.
He et al. [40] proposed ResNet by adding a skip connection between two specific layers, which can
alleviate the gradient disappearance problem during backpropagation. Xie et al. [41] proposed ResNeXt
by introducing a split–transform–merge operation in Inception [38] to ResNet. Huang et al. [42]
proposed DenseNet, aiming to make the output of a block contain information for all layers in this
block. DenseNet consists of many dense blocks and a classifying layer like ResNet, and the inputs of
each layer are the sum of the outputs of all the previous layers in each dense block. Chen et al. [43] took
advantage of both ResNet and DenseNet and proposed a Dual-Path Network (DPN), which consists of
a residual block and a dense block in parallel. Hu et al. [44] introduced Squeeze-and-Excitation (SE) to
ResNet and proposed SE-Net. In the SE-block, the output features are first squeezed by max-pooling
and then transformed into a group of weights by using two fully connected layers, and the weights are
multiplied to original features in each channel.

The above models, based on convolutional neural networks, have been used in many remote
sensing tasks. In the past few years, modeling of higher-order statistics for more discriminative
image representations has attracted great interest in deep ConvNets. In 2019, many new methods
based on second-order features in convolutional neural networks have been proposed [45–48],
and have achieved good results in many image processing tasks, such as image classification [45],
semantic segmentation [46], image super-resolution [47], and pedestrian re-identification [48].
Gao et al. [45] proposed the GSoP-Net model, introducing Global Second-order Pooling (GSoP)
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from lower to higher layers for exploiting holistic image information. After nonlinear transformation,
a covariance matrix obtained by the GSoP layer is used for tensor scaling along the channel dimension,
so that GSoP-Net can make full use of the second-order statistics of the holistic image. At the same
time, the attention mechanism in convolutional neural networks has also developed in many directions
in image processing tasks. Wang et al. [49], with an Efficient Channel Attention (ECA) module,
proposed ECA-Net, which only involves k (<9) parameters but brings about a clear performance gain.

However, the features in the models mentioned above are all single scale, and the scale variation
of the objects in image has a great influence on the models. As shown in Figure 1, it is difficult to
classify remote sensing scenes if the size of the objects changes a lot. Some studies are aiming to solve
this problem. In [50], the original images were cropped into different sizes and rescaled to original size,
then the generated different scale images were used as inputs and a scale-aware model was acquired.
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Zeng et al. [51] proposed a novel end-to-end CNN by integrating the global-context features
(GCFs) and local object-level features (LOFs), which allows the method to be more discriminative in
scene classification. Liu et al. [30] trained a CNN with multiple size samples and used the spatial
pyramid pooling (SPP) [52] method to make inputs with different sizes and outputs with the same size.

The methods for scene classification mentioned above mostly have the same receptive field,
not taking full advantage of the flexibility of the convolution operation. The traditional image
multiscale method needs to crop or resize the inputs, which will lead to some loss of detail. In addition,
if the input size of the convolutional neural network is not fixed, additional methods, such as SPP,
need to be introduced in the prediction. Due to the hierarchical structure of convolutional neural
networks, the fusion of features of different layers has become a new multiscale method, and has
achieved good results in the field of target detection. However, shallow low-level features are not
robust, so the multiscale features obtained by this method are not suitable for classification tasks.
A new method is needed to solve the problem that the scale variation of the objects in the image
has a great influence on the models. The dilated convolution can expand the receptive field of the
convolutional kernel without introducing additional parameters, so that the convolutional kernel can
focus on objects of different sizes. Therefore, using the characteristics of dilated convolution, a novel
multiscale features extraction module is proposed in this paper to extract features of objects of different
sizes in the image.

In addition, the methods of directly adding or concatenating the two feature maps mean that
the contribution of the two feature maps to the entire model is equal. In [53], the features from
different layers are combined by adding them element-wise. The local information in the shallow
layer and the semantic information in the deep layer are fused, and no additional parameters are
introduced. In [38], the structure of inception combines features from different kernels by concatenating
in different channels, which will introduce some parameters in the next layer. In fact, these methods
are often too rigid and cannot fully utilize the information contained in the two input feature maps.
The channel attention mechanism can assign different weights to each channel, so as to effectively
select which channel information is more important. Therefore, the channel attention mechanism
with a squeeze-and-excitation operation can be used to adaptively select the importance of the
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corresponding channels in the two feature maps through global information. By taking advantage of
the squeeze-and-excitation operation, a multiscale feature-fusion module is proposed to fuse the two
input feature maps according to the contribution to the model.

According to the above analysis of multiscale feature extraction and feature fusion methods,
MSAA-Net is proposed for the problem of the object size in the same category image varying greatly.
Different from the methods mentioned above using different sizes of samples as inputs, a low-level
feature extraction module with different receptive fields is adopted to capture multiscale features.
Then multiscale features are fed into a feature-fusion module to merge adaptively. Finally, combining the
classic residual block structure and incorporating the attention mechanism, a deep feature extraction
module is designed. In this module, the skipping connection in the residual block can solve the
problem of gradient disappearance, and the attention mechanism can perform sparse and enhanced
processing on the features extracted by convolution. Therefore, the deep classification module can
enhance fusion features via a self-attention convolution block and output the final classification results.

The main contributions of this paper are as follows.

1. A novel multiscale features extraction module containing two convolution block branches is
proposed to extract features at different scales. The two branches have the same structure,
but different receptive fields. Convolutional kernels of different receptive field sizes can capture
features of different scales, and no additional parameters are introduced, because the parameters
in both branches are shared.

2. A multiscale feature-fusion module is designed for the proposed network. In this module,
a squeeze process is used to obtain global information and the excitation process is used to learn
the weights in different channels. With global information, the proposed method can select more
useful information from the two feature maps for adaptive fusion.

3. A deep classification module with the attention mechanism is proposed to extract high-level
semantic features and generate final classification results. In this module, the skipping connection
can well solve the problem of gradient disappearance, and the attention mechanism can perform
sparse and enhanced processing on the features.

