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Abstract: In this study we present the retrieval of the column-averaged dry air mole fraction of carbon
dioxide (XCO2) from the TanSat observations using the ACOS (Atmospheric CO2 Observations from
Space) algorithm. The XCO2 product has been validated with collocated ground-based measurements
from the Total Carbon Column Observing Network (TCCON) for 2 years of TanSat data from 2017 to
2018. Based on the correlation of the XCO2 error over land with goodness of fit in three spectral bands
at 0.76, 1.61 and 2.06 µm, we applied an a posteriori bias correction to TanSat retrievals. For overpass
averaged results, XCO2 retrievals show a standard deviation (SD) of ~2.45 ppm and a positive bias of
~0.27 ppm compared to collocated TCCON sites. The validation also shows a relatively higher positive
bias and variance against TCCON over high-latitude regions. Three cases to evaluate TanSat target
mode retrievals are investigated, including one field campaign at Dunhuang with measurements by a
greenhouse gas analyzer deployed on an unmanned aerial vehicle and two cases with measurements
by a ground-based Fourier-transform spectrometer in Beijing. The results show the retrievals of all
footprints, except footprint-6, have relatively low bias (within ~2 ppm). In addition, the orbital XCO2
distributions over Australia and Northeast China between TanSat and the second Orbiting Carbon
Observatory (OCO-2) on 20 April 2017 are compared. It shows that the mean XCO2 from TanSat is
slightly lower than that of OCO-2 with an average difference of ~0.85 ppm. A reasonable agreement
in XCO2 distribution is found over Australia and Northeast China between TanSat and OCO-2.
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1. Introduction

Atmospheric carbon dioxide (CO2) along with methane (CH4) and nitrous oxide (N2O) are among
the longest-lived greenhouse gases, with atmospheric lifetimes of decades [1]. CO2 exhibits a larger
radiative forcing on climate change than other greenhouse gases, which implies the great importance
of monitoring global CO2 sources and sinks. Global atmospheric CO2 concentrations have increased
by ~120 ppm over the last 200 years, largely due to human activities, such as fossil fuel combustion and
land use changes [1]. Although surface CO2 monitoring networks have expanded in recent decades,
these observations remain insufficient for the limitations of low spatial coverage. These limitations
have led to large uncertainties in climate predictions [2].

One of the most effective approaches to improve the spatial coverage and resolution for CO2

monitoring is to use satellite measurements [3]. The thermal infrared observations of CO2 from
satellite measurements including the Atmospheric Infrared Sounder (AIRS) [4], Infrared Atmospheric
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Sounding Interferometer (IASI) [5], and the Tropospheric Emission Spectrometer (TES) [6] can provide
measurements of the atmospheric CO2 column above 5 km. But these instruments have a limited
sensitivity to CO2 in the lower troposphere where the CO2 sources and sinks resides [7]. The Scanning
Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, which stopped
working in April 2012) was able to measure the total CO2 column on a global scale. It is also sensitive
to CO2 in the boundary layer [8]. However, these satellites were not exclusively designed for CO2

monitoring. The Greenhouse Gases Observing SATellite (GOSAT) was the first CO2 and CH4 monitoring
satellite launched on 23 January 2009 [9]. The other satellite designed for CO2 observations, the Orbiting
Carbon Observatory-2 (OCO-2), launched on 2 July 2014, can provide CO2 measurements with a high
spatial resolution of 3 km [10]. These two satellites are now yielding estimates of the column-averaged
dry air mole fraction of carbon dioxide (XCO2) with single sounding random errors between 0.1% and
0.3% (0.4 to 1.2 ppm) and systematic biases between 0.25% and 0.5% (1 to 2 ppm) over most of the
globe [11,12]. High spatial resolution can not only provide more cloud-clear observations but also
allow for monitoring of the CO2 source in urban areas. China’s first satellite to monitor atmospheric
CO2, TanSat, was launched on 22 December 2016. With three similar spectral bands and three similar
observation modes of nadir, glint and target as OCO-2, TanSat can provide CO2 measurements with
9 footprints along the swath at a fine spatial resolution of 2 km. The GOSAT-2 launched on 29 October
2018, is inherited from GOSAT and is able to perform measurements in five spectral bands, which can
also achieve global CO observations. The latest Orbiting Carbon Observatory-3 (OCO-3) launched on
3 May 2019 is on board the International Space Station (ISS) and the observations of OCO-3 will be
made for latitudes lower than 52 degrees. The measurements collected by OCO-2 and GOSAT are
combined with CO2 measurements from the ground-based network, such as the Total Column Carbon
Observing Network (TCCON) [13], to obtain a better understanding of global CO2 distribution and
temporal variations.

The main problem in CO2 retrievals is the specification of the light path, which is affected by
aerosol scattering and surface reflection [14]. That is why the spectral measurements of Oxygen
Absorption (O2A) band are included in the CO2 satellite missions. Near infrared and short-wave
infrared measurements are both included for the simultaneous retrieval of the CO2 concentration
and of the scattering properties of aerosols or cloud particles. Buchwitz et al. [15] developed the
Weighting Function Modified- Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm
for CO2 retrieval for SCIAMACHY. A low order polynomial is induced to simulate the slow
variance signal, which is assumed to be mainly caused by ground reflectance and aerosol extinction.
A rapidly varying signal, which is considered to be mainly caused by CO2 absorption, is obtained by
subtracting the slowly varying signal from the measured spectrum. Since the development of CO2

observation sensors with much higher spectral resolutions, several research groups have developed
full physics retrieval algorithms for CO2 retrieval, including the National Institute for Environment
Studies (NIES) [16–20], the Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space
Administration (NASA) [21,22], the University of Leicester (UoL) [23,24], the Netherlands Institute for
Space Research (SRON) [25,26], the Institute of Atmospheric Physics in Chinese Academy of Science
(IAP) [27], and the University of Bremen [28]. The algorithms developed by different institutes to
retrieve CO2 concentrations are based on similar inverse methods but using different settings for a
priori information and using different aerosol models. The inverse method, which has been widely
used in CO2 retrievals, is based on an optimal estimation method that finds the most likely state vector
from the best fit to the simulations and observations. The proper selection of the a priori constraints is
critical for the retrieval accuracy.

The Atmospheric CO2 Observations from Space (ACOS) algorithm was developed for CO2

retrieval with OCO-2 data. And it has also been applied to GOSAT observations for CO2 retrieval.
The XCO2 retrieval accuracy has been validated against TCCON measurements [12]. As the design
of TanSat is similar to OCO-2, the ACOS algorithm is assumed to provide reliable XCO2 retrievals
with TanSat measurements. In this paper, we apply the ACOS algorithm to TanSat measurements
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under nadir mode and evaluate the XCO2 retrieval quality with the collocated ground-based TCCON
measurements. For target mode, we collected TanSat observations of several cases and evaluate the
XCO2 retrieval results with a synchronous Unmanned Aerial Vehicle (UAV) experiment over Dunhuang
calibration field (94.3208◦ E, 40.1375◦ N) and the measurements from ground-based Fourier-Transform
Spectrometer (FTS) located in Beijing [29]. To exclude the low quality XCO2 retrievals with large
uncertainties (i.e., high aerosol loading, cloudy or large spectral uncertainties), we developed an a
posteriori data filtering and an XCO2 bias correction method for the bias between different footprints.
A case where TanSat and OCO-2 have partly overlapping orbits is also investigated, where the XCO2
regional distribution over Australia and northeast China between the different sensors are compared
and discussed.

The paper is organized as follows: Section 2 describes the TanSat data and the validation datasets
used in this work. The ACOS algorithm including the a posteriori data filtering and adjustments
especially for TanSat measurements is described in Section 3. In Section 4, we validate the XCO2
retrieval results under nadir mode using collocated TCCON measurements. The XCO2 retrievals under
target mode are also evaluated. Here, the performance of the bias correction is also discussed. Section 5
compares the XCO2 spatial distribution over regions where TanSat and OCO-2 have overlapping orbits.
Finally, Section 6 gives the conclusions.

2. Data Description

2.1. TanSat Observations

TanSat is a sun-synchronous polar-orbiting environmental satellite, with a local time of ∼13:30,
an orbit inclination of 98.16◦ and an orbit altitude of approximately 700 km. TanSat operates in three
observational modes, including nadir, sun-glint, and target modes. TanSat carries two key instruments:
The Atmospheric Carbon dioxide Grating Spectroradiometer (ACGS) and the Cloud and Aerosol
Polarization Imager (CAPI). The ACGS was designed to measure solar radiation reflected in three
different bands. The O2A, ranging from 758 to 778 nm, includes the absorption of molecular oxygen,
the weak absorption band of molecular carbon dioxide (WCO2) ranges from 1594 to 1624 nm, and the
strong absorption of carbon dioxide (SCO2) band ranges from 2042 to 2082 nm. The spectral resolutions
at the three bands defined as the Full Width at Half Maximum (FWHM) are ~0.04 nm, ~0.0131 nm and
~0.171 nm respectively. Within the FWHM, there are at least two samples in the direction of dispersion.
The ACGS has a spatial resolution of 2 km × 3 km for nadir mode and nine footprints across the orbit,
which makes a swath of ~20 km [29].