The rest of the paper is organized as follows. Section 2 presents the proposed method in detail.
Section 3 presents the data and experimental results. A discussion is provided in Section 4. Finally,
the conclusions are provided in Section 5.

2. Materials and Methods

In this section, the proposed method, MSAA-Net, is introduced in detail. As shown in Figure 2,
the proposed network contains three parts: a multiscale features extraction module, a feature-fusion
module, and a deep classification module. In the multiscale features extraction module, two parallel
convolutional layers with the same structure but different dilation rates are used to capture multiscale
features. In the feature fusion module, a squeeze-and-excitation operation is used to adaptively fuse
features with different scales. The deep classification module contains many basic convolutional blocks
connected in series. Each basic block contains two convolutional layers with an attention mechanism
and shortcut connection, which can obtain more robust semantic information and effectively suppress
overfitting. In Figure 2, the number after the convolution block denotes the size of channels of the
output. Convolutional kernels with a stride of 2 are used to reduce the size of the feature maps.
The output of convolutional layers is vectorized by global average pooling, followed by a fully
connected layer. In the following, the structures of the three modules are separately described in detail.
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Figure 2. Overview of the proposed method.

2.1. Multiscale Features Extraction Module

In recent years, dilated convolution has been used as a multiscale extraction method in
semantic segmentation [54] and object detection [55] tasks and has achieved quite good results.
Dilated convolution up-samples filters by inserting zeros between weights, as illustrated in Figure 3.
It enlarges the receptive field, but does not introduce extra parameters. Dilated convolution can extract
multiscale features without reducing the spatial resolution of responses, which is the key difference
from other multiscale extraction methods.
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Figure 3. Effects of different receptive fields on different samples. (a) Receptive field of 3 ×
3 convolutional kernel with dilation rate = 1. (b) Receptive field of 3 × 3 convolutional kernel
with dilation rate = 2. (c) Receptive field of 3 × 3 convolutional kernel with dilation rate = 3.

First, we construct two parallel branches with the same structure but different receptive fields to
extract features in different scales. In each branch, there are two convolutional layers with a kernel size
of 3 × 3. In the convolutional layer, the size of the receptive field can be adjusted according to different
dilation rates. As shown in Figure 3, receptive fields of different sizes have different feature extraction
capabilities for objects of different sizes. In the one branch, the dilation rate is set to 1 with a kernel size
of 3 × 3. In the other branch, the dilation rate is set to 2 with a kernel size of 3 × 3, which means that its
receptive field is same as the layer with a kernel size of 5 × 5.

In the multiscale features extraction module, given the input X ∈ R3×H×W , two output feature
maps O1 and O2 are obtained as follows:

O1 = f ( f (X ∗W1) ∗W3) (1)



Remote Sens. 2020, 12, 2209 6 of 22

O2 = f ( f (X ∗W2) ∗W3) (2)

where W1, W2, and W3 represent the convolutional parameters. The values in W1 and W2 are equal,
but the dilation rate is different. ∗ is the convolution operation and f refers to the ReLU activation
function. The convolutional layers in the two branches have the same stride and structure, so the
size and channel of O1 and O2 are the same. Due to different receptive fields in each branch, there is
different information about scale in O1 and O2, and then they are fed into the feature-fusion module.

2.2. Multiscale Feature-Fusion Module

Element-wise addition and concatenation in channels are currently two widely used feature
fusion methods that treat the contribution of the fused features to the model as equivalent. However,
because the input features contain different scales of information, their contribution to the model is
often different. To address this issue, an adaptive feature fusion module is proposed. As shown in
Figure 4, the two groups of features from two branches are fused by the adaptive fusion module. O1

and O2 denote two feature maps from the multiscale feature extraction module, which contains features
in different scales. O denotes the sum of O1 and O2, and z is the global features of O. p and q denote two
groups of weights for O1 and O2, fc is the fully convolutional layer, and softmax represents the softmax
function. The output multiscale features of this part are used as the input of the classification module.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 21 

 

function. The convolutional layers in the two branches have the same stride and structure, so the size 

and channel of 1O  and 2O are the same. Due to different receptive fields in each branch, there is 

different information about scale in 1O  and 2O , and then they are fed into the feature-fusion module. 

2.2. Multiscale Feature-Fusion Module 

Element-wise addition and concatenation in channels are currently two widely used feature fu-

sion methods that treat the contribution of the fused features to the model as equivalent. However, 

because the input features contain different scales of information, their contribution to the model is 

often different. To address this issue, an adaptive feature fusion module is proposed. As shown in 

Figure 4, the two groups of features from two branches are fused by the adaptive fusion module. 1O  

and 2O  denote two feature maps from the multiscale feature extraction module, which contains fea-

tures in different scales. O  denotes the sum of 1O  and 2O , and z  is the global features of O . p  

and q denote two groups of weights for 1O  and 2O , fc is the fully convolutional layer, and softmax 

represents the softmax function. The output multiscale features of this part are used as the input of 

the classification module. 

 

Figure 4. Illustration of multiscale feature-fusion module. 

The squeeze-and-excitation (SE) process is a classic method to make each channel have different 

weights. SE is adopted to make the network adaptively select useful information based on its contri-

bution to the classification from two input features in the proposed methods. 

First, the features 1O  size of C × W × H and 2O  size of C × W × H are added element-wise: 

1 2O O O   (3) 

Then the feature map O  size of C × W × H is squeezed to global feature z size of C × 1 by using global 

average pooling. The c-th element of z is obtained by shrinking the c-th channel of O  through spatial 

dimensions H W , so that the c-th of z is calculated by: 

   
1 1

1
,

H W

c gp c c

i j

z F O O i j
H W  

 


  (4) 

where cO  denotes the c-th channel of O . Then the two fully connected layers and softmax function 

are used to generate two groups of weights, p  and q , by the following formulas: 

2 1( ( ))p fc fc z   (5) 

3 1( ( ))q fc fc z   (6) 


global pooling fc

softmax





1O

2O

O
I

p

q

z

Figure 4. Illustration of multiscale feature-fusion module.