2.2. Validation Datasets

TanSat observations in nadir mode from January 2017 to December 2018 are collected. For nadir
observations, all the exposures are used for XCO2 retrieval. The a posteriori data filtering discussed
in Section 4.1 is used to exclude the retrievals with large uncertainties. TCCON measurements are
collocated with the TanSat nadir observations. The TCCON measures XCO2 with an uncertainty
lower than 0.25% [30]. The collocation criteria include a spatial distance of less than three degrees in
both latitude and longitude direction and a time difference of less than two hours. For target mode
observations, the view zenith angle should be smaller than 45 degrees.

The validation of retrievals with target mode is conducted using the ground-based FTS
measurements in Beijing. The Bruker FTS 125HR in Beijing is similar to the equipment used at
TCCON sites and has made observations since 2016 [31]. In April 2017, for validation of the TanSat
target mode observation, a synchronous UAV experiment was carried out over the Dunhuang calibration
field. The CO2 profile under ~5km measured from Greenhouse Gas Analyzer (GGA) equipped on the
UAV together with the CO2 profile of higher layer obtained from the Carbon Tracker (CT) model [32]
are integrated for XCO2. The GGA CO2 measurement uncertainty is smaller than 0.6 ppm and is
±0.08 ppm when averaging over 2000 s [33].
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3. Retrieval Algorithm

The ACOS algorithm described in detail by O’Dell [21] has been developed for CO2 retrievals with
OCO data. Before the launch of OCO-2 it has been successfully applied to GOSAT data. After OCO-2
was launched in 2014, the algorithm has been used for the XCO2 operational product and validated
widely against ground-based measurements [12]. As the design of the ACGS is not exactly the same
as of OCO-2, with a different band range, dynamic range and noise model, the algorithm had to
be adjusted for the new instrument. When the measured radiances at all wavelengths in bands are
included in the measurement vector y, it can be described as

y = F(x, b) + ε (1)

where F is the forward transfer model, x is the state vector which contains all the parameters needed to
be retrieved, and ε are the combined uncertainties from both instrument and forward model.

To find the state vector that produces the maximum a posteriori probability, we minimize the
following standard cost function χ2

χ2 = (y− F(x))TSε−1(y− F(x)) + (x− xa)
TSa
−1(x− xa) (2)

Sε is the measurement covariance matrix, Sa is the a priori covariance matrix, xa is the a priori
state vector.

For this nonlinear problem, we use an iterative way to find the solution as follows(
(1 + γ)Sa

−1 + Ki
TSε−1Ki

)
dxi+1 =

[
Ki

TSε−1(y− F(xi)) + Sa
−1(xa − xi)

]
(3)

K =
∂F(x)
∂x is the weighting function matrix, here we use the Levenberg-Marquardt modification

of the Gauss-Newton method to find the best estimation of the state vector x̂ iteratively [34]. γ is the
Levenberg-Marquardt parameter, this method reduces to regular Gaussian-Newton minimization
when γ = 0. γ is initialized with a value of 10.0 as used for OCO-2 [35].

As ACGS is sensitive to polarized light, the forward model should be able to simulate polarized
light. The Lidort model [36] is used to simulate the multi-scattering radiance which is assumed to be
unpolarized while the polarized light is simulated with the two Orders of Scattering (2OS) model [37].
Then the elements of the instrument Mueller matrix are used to put the stokes vector of the simulated
polarized radiance at the Top Of Atmosphere (TOA) into the simulated radiance measured by the
ACGS on the high resolution 0.01 cm−1 wavelength grid. The absorption coefficient spectroscopic
database includes all the absorption lines of related gases used in the forward mode for the gas
absorption cross-section calculation [35]. It includes the absorption lines in the O2A band and CO2 and
H2O absorption in the weak and strong CO2 bands. In the forward model, the atmosphere is divided
into 20 layers. Since the absorption cross-sections are nonlinear in both temperature and pressure
within each layer, each atmospheric layer is subdivided into ten sub-layers; cross-sections for each are
calculated for the interpolated pressure and temperature at the center of each sub-layer, converted to
optical depth and then added to obtain the optical depth for each atmospheric layer.

For the modeling of atmospheric scattering, the algorithm retrieves a mixture of profiles of four
fixed-type atmospheric scatters, which includes water cloud, ice cloud, dust aerosol, sea salt aerosol
and stratospheric aerosol. To find the best combination of the five particles, the Aerosol Optical
Depths (AOD) at 755 nm of each component is retrieved in the algorithm. The forward model uses a
Lambertian reflection over land and a wind-speed dependent COX-Munk reflectance for the ocean [38].

The retrieval algorithm requires a priori information on surface pressure, temperature profile,
water vapor concentration and surface wind speed, which are interpolated from the European Centre
for Medium Range Weather Forecasts (ECMWF) high-resolution 10-day forecast analysis data on
a 0.125◦ × 0.125◦ grid. The interpolation is performed with linear interpolation in both time and
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space. 6-hourly global XCO2 reanalysis products in 2016 and 2017 from Copernicus Atmosphere
Monitoring Service (CAMS) are used as the XCO2 a priori for the retrieval of 2017 and 2018, respectively.
The a priori profiles for CO2 are obtained by scaling the CO2 profile derived from a multi-year
global run of the Laboratoire de Météorologie Dynamique Zoom (LMDZ) model [39]. The monthly
zonal mean is calculated from the model in 10◦ latitude bands. An offset is added to all the model
values to make the global average surface value approximately equal to the measured value from
GLOBALVIEW-CO2 product (Co-operative Atmospheric Data Integration Project-Carbon Dioxide,
2005, ftp.cmdl.noaa.gov/ccg/co2/globalview/); this offset is updated monthly to reflect the increasing
concentration of CO2.

The solar irradiance data are obtained through a solar model which consists of two parts: the solar
absorption model and the solar continuum model. The solar absorption model calculates the solar
lines based on empirical solar line list which covers the 550–15,000 cm−1 spectrum and contains over
18,000 lines. The solar continuum model calculates the solar Planck function which is then multiplied
with the solar absorption spectra to obtain the solar spectrum. The solar continuum model is based on
a polynomial fit to the near-infrared part of the low resolution extra-terrestrial solar spectrum acquired
by the SOLar SPECtrum (SOLSPEC) instrument [40].

The state vector is listed in Table 1.

Table 1. The State vector elements and their a priori values used in the retrieval.

State Vector Element A Priori

AOD, aerosol layer height and spectral distribution width of five
aerosol components Merra database

Temperature profile offset 0
Surface pressure ECMWF

Water vapor multiplier 1
Surface reflectance and the slope within the band of all three bands estimated from TOA radiance

CO2 profile CAMS
Spectral dispersion offset at all three bands 0
Spectral dispersion slope at all three bands 1
Residual EOF amplitudes at all three bands 0

4. Validation

4.1. Retrieval Filters and Bias Correction

Table 2 gives the filters used in the TanSat retrieval to exclude retrieval results with large
uncertainties, where Albedo_O2A and Albedo_SCO2 are the surface albedo in the O2A band and SCO2

band, respectively.

Table 2. Settings of the filters used for excluding low quality XCO2 retrievals.

Parameters Definition Allowed Range

Sza Solar zenith angle <70 degrees
Vza View zenith angle <45 degrees
Iter Maximum number of iterations <8
DFS Degrees of freedom for CO2 >1.0
χ2 Overall goodness of fit <15.0

Blended albedo * 2.4 * Albedo_O2A-1.13 * Albedo_SCO2 <0.9
sev Surface pressure variation <400 pa
τ0.765 AOD at 765 nm <0.8

* The blended albedo filter was first introduced in [41].

ftp.cmdl.noaa.gov/ccg/co2/globalview/
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As we do not use the cloud mask product to screen out the exposure points contaminated by
cloud, nearly 240 thousand exposure points of the TanSat nadir mode measurements are collocated
with TCCON measurements and ~5.0% of these exposure points can obtain converged retrievals.
After applying the filters listed in Table 2, 3320 effective retrievals (~1.5%) are found to be suitable
retrievals used in the comparison with TCCON measurements.

Before the retrievals are used to compare with the TCCON measurements, we need to correct
possible errors introduced by instruments, meteorology, a priori or retrieved parameters. The correction
should be valid for each sounding. From our retrieval tests of the target mode, significant negative
biases are found for all nine footprints. The uncorrected XCO2 retrievals show statistically differences
ranging from −2.20 to −5.46 ppm with a Standard Deviation (SD) of 1.01 ppm. The errors arise from the
calibration uncertainties in the Level 1 processing depending on the viewing direction in across-flight
direction. As the 1st and 9th footprints have the smallest biases, we first correct the XCO2 retrieval
of the 1st and 9th footprints and then correct the retrievals of other footprints based on the corrected
XCO2 retrievals of these two footprints.

The retrieval bias of all footprints was found to be related with the reduced χ2 in all 3 bands.
The reduced χ2 is defined as

χ2 =
1

(N −DFS)

N∑
i=1

(
y(i) − F(i)

σi

)
(4)

where N is the number of wavelengths used in the retrieval, DFS is the degrees of freedom, y(i) is the
TanSat measurements, F(i) is the simulated radiance and σi is the uncertainty of the TanSat measurement.