The squeeze-and-excitation (SE) process is a classic method to make each channel have different
weights. SE is adopted to make the network adaptively select useful information based on its
contribution to the classification from two input features in the proposed methods.

First, the features O1 size of C ×W × H and O2 size of C ×W × H are added element-wise:

O = O1 + O2 (3)

Then the feature map O size of C ×W × H is squeezed to global feature z size of C × 1 by using
global average pooling. The c-th element of z is obtained by shrinking the c-th channel of O through
spatial dimensions H ×W, so that the c-th of z is calculated by:

zc = Fgp(Oc) =
1

H ×W

H∑
i=1

W∑
j=1

Oc(i, j) (4)

where Oc denotes the c-th channel of O. Then the two fully connected layers and softmax function are
used to generate two groups of weights, p and q, by the following formulas:

p′ = f c2( f c1(z)) (5)

q′ = f c3( f c1(z)) (6)
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[
p
q

]
= δ

[
p′

q′

]
(7)

where f c2 and f c3 have the same structure but different parameters. p′ and q′ are two groups of
parameters generated by the fully connected layer, and their values represent the importance of
information of different channels in the two feature maps. δmeans to perform softmax operation on
the corresponding positions of p′ and q′, which means the sum of the corresponding position elements
in p and q is 1 and the element in p and q ranges from 0 to 1. The final feature map I can be obtained
through the weights p and q in various channels:

I = p ·O1 + q ·O2 (8)

The key point of this part is adaptively selecting effective information in two input features,
which differ in scale. By using global average pooling on the input feature map for each channel,
the input feature map can be compressed to one dimension, where each element contains global
information. The two fully connected layers can generate different weights based on the importance of
information for different channels during the training process.

The softmax function can weigh the importance of the corresponding channels in the two input
feature maps, so that the corresponding channels in the two feature maps are fused at a certain ratio.
Different from the general methods treating O1 and O2 as equally important, the proposed method
gives input features weights in different channels, which can reduce redundant information and extract
useful information from the input. The weights in different channels are learned by global average
pooling, two fully connected layers, and a softmax function, so the weights in different channel are
obtained adaptively. There are multiscale features in the output feature map that are more useful for
the classification module.

2.3. Deep Classification Module

The attention mechanism is widely used in image processing tasks because it can extract more
information that is helpful for classification and detection. Hu et al. [44] exploits the interchannel
relationship by introducing a squeeze-and-excitation module. Woo et al. [56] shows that spatial attention
plays an important role in deciding where to focus. In this part, a convolution block containing channel
attention and spatial attention is designed for the deep classification module. This module consists of
eight basic blocks, a global pooling layer, and a fully connected layer. Figure 5 shows the illustration of
a basic block. Each block contains two convolutional layers, batch normalization, ReLU activation
function, a channel attention module, and a spatial attention module. The final output is the sum of
input and output of the spatial attention layer.
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Figure 5. Structure of a basic convolution block with attention.

In a classical residual block, let F(X) be the function to be learned by a residual block. F(X) can be
expanded as follows:

F(X) = f ( f (X ∗W1) ∗W2) + X (9)

where W1 and W2 represent the convolutional kernels of two convolutional layer, and f refers to the
ReLU activation function.
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In the proposed basic convolution block, the function H(X) from input to output can be expanded
as follows:

H(X) = As(Ac( f ( f (X ∗W1) ∗W2))) + X (10)

where As and Ac denote channel attention and spatial attention operations. On the one hand,
the multiscale information in the proposed model is distributed in different channels, so the channel
attention layer can further enhance the multiscale features and make it sparse. On the other hand,
high-level semantic information usually comes from the objects in the image, so the spatial attention
mechanism can enhance the ability to focus on the objects. In the proposed convolutional block,
the specific implementation of the channel attention mechanism and spatial attention mechanism is
introduced as below.

2.3.1. Channel Attention

As shown in Figure 6, both average pooling and max pooling are used first to obtain global
information. Then a multilayer perceptron (MLP) with two fully connected layers is set to learn
different weights in channels. Finally, the sum of the two groups of weights from the average pooling
feature and max pooling feature is considered as the attention in different channels. The channel
attention is computed as follows:

Ac(Y) = Y ⊗ (σ(MLP(Avgpool(Y)) + MLP(Maxpool(Y))))
= Y ⊗ (σ(W1(W0(Yc

avg)) + W1(W0(Yc
max))))

(11)

where σ denotes the sigmoid function, W0 ∈ RC/r×C and W1 ∈ RC×C/r. ⊗ means multiply by the
corresponding channel. For average pooling and max pooling, W0 and W1 are shared for both
inputs. It can be seen that channel attention uses the global information of the feature map itself to
generate different weights for different channels. Without the introduction of external information,
channel attention can enhance useful information and reduce the impact of redundant information.
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Figure 6. The channel attention module.

2.3.2. Spatial Attention

The structure of the spatial attention module is shown in Figure 7. The input is pooled along the
channel axis by max pooling and average pooling. After concatenating the two sets of global information,
a convolutional layer is used to generate weights for different spatial positions. Multiplying the input
by the weight gives the output. Different from channel attention pooling in a channel, average pooling
and max pooling in different locations are used to find where is important. The two pooling features
are concatenated in channels, and a convolutional layer is used to generate different weights in location.
The spatial attention is computed as follows:

As(Y) = Y � σ(conv7×7([Avgpool(Y); Maxpool(Y)]))
= Y � σ(conv7×7([Ys

avg; Ys
max]))

(12)

where σ denotes the sigmoid function and conv7×7 represents a convolutional layer with a kernel size
of 7 × 7. � means multiplying the corresponding position. It can be seen that the spatial attention
mechanism can generate different weights for each location by convolving the global information.
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By multiplying the weights of the positions corresponding to the feature map, the information at
important positions can be effectively enhanced and the interference of the information at unimportant
positions can be reduced.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 21 

 

mechanism can generate different weights for each location by convolving the global information. By 

multiplying the weights of the positions corresponding to the feature map, the information at im-

portant positions can be effectively enhanced and the interference of the information at unimportant 

positions can be reduced. 