Through statistical analysis on two years of globally collocated retrievals with TCCON

measurements in 2017 and 2018, it is found that
χ2

O2
χ2

sCO2
> 1 tends to lead to the high XCO2 retrievals

while
χ2

O2
χ2

sCO2
< 1 tends to lead to relatively low XCO2 retrievals. Larger χ2

wCO2 will amplify the bias for

the same
χ2

O2
χ2

sCO2
. We correct the bias of footprint-1 and -9 by

xcocorr
2 = xco2 + c− k ∗

χ2
O2

χ2
sCO2
∗ χ2

wCO2
χ2

O2
χ2

sCO2
> 1.2

xcocorr
2 = xco2 + c 0.9 ≤

χ2
O2

χ2
sCO2
≤ 1.2

xcocorr
2 = xco2 + c + k ∗

χ2
O2

χ2
sCO2
∗ χ2

wCO2
χ2

O2
χ2

sCO2
< 0.9

(5)

where the coefficient k = 0.5 and c = 2.67. The coefficients are derived from the linear regression fit
between retrievals and TCCON measurements. Then similar with the grid of CAMS, we divide the
Earth into grid cells. The size of each grid cell is 4◦ × 4◦. The whole TanSat orbit along the swath
direction should be included within a certain grid cell. Then the XCO2 retrievals with negative biases
larger than 10 ppm from the a priori are excluded because they can be contaminated by cloud. But high
XCO2 retrievals are not excluded as it can be caused by an emission source. Then the averages of the
XCO2 retrievals for the 1st and 9th footprint are calculated as the mean XCO2 of the grid. The correction
of XCO2 of the other footprints is conducted by correcting the mean XCO2 of each footprint to the mean
XCO2 of the grid. The correction method works well to correct the bias between different footprints
when the CO2 variance in the grid is low. However, when the XCO2 variance in the grid cell is high
because there are both sources and sinks of CO2 inside the same grid cell, the correction method may
not be accurate enough.

Overall, after applying the bias correction method, the biases are largely reduced from −3.85 ppm
to 0.27 ppm and the average sounding precisions σ is improved from 4.16 ppm to 2.25 ppm for retrievals
over land with the nadir mode. The bias corrections are intended to reduce mainly the instrument
calibration biases.
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4.2. TCCON Validation for TanSat Retrieval of Nadir Mode

In this section, the XCO2 data retrieved with TanSat are validated against the collocated
ground-based measurements at TCCON sites. Figure 1 shows the comparison results over the
two TCCON sites of Saga (130.28824◦ E, 33.24096◦ N) in Japan and Parkfalls (90.273◦ W, 45.945◦ N) in
the United States of America (USA) with relatively more XCO2 effective retrievals from TanSat in 2017
and 2018. Though there are some retrievals with relatively large uncertainties, most of the retrievals can
represent the XCO2 seasonal variance of the local areas around the TCCON sites. The bias is defined
as the mean difference between the collocated TCCON and TanSat retrievals, the sounding retrieval
precision (σt) defined as the SD of the difference and the station to station variability (σs) defined as
the SD of the biases for different TCCON sites. Here only the land retrievals of the nadir view and
target view modes are evaluated. It has been reported that the uncertainty of TCCON measurements is
around 0.4 ppm for XCO2 (1-sigma) [30]. For simplicity, in the following, the uncertainties of TCCON
measurements are assumed to be consistent over all stations with the variability over the different sites
to be zero [42,43].
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Figure 2 shows the comparison of the 3320 XCO2 retrievals with TanSat against TCCON
measurements. The average bias and SD are 0.41 ppm and 3.57 ppm respectively. It seems the retrievals
tend to underestimate XCO2 for the lower TCCON measurements around 405 ppm, while overestimate
XCO2 for higher XCO2 measurements. That explains partly why the average bias is small. Figure 3
shows the overall comparison between the averaged TanSat retrievals and the TCCON measurements.
For the averaged overpass results, the bias and SD are 0.27 ppm and 2.45 ppm respectively.
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Figure 4 shows the biases of each TCCON stations as a function of latitude. The average bias and
the average SD are 0.31 ppm and 2.50 ppm respectively, where stations with a number of collocations
(N) less than two are not considered. It is found that the XCO2 retrieval tends to be overestimated
for regions north of 36◦ N and underestimated for regions south of 36◦ N. The averaged bias and SD
of different sites north of 36◦ N are 1.30 ppm and 2.69 ppm respectively, while those of sites south of
36◦ N are −1.34 ppm and 2.22 ppm respectively. The SD for all the sites with N > 3 is smaller than
3 ppm. The SD of Darwin has the lowest SD of 1.74 ppm, while the SD of Orleans has the largest SD
of 2.83 ppm. The SD of sites with latitudes north of 36◦ N are between 2.47 ppm at Karlsruhe and
2.87 ppm at Orleans. The SD of sites with latitude south of 36◦ N are between 1.74 ppm at Darwin and

2.04 ppm at Saga. For the retrievals south of 36◦ N, it is found that the average
χ2

O2
χ2

sCO2
of 0.92 is lower

than that of 1.73 for the retrievals north of 36◦ N. The average χ2
wCO2 are almost the same (1.92 and

1.87) for the retrievals south and north of 36◦ N respectively. As described in Section 4.1, the larger
positive bias and relatively larger SD for the retrievals north of 36◦ N can be attributed to the larger
χ2

O2
χ2

sCO2
that leads to overestimating XCO2 and higher retrieval uncertainty. This trend may be related to

the range of solar zenith angle and the different land cover types over the different latitudes. In the
high latitude area, χ2

SCO2 is significantly smaller than that in the low latitude area (the averages are
2.26 and 3.46 respectively), and there is little difference in χ2

O2. This phenomenon has also occurred
in OCO-2, as [42] found there is a tendency for validations over stations in higher-latitude regions
showing relatively larger biases in both the Northern and Southern hemispheres.
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Figure 5 shows the time series of XCO2 difference between TCCON measurements and averaged
XCO2 retrievals over the TCCON station with number of pixels/exposures > 3. The retrieval error
here is obtained by subtracting the TCCON measurements from the XCO2 retrieval results of TanSat.
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The average error of all stations in 2017 is 0.66 ppm, and that in 2018 is −0.27 ppm. Although there is
no significant error change with different seasons and years at some stations such as Saga, the retrievals
over many other stations, such as Darwin, Parkfalls, Karlsruhe and Orleans, show that the inversion
error in 2018 has a negative offset compared with the inversion error in 2017. For Darwin, the mean
error is −1.05 ppm in 2017 and −3.93 ppm in 2018. For Karlsruhe, the mean error is 2.95 ppm in 2017
and 0.20 ppm in 2018.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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TCCON measurement and satellite retrievals are presented with the length of bar. In each subplot,
the overall bias, SD and site name are included. The results shown here are bias-corrected.
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According to the XCO2 bias correction method for TanSat described in Section 4.1,
χ2

O2
χ2

sCO2
is the

main parameter that affect the retrieval performance. The mean values of χ2
O2 in 2017 and 2018 are 3.9

and 2.9 respectively, while those of χ2
sCO2 are 2.7 and 2.5 respectively. Compared to the residuals in both

bands in 2017, the residuals decreased in 2018. But the residual decrease in O2A band is larger than that

in SCO2 band. It leads to the decrease of
χ2

O2
χ2

sCO2
and the underestimation of XCO2 in 2018. One possible

reason is that the attenuation of O2A band is larger than that of SCO2 band. This phenomenon was also
reported for OCO-2 retrievals [44], which show the fast signal degradation due to ice on the Focal Plane
Arrays (FPA) leading to low sensitivity to TOA radiation. The fast signal degradation in the O2A band
is much stronger than in the two CO2 bands. The correction of the attenuation needs further study.

4.3. Case Study for TanSat Observation of Target Mode

The target mode observations of the TanSat were performed over the ground-based FTS in Beijing
for one and a half year after its launch. A flight experiment was also carried out at Dunhuang calibration
field in April 2017. As the TanSat instrument began to decay in 2018 (mentioned in Section 4.2),
we present the TanSat validation results for target mode observations for three typical cases.

Case 1 gives the retrievals over Dunhuang calibration field. The Dunhuang calibration field is
located in the Gobi Desert in northwest China, about 35 km west of Dunhuang City, Gansu Province.
A synchronous flight experiment was conducted to collocate with the TanSat target observation over
Dunhuang calibration field on 27 April 2017. A delta wing airplane with a powered parachute was
used to measure the CO2 profile. An UAV GGA [33] was installed on the plane for continuous CO2,
CH4 and water vapor measurements. The flight duration was in the range of 1.7–2.3 h while spiral
descent flights between 5 km and 0.1 km were carried out.

Despite the lack of FTS ground observations at the Dunhuang site, a ground-based GGA was
installed at Dunhuang site during the experiment, together with a sun photometer to measure
aerosol properties.