 

Figure 7. The spatial attention module. 

The proposed MSAA-Net is an end-to-end network, which is easy to train and test. MSAA-Net 

can extract multiple features that are fused with adaptive weights based on the importance of the 

information. We expect that the proposed method will be good for solving the problem of the scale 

variation of the objects having a great influence on the model in remote sensing image classification. 

3. Experimental Results 

In order to demonstrate that the proposed method is effective, the UC Merced dataset, the 

NWPU dataset, and the Google dataset of SIRI-WHU are adopted in the experiments. The traditional 

methods of locality-constrained linear coding (LLC) [57] and bag-of-visual-words (BoVW) were com-

pared. For deep learning methods, the classic models AlexNet [37], GoogLeNet [38], and VGG-16 [39] 

were compared and some excellent models, such as ECA-Net [49] and GSoP-Net [45], proposed last 

year, were also compared. Furthermore, the ResNet-18 is roughly the same as our network in struc-

ture except for the multiscale feature extraction module and the feature-fusion module, so ResNet-18 

is used for comparison. The experiments were performed on an HP-Z840 Workstation with a single 

Nvidia RTX2080Ti GPU and 128-GB RAM under Ubuntu 16.04 LTS with CUDA 10.0 release, using 

the deep learning framework of Pytorch. The parameters in the training phase are as follows. The 

maximum iteration is set to 10K, and the batch size is 16. The weight decay is set to 0.0005 and the 

learning rate is 0.01 in the beginning, decaying by dividing by 10 every 4000 iterations. 

3.1. UC Merced Land Use Dataset 

The UC Merced land use dataset was collected from large optical images of the United States 

Geological Survey, containing 21 categories. There are 100 images in every class, which have a size 

of 256 × 256 pixels and a spatial resolution of one foot per pixel. Eighty percent of the dataset in each 

category is used as random training samples, and the rest is used as test samples. Each experiment 

was repeated 10 times, and the average classification accuracy was recorded. The 21 classes are agri-

culture, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, 

golf course, harbor, intersection, medium residential, mobile home park, overpass, parking lot, river, 

runway, sparse residential, storage tanks, and tennis court. Figure 8 shows an image from each class. 

Average pooling

Max pooling

Conv

concatenate
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The proposed MSAA-Net is an end-to-end network, which is easy to train and test. MSAA-Net
can extract multiple features that are fused with adaptive weights based on the importance of the
information. We expect that the proposed method will be good for solving the problem of the scale
variation of the objects having a great influence on the model in remote sensing image classification.

3. Experimental Results

In order to demonstrate that the proposed method is effective, the UC Merced dataset, the NWPU
dataset, and the Google dataset of SIRI-WHU are adopted in the experiments. The traditional methods
of locality-constrained linear coding (LLC) [57] and bag-of-visual-words (BoVW) were compared.
For deep learning methods, the classic models AlexNet [37], GoogLeNet [38], and VGG-16 [39] were
compared and some excellent models, such as ECA-Net [49] and GSoP-Net [45], proposed last year,
were also compared. Furthermore, the ResNet-18 is roughly the same as our network in structure
except for the multiscale feature extraction module and the feature-fusion module, so ResNet-18 is used
for comparison. The experiments were performed on an HP-Z840 Workstation with a single Nvidia
RTX2080Ti GPU and 128-GB RAM under Ubuntu 16.04 LTS with CUDA 10.0 release, using the deep
learning framework of Pytorch. The parameters in the training phase are as follows. The maximum
iteration is set to 10K, and the batch size is 16. The weight decay is set to 0.0005 and the learning rate is
0.01 in the beginning, decaying by dividing by 10 every 4000 iterations.

3.1. UC Merced Land Use Dataset

The UC Merced land use dataset was collected from large optical images of the United States
Geological Survey, containing 21 categories. There are 100 images in every class, which have a size of
256 × 256 pixels and a spatial resolution of one foot per pixel. Eighty percent of the dataset in each
category is used as random training samples, and the rest is used as test samples. Each experiment was
repeated 10 times, and the average classification accuracy was recorded. The 21 classes are agriculture,
airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course,
harbor, intersection, medium residential, mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks, and tennis court. Figure 8 shows an image from each class.
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diamond. (4) Beach. (5) Buildings. (6) Chaparral. (7) Dense residential. (8) Forest. (9) Freeway. (10)
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As shown in Table 1, the traditional methods of LLC and BoVW are compared, and the deep
learning methods AlexNet, GoogLeNet, VGG-16, ECA-Net, and GSoP-Net follow. It is obvious that
the deep learning methods perform better than traditional methods based on handcrafted features,
which demonstrates that deep semantic features are more useful for remote sensing scene classification.
Compared with GSoP-Net, which introduces second-order features into a convolutional neural network
and combines the classic structure of ResNet, the proposed MSAA-Net is 1.9% better. It can be seen
that, compared with some classic networks, such as VGG and GoogLeNet, the proposed method also
has better classification results. As shown in Figure 9, the proposed method achieves the best results in
these models, demonstrating that MSAA-Net is effective.

Table 1. Comparison between the previously reported accuracies for the UC Merced dataset.

Method Classification Accurzacy (%)

LLC 82.85

BoVW 73.46

AlexNet 85.63 ± 2.6

GoogLeNet 92.81 ± 0.64

VGG-16 89.09 ± 2.01

GSoP-Net 92.62 ± 1.2

ECA-Net 94.05 ± 0.96

ResNet-18 90.95 ± 0.42

MSAA-Net without attention 92.38 ± 0.35

MSAA-Net (ours) 94.524 ± 0.74



Remote Sens. 2020, 12, 2209 11 of 22

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 21 

 

 

Figure 9. Classification results of different methods for the UC Merced dataset. 

 

Figure 10. Accuracy in each class of ResNet-18 and multiscale self-adaptive attention network 

(MSAA-Net) for the UC Merced dataset. 