Figures 6 and 7 show the ground-based aerosol optical measurements and microphysical retrievals
by Cimel Electronique-318 sun photometer at Dunhuang on 27 April 2017. AODs at 1.60 µm and
0.76 µm are 0.088 and 0.125, respectively. It can be concluded from the size distribution that the aerosol
model is a fine-coarse mixture dominated by coarse particles.
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Figure 7. The aerosol properties retrieved at Dunhuang on 27 April 2017 including the (a) size
distribution; and (b) single scattering albedo.

Figure 8 shows the CO2 profiles observed by aircraft at 10:30 am and 3:00 pm (Beijing time, 8 h
ahead of UTC time) near the overpass time of TanSat. The two CO2 profiles are averaged to obtain
the mean CO2 profile at the overpass time of TanSat. In order to compare with the CO2 column
concentration retrieved by satellite, we interpolate the airplane measured CO2 profiles to the layers
used in the TanSat retrieval. The CO2 profile above 5 km is obtained from the CT modelled profile.
The CO2 measurements on the ground are obtained from ground-based GGA. Then the XCO2 for the
aircraft in situ profile is calculated as follows:

XCO2 =
N−1∑
i=1

h′i ui (6)

where N is the number of layer level boundaries, N−1 is the number of layers, h′i is the weight function
of each pressure layer. Finally, the integrated XCO2 was 407.36 ppm and the uncertainty was estimated
to be lower than 0.5 ppm.
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Figure 9 demonstrates the XCO2 retrievals of the nine footprints of TanSat over Dunhuang.
The mean and the SD of each footprint are also shown. We find that the average XCO2 of footprint-5 to
footprint-8 are overestimated and the bias range between 0.27 and 3.29 ppm. The average XCO2 of the
other footprints are underestimated and the biases range between −1.33 and −0.34 ppm. Except for the
significantly high variance of footprint-6 (4.64 ppm), the variances of other footprints range between
0.67 and 1.27 ppm. The average XCO2 of all footprints is 407.43 ppm and the bias was 0.06 ppm.
With the exclusion of the footprint-6, the mean variance of the other footprints is 0.79 ppm.
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Figure 9. The retrieved XCO2 of all 9 TanSat footprints over Dunhuang on 27 April 2017.

The following two cases show the XCO2 retrievals over the ground-based FTS in Beijing (40.05◦ N,
116.28◦ E) on 4 and 31 May 2018, as shown in Figure 10. The AODs at 500 nm near the satellite
overpass time on these two days are 0.63 and 0.20 respectively. The comparison of XCO2 retrieval
accuracy of these two days can indicate how the ACOS algorithm performs for the aerosol scattering
correction. The XCO2 observed by ground-based FTS is 415.50 ppm and 412.21 ppm on 4 and 31 May,
respectively. The average XCO2 of all footprints on 4 May is 413.26 ppm. The average bias and variance
are −2.24 ppm and 1.65 ppm. The average XCO2 of each footprint ranges between 413.36 ppm and
413.75 ppm. Except for the significantly higher variance of footprint-6 (3.3 ppm), the variances of
other footprints range between 1.02 and 2.31 ppm. On 31 May, the average XCO2 of all footprints
is 412.06 ppm, and the average variance is 2.13 ppm. The bias from ground-based measurement is
−0.15 ppm. The average XCO2 of each footprint is between 411.79 ppm and 412.29 ppm. Except for the
significantly higher variance of footprint-6 (3.58 ppm), the variance of other footprints range between
1.77 ppm and 2.54 ppm.

The comparison of the two cases in Beijing shows that ACOS algorithm performs well on correcting
the uncertainty introduced by aerosol scattering. The average bias of the two-day retrieval results over
Beijing is 2.09 ppm with similar variance. We also find that the footprint-6 has some significant system
deviations compared with other footprints, probably due to the too many bad pixels for this footprint.
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5. Comparison of the TanSat and OCO-2 Retrieval Results

In order to further evaluate the retrieval accuracy of TanSat nadir mode observations,
the simultaneous XCO2 retrieval products with TanSat and OCO-2 are compared. Figure 11 shows the
orbital XCO2 products of two satellites with overlapping regions on 20 April 2017. Figure 11a,b show
the XCO2 retrievals over Australia and Northeast China, respectively. In Australia, the average XCO2
retrieved from TanSat and OCO-2 are 399.64 ppm and 400.48 ppm respectively, and the variances
are 1.52 ppm and 1.17 ppm respectively. In the northeast of China, the mean XCO2 retrieved from
TanSat and OCO-2 are 408.52 ppm and 409.36 ppm respectively, and the variances are 3.15 ppm and
2.27 ppm respectively. In the two regions, the mean values of TanSat are slightly lower than OCO-2,
with differences of 0.84 ppm and 0.86 ppm over Australia and Northeast China, respectively. And
the variances of TanSat are slightly higher than OCO-2 with differences of 0.35 ppm and 0.88 ppm
over Australia and Northeast China, respectively. It can be seen from the comparison that TanSat has
relatively larger uncertainties than OCO-2, which may be attributed to signal-to-noise ratio of TanSat
being lower than that of OCO-2 for the same retrieval bands. The deviation in retrieval bias between
the two satellites is less than 1 ppm, therefore, it can be concluded that the XCO2 products from two
satellites agree well.
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6. Conclusions

TanSat is China’s first satellite specially used to detect CO2 concentrations using near-infrared
hyperspectral observations. The main on-board instrument ACGS can perform hyperspectral
measurements in O2A band, CO2 weak absorption band and CO2 strong absorption band. Its design
parameters are similar to those of OCO-2, and the observations can be obtained in nadir, target and
glint modes. The ACOS, which is the CO2 retrieval algorithm of OCO-2, has been successfully applied
to OCO-2 and GOSAT. In this work, we apply the ACOS algorithm to TanSat measurements and
evaluate the XCO2 retrieval performance with various types of validation measurements.

The ACOS retrieval system is adjusted according to the instrument parameters and signal-to-noise
ratio model of TanSat. Since we do not use the cloud detection product of TanSat to filter the
cloud-contaminated observation before retrieval, we set strict post filter conditions to ensure the
effectiveness of the retrieval. In nadir observation mode, we have collocated two years’ TanSat
observations and the ground-based TCCON measurements from 2017 to 2018. We obtained about
0.24 million matches, ~5% of all these observations reach converged retrievals. After applying the filter,
3320 effective retrievals (~1.5%) are considered as effective retrievals and used in the validation.

The average bias and SD are 0.41 ppm and 3.57 ppm respectively. If we average the retrievals
of the same scene, 120 scenes are obtained. Then the average bias and SD decreased to 0.27 ppm
and 2.45 ppm respectively. The bias of each TCCON station as a function of station latitude is also
studied. It is found that the XCO2 tends to be overestimated for regions north of 36◦ N in latitude while
underestimated south of this latitude. The averaged bias and SD of various sites with latitude north
of 36◦ N are 1.30 ppm and 2.69 ppm respectively, while those of sites south of 36◦ N are −1.34 ppm
and 2.22 ppm respectively. The average bias of all stations is 0.66 ppm in 2017 and −0.27 ppm in 2018
respectively. The possible reason is that the attenuation in all three bands of TanSat intensified in 2018
and the attenuation in O2A band is much stronger than that of the two CO2 bands. It leads to relatively
low sensitivity to the variance of CO2 amount.

The analysis of the validation results of the target mode observations show that, the XCO2 retrievals
of the various TanSat footprints are underestimated. Based on the correlation between the retrieval
error and the reduced χ2 in all three bands, we propose a bias correction method. After applying the
correction method, the bias is highly improved from −3.85 ppm to 0.27 ppm and the average variation
is improved from 4.16 ppm to 2.25 ppm for land retrievals in nadir mode.

Three typical cases are investigated to validate the XCO2 retrieval with TanSat target mode
observations. In April 2017, the Dunhuang synchronous aircraft experiment showed that the retrieved
XCO2 is slightly overestimated with an average bias of all nine footprints being 0.06 ppm. Leaving out
footprint-6, the mean variance of all footprints was 0.79 ppm. In 2018, two validation cases around
the ground-based FTS in Beijing showed that the average biases are −2.24 and −0.15 ppm on 4 and
31 May respectively. On 4 May, the bias was obviously higher, probably because the AOD at 500 nm
reached 0.63, which was much higher than the general retrieval condition (AOD < 0.3). The retrieval
accuracy was influenced by the strong aerosol scattering. All the three cases show that the variance of
footprint-6 is significantly larger than those of other footprints, and the detector of this footprint is
apparently of lower quality.

In order to evaluate the regional distribution of the TanSat XCO2, the simultaneous XCO2 inversion
products with TanSat and OCO-2 on 20 April 2017 are cross-compared. The comparison shows that
the mean values of TanSat are slightly lower than OCO-2, with differences of 0.84 ppm and 0.86 ppm
over Australia and Northeast China, respectively. And the variances of TanSat are slightly higher than
OCO-2 with differences of 0.35 ppm and 0.88 ppm. It can be seen that TanSat retrievals show greater
uncertainty than OCO-2, which may be due to a lower signal-to-noise of TanSat in the same band.
The small deviation in XCO2 products between the two satellites (less than 1ppm) show that the XCO2
products from the two satellites agree well.
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