3.2. NWPU-RESISC45 Dataset 

In order to further demonstrate the effectiveness of the proposed method, the NWPU-RESISC45 

[58] dataset, which was created by Northwestern Polytechnical University (NWPU), was also tested. 

This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. These 45 

scene classes include airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, 

church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf 

course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium resi-

dential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectan-

gular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, stor-

age tank, tennis court, terrace, thermal power station, and wetland. The image size is 256 × 256 pixels, 

with a spatial resolution varying from 0.2 to 30 meters per pixel. The ratio of the number of training 

samples is set to 50%, and the remainder are used for testing. Each experiment was repeated 10 times, 

and the average classification accuracy is reported. Figure 11 shows representative images of each 

class. 

Figure 9. Classification results of different methods for the UC Merced dataset.

The proposed network is nearly the same as ResNet-18 except for the multiscale-feature extraction
module, the feature-fusion module, and the attention module, so ResNet-18 is compared as a
baseline. The network with a multiscale extraction module performs 1.4% better than without a
multiscale extraction module, which demonstrates the effectiveness of the multiscale extraction module.
Furthermore, the complete network performs 1.2% better than the network without an attention
module. The reason for this is that the attention module can enhance information in features, which is
useful for classification, and for features in MSAA-Net different in scale, the attention module can
help extract a similar part in features from different scales. As shown in Figure 10, compared with
ResNet-18, the proposed network achieves the highest accuracy in 21 classes, especially for the airplane
and storage tank, where the object varies greatly in size.
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3.2. NWPU-RESISC45 Dataset

In order to further demonstrate the effectiveness of the proposed method, the NWPU-RESISC45 [58]
dataset, which was created by Northwestern Polytechnical University (NWPU), was also tested.
This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class.
These 45 scene classes include airplane, airport, baseball diamond, basketball court, beach, bridge,
chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest,
freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow,
medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station,
rectangular farmland, river, round about, runway, sea ice, ship, snowberg, sparse residential, stadium,
storage tank, tennis court, terrace, thermal power station, and wetland. The image size is 256 ×
256 pixels, with a spatial resolution varying from 0.2 to 30 m per pixel. The ratio of the number of
training samples is set to 50%, and the remainder are used for testing. Each experiment was repeated
10 times, and the average classification accuracy is reported. Figure 11 shows representative images of
each class.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 
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Figure 11. Representation of classes in the NWPU-RESISC45 dataset. (1) Airplane. (2) Airport. (3)
Baseball diamond. (4) Basketball court. (5) Beach. (6) Bridge. (7) Chaparral. (8) Church. (9) Circular
farmland. (10) Cloud. (11) Commercial area. (12) Dense residential. (13) Desert. (14) Forest. (15)
Freeway. (16) Golf course. (17) Ground track field. (18) Harbor. (19) Industrial area. (20) Intersection.
(21) Island. (22) Lake. (23) Meadow. (24) Medium residential. (25) Mobile home park. (26) Mountain.
(27) Overpass. (28) Palace. (29) Parking lot. (30) Railway. (31) Railway station. (32) Rectangular
farmland. (33) River. (34) Roundabout. (35) Runway. (36) Sea ice. (37) Ship. (38) Snowberg. (39) Sparse
residential. (40) Stadium. (41) Storage tank. (42) Tennis court. (43) Terrace. (44) Thermal power station.
(45) Wetland.

As shown in Table 2, the same as with the UC Merced dataset, the traditional methods based
on handcrafted features, such as LLC and BoVW, perform significantly worse than deep learning
methods. It can be seen in Figure 12, compared with VGG and GoogLeNet, our method also gives
better classification results. The results show that introducing a multi-scale features extraction module
to ResNet-18 increased the accuracy by 4.6%. It can be seen that the introduction of multiscale features
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greatly improved the NWPU-RESISC45 dataset. The reason may be that the NWPU-RESISC45 dataset
is a more complex dataset, and the multiscale feature extraction module can extract more information.
After adding the attention mechanism, there was a 0.98% improvement in the proposed method. It can
be clearly seen in the figure that the proposed method performs better than the other models listed.
Compared with the other two datasets, the NWPU-RESISC45 dataset has a more complex structure.
At the same time, the proposed method has the most obvious effect on the NWPU-RESISC45 dataset,
which further illustrates that the proposed model can handle complex remote sensing images.
Figure 13 shows the class accuracies of ResNet-18 and MSAA-Net on the NWPU-RESISC45 dataset,
and MSAA-Net achieves the highest accuracy in 35 classes.

Table 2. Comparison between the previous reported accuracies with NWPU-RESISC45 dataset, with 50%
training samples selected.

Method Classification Accuracy (%)

LLC 59.92

BoVW 67.65

AlexNet 79.92 ± 2.1

VGG-16 90.26 ± 0.74

GoogLeNet 91.45 ± 1.24

GSoP-Net 91.206 ± 1.32

ECA-Net 93.378 ± 0.26

ResNet-18 89.93 ± 0.34

MSAA-Net without attention 94.03 ± 0.72

MSAA-Net (ours) 95.01 ± 0.54
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As shown in Figure 13, the classification results of our method in some classes are not better than
ResNet-18, such as classes 8, 10, 26, and 43. The reason for this is that the proposed method is mainly
for extracting high-level semantic information in the image, such as the objects. However, from the
samples, it can be seen that the images in the four classes above mainly contain texture information.
Therefore, in these classes, the proposed method does not show its advantages.

3.3. SIRI-WHU Dataset

The SIRI-WHU dataset was designed by the Intelligent Data Extraction and Analysis of Remote
Sensing (RS_IDEA) Group at Wuhan University (SIRI-WHU), and contains 12 classes. There are
200 images in each category, and each image has a size of 200 × 200 pixels and a spatial resolution of 2 m
per pixel. The same as the experiment on the UC Merced dataset, 80% of the dataset is used for training
samples, and the rest is used for testing. Each experiment was repeated 10 times, and the average
classification accuracy was reported. The 12 classes are agriculture, commercial, harbor, idle land,
industrial, meadow, overpass, park, pond, residential, river, and water. Figure 14 shows an image
from each class.
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Figure 14. Representation of classes in the SIRI-WHU dataset. (1) Agriculture. (2) Commercial. (3)
Harbor. (4) Idle land. (5) Industrial. (6) Meadow. (7) Overpass. (8) Park. (9) Pond. (10) Residential. (11)
River. (12) Water.

As shown in Table 3, for the Google dataset of SRI-WHU, the proposed network performs better
than the others. Compared with traditional methods that use handcrafted features for classification,
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such as LLC and BoVW, the accuracy of the proposed method has improved a lot, by more than
10%. It can be seen that, compared with classic networks, such as VGG and GoogLeNet, our method
performs better—by 4.4% and 2.9%, respectively. Compared with the excellent models proposed
last year (GSoP-Net and ECA-Net), the proposed method also has slightly better performance. It is
worth noting that, compared with ResNet-18, the introduction of the multiscale method only leads to a
1.72% better performance and the introduction of the attention mechanism increased performance
by 1.26% for the Google dataset of SRI-WHU. The reason for this may be that the Google dataset
of SRI-WHU is too simple, and there is no rich multiscale information in the dataset. As shown
in Figure 15, the proposed method, again, achieved the best performance for the Google dataset of
SIRI-WHU. Figure 16 shows the class accuracies of ResNet-18 and MSAA-Net on the Google dataset
of SIRI-WHU, and MSAA-Net performs better than ResNet-18 in six classes and achieves the same
results as ResNet-18 in four classes. It can be seen that the classification results of our method are
not better than ResNet-18 in classes 2 and 3. The reason for this is that the number of samples in
the Google dataset of SIRI-WHU is small and the image content is relatively simple. It can be seen
from the samples that the objects in the images in these two categories are relatively small and the
size of the objects hardly change, therefore the larger receptive field in the proposed method does not
lend advantages.

Table 3. Comparison between the previously reported accuracies for the Google dataset of SIRI-WHU,
with 80% training samples selected.

Method Classification Accuracy (%)

BoVW 73.93

LLC 70.89

AlexNet 87.27 ± 1.63

GoogLeNet 92.31 ± 1.64

VGG-16 90.83 ± 1.9

GSoP-Net 94.37 ± 0.56

ECA-Net 93.52 ± 0.4

ResNet-18 92.23 ± 0.9

MSAA-Net without attention 93.958 ± 1.12

MSAA-Net (ours) 95.21 ± 0.65
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4. Discussion

To explore the contribution of the multifeature extraction module and feature-fusion module,
the feature-fusion method in MSAA-Net is compared with other fusion methods in this section. Then,
the dilated convolution is used to expand the receptive field, and the dilation rate in the multiscale
features extraction module is discussed. In addition, the depth of the multiscale extraction module is
also analyzed. Furthermore, a comparison of the proposed method and the existing models in terms of
training time is also given in this section. Finally, to understand how self-adaptive selection works,
we analyze the attention weights in the proposed fusion module by inputting the same target object
but in different scales in this section.

4.1. Fusion Method

To illustrate that the proposed fusion method is more effective than others, other fusion methods,
such as adding element-wise and concatenation, are compared with the proposed method. The accuracy
of MSAA-Net on the SIRI WHU dataset with different fusion methods in two feature-fusion modules
is shown in Table 4. It can be seen that combining multiscale features has a good influence on the
classification results. Whether directly adding features of different scales or concatenating by channel,
the two feature maps are considered to contribute equally to the classification results, which does not
make for flexible use of the information in multiscale features. As shown in Table 4, the proposed
adaptive fusion method performs better than the other two simple fusion methods, by 0.63% and 0.42%.
The reason is that a set of weights is learned from the global information to balance the proportion of
features of different scales when fused, so that the model can adaptively and flexibly select features that
are beneficial to the classification results. It is worth noting that the method of concatenation by channel
is also slightly better than the method of adding element-wise. However, method concatenation by
channel will double the number of output feature map channels, which will introduce additional
parameters in the next convolutional layer. The proposed adaptive fusion method introduces a few
additional parameters.

Table 4. Comparison between different fusion methods on the Google dataset of SIRI-WHU.

Fusion Method Adaptive Fusion (Ours) Eltsum Concat

Classification Accuracy (%) 95.21 94.58 94.79



Remote Sens. 2020, 12, 2209 17 of 22

4.2. Dilation Rate

In the proposed method, dilated convolution instead of general convolution is used to expand the
receptive field of the convolutional kernel, and the dilation rate determines the size of the receptive
field. The accuracy of MSAA-Net on the SIRI WHU dataset with different dilation rates pair in two
multiscale features extraction branches is shown in Table 5. It can be seen that the dilation rate in
the two-branches setting (1,2) is better than others. The reason for this is that when the dilation
rate increases, the network intends to capture the information with a large scale, but ignores the
details. The general convolution 3 × 3 which means the dilation rate is 1, is a classic set in many deep
learning methods, so it is important to have a dilation rate of 1 in one branch. Compared with a big
dilation rate, setting the dilation rate in the other branch to 2 can balance the receptive fields and the
detailed information.

Table 5. Accuracy on the Google dataset of SIRI-WHU with different dilation rates in the multiscale
feature extraction module.

Dilation rate in two branches 1, 2 1, 3 2, 3

Classification accuracy (%) 95.21 94.58 94.14

4.3. Depth of Multiscale Extraction Module

In order to set a reasonable depth for the multiscale feature extraction module, an experiment
on the multiscale feature extraction module on the SIRI WHU dataset was performed. The same as
ResNet-18, the proposed model has eight blocks that contain two convolutional layers, so the block
number in the multiscale extraction module is taken as a parameter in the experiment. The accuracy of
the SIRI WHU dataset is shown in Table 6. It can be seen that the increase in the depth of the multiscale
feature extraction module does not bring about an improvement; in fact, the classification effect is
worse because the depth of the classification module is reduced. The reason for this is that the features
about the size of the object in the image are low-level features, so it is not necessary to use many
convolutional layers. On the contrary, too many convolutional layers will introduce a lot of parameters,
which will make the model difficult to converge, so that it easily falls into overfitting problems.

Table 6. The accuracy of the Google dataset of SIRI-WHU with different convolution block numbers in
the multiscale feature extraction module.

Block Number in Multiscale Features Module 1 2 3

Classification Accuracy (%) 95.21 94.375 94.164

4.4. Computational Time

The exact time comparison among the proposed method and some classic deep learning methods
on the SIRI-WHU dataset is shown in Table 7. Each experiment was repeated 10 times, and the average
training time was recorded. Due to it containing the simplest structure, AlexNet has the shortest
training time, but its accuracy is also the lowest. It can be seen that, due to the introduction of a
parallel structure, the training speed of the proposed method will be slower than ResNet-18. ECA-Net
introduces an ECA layer in each residual block and is also based on the structure of ResNet-18, so its
training time is also slightly shorter than that of the proposed model. Due to the introduction of
a parallel multiscale feature extraction module, the backpropagation (BP) algorithm requires more
calculations during the training process. As discussed in the previous subsection, the block number
of multiscale features module in the proposed model is set to 1, so the training time only becomes
a little longer than that of ResNet-18. In addition, compared with other classic models in the table,
the proposed model has the shortest training time and the highest accuracy.
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Table 7. The training time and accuracy on the Google dataset of SIRI-WHU.

Method Time (Each Epoch) (s) Time (Total) (s) Classification Accuracy (%)

AlexNet 10 750 87.27

VGG-16 23 1909 90.83

GoogLeNet 16 1088 92.31

ResNet-18 10 790 92.23

GSoP-Net 17.6 1672 94.37

ECA-Net 10.5 840 93.52

MSAA-Net(ours) 11 1050 95.21

4.5. Self-Adaptive Selection

To understand how self-adaptive selection works, ten images randomly selected from the UC
Merced dataset were cropped into different scales. Then these images were resized to 256 × 256 pixels
and fed into MSAA-Net to obtain different attention values in the proposed fusion module. As shown
in Figure 17, the smaller the image was cropped, the larger the target in the resized image became.
As described in Section 2.3, in the fusion module, the attention weights for the two inputs were p and q.
p represents the importance of the features extracted by the convolutional layer of the small receptive
field and q indicates the large one. p− q is calculated as attention difference (attention value of feature
with small receptive field minus that with large receptive field). As shown in Table 8, when the target
object is larger, the mean attention difference decreases, which suggests that the fusion module will
adaptively select more information from the feature map with a large receptive field. This shows that
the proposed method can adaptively select features with a receptive field of an appropriate size when
dealing with different sizes of targets.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 21 
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Table 8. The mean attention difference in different scales on the UC Merced dataset.

Scale of Cropped Samples (Pixels) 256 (original) 224 192 160 128

Mean Attention Difference 0.065 0.063 0.06 0.057 0.054

5. Conclusions

To reduce the influence of the scale variation of the objects in an image-on-scene classification,
this paper presents a novel model named MSAA-Net. In the MSAA-Net, two sets of convolutional
blocks of different receptive field sizes are used to capture objects of different sizes, which makes full use
of the flexibility of convolution operations and does not introduce additional parameters. Inspired by
the adaptive advantages of the attention mechanism, we propose a multiscale feature-fusion module,
which can use the global information of the feature map to adaptively select useful information from
two input features for fusion. In addition, the residual block and attention operation are adopted for
accurate scene classification.
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Experiments show that the features extracted by MSAA-Net are robust and effective compared
with state-of-the-art methods for remote sensing images. In the proposed method, multiscale features
are extracted from the shallow layer and penetrate into the deep network layer by layer. In future
work, we will research how to extract effective multiscale features directly in deep convolutions.

Author Contributions: Conceptualization, L.L. and P.L.; methodology, P.L.; software, P.L.; validation, P.L., L.L.
and X.G.; formal analysis, P.L.; investigation, C.S.; resources, J.M.; data curation, P.L.; writing—original draft
preparation, P.L.; writing—review and editing, L.L.; visualization, J.M.; supervision, X.G.; project administration,
L.J.; funding acquisition, F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the State Key Program of National Natural Science of China: 61836009,
Project supported the Foundation for Innovative Research Groups of the National Natural Science Foundation
of China: 61621005, the Major Research Plan of the National Natural Science Foundation of China: 91438201,
91438103, the National Natural Science Foundation of China: U1701267, 61772399, U170126, 61906150, 61773304,
61902298 and 61801124, the National Science Basic Research Plan in Shaanxi Province of China: 2019JQ659, the New
Think-tank of Department of Education In Shaanxi Province of China:20JT021, 20JT022, 20JY023, Science and
Technology Program of Guangzhou, China: 201904010210.

Acknowledgments: The authors would like to thank the Assistant Editor who handled our paper and the
anonymous reviewers for providing truly outstanding comments and suggestions that significantly helped us
improve the technical quality and presentation of our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, W.; Li, X.; He, H.; Wang, L. A review of fine-scale land use and land cover classification in open-pit
mining areas by remote sensing techniques. Remote Sens. 2018, 10, 15. [CrossRef]

2. Lu, X.; Yuan, Y.; Zheng, X. Joint dictionary learning for multispectral change detection. IEEE Trans. Cybern.
2016, 47, 884–897. [CrossRef] [PubMed]

3. Lu, X.; Zhang, W.; Li, X. A Hybrid Sparsity and Distance-Based Discrimination Detector for Hyperspectral
Images. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1704–1717. [CrossRef]

4. Bratasanu, D.; Nedelcu, I.; Datcu, M. Bridging the semantic gap for satellite image annotation and automatic
mapping applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 193–204. [CrossRef]

5. Zhang, X.; Du, S. A linear Dirichlet mixture model for decomposing scenes: Application to analyzing urban
functional zonings. Remote Sens. Environ. 2015, 169, 37–49. [CrossRef]

6. Deng, L.; Li, J.; Huang, J.T.; Yao, K.; Yu, D.; Seide, F.; Seltzer, M.; Zweig, G.; He, X.; Williams, J.; et al.
Recent advances in deep learning for speech research at Microsoft. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May
2013; pp. 8604–8608.

7. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;
Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of
four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

9. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–39 October 2017; pp. 2961–2969.

10. Lu, X.; Chen, Y.; Li, X. Hierarchical recurrent neural hashing for image retrieval with hierarchical convolutional
features. IEEE Trans. Image Process. 2017, 27, 106–120. [CrossRef]

11. Lee, H.; Battle, A.; Raina, R.; Ng, A.Y. Efficient sparse coding algorithms. In Proceedings of the Advances in
Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 801–808.

12. Yin, F.; Cao, S.; Xu, X. Remote sensing image fusion based on dictionary learning and sparse representation.
In Proceedings of the 2019 International Conference on Image and Video Processing, and Artificial Intelligence,
Shanghai, China, 23–25 August 2019.

http://dx.doi.org/10.3390/rs10010015
http://dx.doi.org/10.1109/TCYB.2016.2531179
http://www.ncbi.nlm.nih.gov/pubmed/26955060
http://dx.doi.org/10.1109/TGRS.2017.2767068
http://dx.doi.org/10.1109/JSTARS.2010.2081349
http://dx.doi.org/10.1016/j.rse.2015.07.017
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/TIP.2017.2755766


Remote Sens. 2020, 12, 2209 20 of 22

13. Sun, Y.; Wang, S.; Liu, Q.; Hang, R.; Liu, G. Hypergraph embedding for spatial-spectral joint feature extraction
in hyperspectral images. Remote Sens. 2017, 9, 506.

14. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral
data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [CrossRef]

15. Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral image classification with multi-scale feature
extraction. Remote Sens. 2019, 11, 534. [CrossRef]

16. Huang, X.; Han, X.; Zhang, L.; Gong, J.; Liao, W.; Benediktsson, J.A. Generalized differential morphological
profiles for remote sensing image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9,
1736–1751. [CrossRef]

17. Alsharif, A.A.A.; Pradhan, B. Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing
data and multivariate logistic regression model. J. Indian Soc. Remote Sens. 2014, 42, 149–163. [CrossRef]

18. Cao, F.; Yang, Z.; Ren, J.; Ling, W.K.; Zhao, H.; Marshall, S. Extreme sparse multinomial logistic regression:
A fast and robust framework for hyperspectral image classification. Remote Sens. 2017, 9, 1255. [CrossRef]

19. Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.K. Decision tree regression for soft classification of
remote sensing data. Remote Sens. Environ. 2005, 97, 322–336. [CrossRef]

20. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.
[CrossRef]

21. Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification.
Proc. SPIE-The Int. Soc. Opt. Eng. 1998, 3584, 221–232.

22. Melgani, F.; Bruzzone, L. Classification of Hyperspectral Remote Sensing Images with Support Vector
Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

23. Thaseen, I.; Kumar, C.A. Intrusion detection model using fusion of PCA and optimized SVM. In Proceedings
of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India,
27–29 November 2014.

24. Han, T.; Jiang, D.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and
support vector machine for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control. 2018, 40,
2681–2693. [CrossRef]

25. Gong, Z.; Zhong, P.; Hu, W. Statistical Loss and Analysis for Deep Learning in Hyperspectral Image
Classification. IEEE Trans. Neural Netw. Learn. Syst. 2020. [CrossRef]

26. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional
neural network. Remote Sens. 2017, 9, 67. [CrossRef]

27. Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative Adversarial Networks Based on
Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification. Remote Sens. 2020,
12, 1149. [CrossRef]

28. Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral image classification with Markov random
fields and a convolutional neural network. IEEE Trans. Image Process. 2018, 27, 2354–2367. [CrossRef]
[PubMed]

29. He, N.; Fang, L.; Li, S.; Plaza, J.; Plaza, A. Skip-Connected Covariance Network for Remote Sensing Scene
Classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1461–1474. [CrossRef] [PubMed]

30. Liu, Y.; Zhong, Y.; Qin, Q. Scene classification based on multiscale convolutional neural network. IEEE Trans.
Geosci. Remote Sens. 2018, 56, 7109–7121. [CrossRef]

31. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
32. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings

of the IEEE International Conference on Computer Vision, Venice, Italy, 22–39 October 2017; pp. 764–773.
33. Wang, C.; Shi, J.; Yang, X.; Zhou, Y.; Wei, S.; Li, L.; Zhang, X. Geospatial Object Detection via Deconvolutional

Region Proposal Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3014–3027. [CrossRef]
34. Rizaldy, A.; Persello, C.; Gevaert, C.; Oude Elberink, S.; Vosselman, G. Ground and multi-class classification

of airborne laser scanner point clouds using fully convolutional networks. Remote Sens. 2018, 10, 1723.
[CrossRef]

http://dx.doi.org/10.1109/TGRS.2008.922034
http://dx.doi.org/10.3390/rs11050534
http://dx.doi.org/10.1109/JSTARS.2016.2524586
http://dx.doi.org/10.1007/s12524-013-0299-7
http://dx.doi.org/10.3390/rs9121255
http://dx.doi.org/10.1016/j.rse.2005.05.008
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1177/0142331217708242
http://dx.doi.org/10.1109/TNNLS.2020.2978577
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.3390/rs12071149
http://dx.doi.org/10.1109/TIP.2018.2799324
http://www.ncbi.nlm.nih.gov/pubmed/29470171
http://dx.doi.org/10.1109/TNNLS.2019.2920374
http://www.ncbi.nlm.nih.gov/pubmed/31295122
http://dx.doi.org/10.1109/TGRS.2018.2848473
http://dx.doi.org/10.1109/JSTARS.2019.2919382
http://dx.doi.org/10.3390/rs10111723


Remote Sens. 2020, 12, 2209 21 of 22

35. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015;
pp. 3431–3440.
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