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Abstract: The purpose of this study was to develop an optimal estimation model for rainfall rate 
retrievals using radar reflectivity, thereby gaining an effective grasp of rainfall information for 
disaster prevention uses. A process was designed for evaluating the optimal retrieval models using 
various dataset combinations with radar reflectivity and ground meteorological attributes. Various 
ground meteorological attributes (such as relative humidity, wind speed, precipitation, etc.) were 
obtained using the land-based weather stations affiliated with Taiwan’s Central Weather Bureau 
(CWB). This study used nine radar reflectivity provided by the Hualien weather surveillance radar 
station’s Volume Cover Pattern 21 system. The developed models are built using multiple machine 
learning algorithms, including linear regression (REG), support vector regression (SVR), and 
extreme gradient boosting (XGBoost), in addition to the Marshall–Palmer formula (MP). The study 
examined 14 typhoons that occurred from 2008 to 2017 at Chenggong station in southeast Taiwan, 
and Lanyu station in the outlying islands, and the top four major rainfall events were designated as 
test typhoons—Nanmadol (2011), Tembin (2012), Matmo (2014), and Nepartak (2016). The results 
indicated that for rainfall retrievals, radar reflectivity at a scanning (elevation) angle of 6.0° 
combined with ground meteorological attributes were the optimal input variables for the 
Chenggong station, whereas radar reflectivity at an elevation angle of 4.3° combined with ground 
meteorological attributes were optimal for the Lanyu station. In terms of model performance, 
XGBoost models had the lowest error index at Chenggong and Lanyu stations compared with MP, 
REG, and SVR models. XGBoost models at Lanyu station had the highest efficiency coefficient 
(0.903), and those at Chenggong station had the second highest (0.885). As a result, pairing the 
combination of optimal radar reflectivity and ground meteorological attributes, as verified by the 
evaluation process, with a high-efficiency algorithm (XGBoost) can effectively increase the accuracy 
of rainfall retrieval during typhoons. 
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1. Introduction 

Typhoons are extreme weather systems that occur more frequently during summer and fall in 
Taiwan. Typhoons mostly originate in the intertropical convergence zone, with the strongest 
typhoons created in the western North Pacific and the South China Sea. Approximately 25.7 typhoons 
are formed on average each year, and the strong winds and rainstorms generated by landfall affect 
hydrological cycles in East Asia [1,2]. Taiwan is positioned at 120–122° east and 22–25° north in the 
West Pacific (Figure 1), and its terrain is mostly steep hills. Due to the simultaneous influence of 
monsoons, ocean climate, and West Pacific typhoons, climate conditions easily form extreme weather 
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systems that are highly destructive; the extreme rainfall and strong winds brought by typhoons are 
the cause of the most serious disasters in Taiwan [3–5]. 

 

  
Figure 1. Locations of Hualien weather surveillance radar and Chenggong and Lanyu ground 
stations. 

Remote sensing, by definition, refers to the gathering of information regarding objects or media 
(e.g., ground, rivers, oceans, and atmosphere) without contact. The information is obtained through 
interaction of electromagnetic or acoustic waves with the media or objects by using passive or active 
instruments. Remote sensing instruments and rain gauges are the tools most often used to measure 
hydrometeorological parameters in research [6–8]. Most meteorological radars are set up on the 
ground, and scan clouds or falling water drops near the radar station (e.g., maximum scan radius = 
approximately 450 km for S-band radar) in a 360° omnidirectional rotation using multiple elevation 
angles from the bottom upwards. Because of radars’ higher resolution and real-time data acquisition, 
many radar rainfall prediction systems employ the relationship between radar reflectivity and 
rainfall intensity, expressed as the relationship between radar reflectivity (Z) and rainfall rate (R); for 
instance, the Marshall–Palmer formula [9] (Z = 200 R1.6 where Z is in mm6/m3 and R is in mm/h) 
converts radar reflectivity into rainfall rate. Numerous studies have analyzed and explored radar 
reflectivity-based rainfall estimations [10–17]. For example, Borga et al. [18] used high-resolution 
radar rainfall fields and space–time distributed hydrological models to evaluate the rainfall runoff 
during storm floods. Gabella et al. [19] used radar reflectivity to improve the accuracy of rainfall 
estimations in complex terrains. Seo and Breidenbach [20] used rain gauge measurements to correct 
nonuniform spatial deviations in radar rainfall parameters in real time. Libertino et al. [21] developed 
a quasi-real-time procedure for an adaptive (in space and time) estimation of the Z–R relationship. 
Tang and Matyas [22] presented a methodology to forecast a tropical cyclone rainfall distribution up 
to 8 h into the future using a high-resolution Doppler radar reflectivity mosaic in a large analytical 
domain. Chen et al. [23] reported the vertical structures of raindrop size distribution features and 
quantitative precipitation estimation parameters of two main synoptic systems, typhoons and 
meiyu/baiu fronts, based on summer observations with a ground-based impact disdrometer and a 
vertically pointing radar. 

Radar reflectivity is highly correlated with rainfall estimation. However, few studies have 
compared errors in rainfall estimates from a single scan with estimates from scans at multiple 
elevations; for example, the terrain might block the radar reflectivity, making rainfall conditions 
behind the mountains unobservable. This results in radar reflectivity that might result in the 
miscalculation of the actual rainfall in a specific location. The aim of this study was to develop an 
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optimal estimation model for rainfall retrievals during typhoons in Taiwan. Usually, the radar system 
can provide radar reflectivity from various scanning (elevation) angles. Thus, this study used the 
radar reflectivity from various elevation angles as input variables for retrieval models and evaluated 
the optimal elevation angles. In the rainfall retrieval models established in the study, additional 
inputs included ground meteorological attributes as well as radar reflectivity. The meteorological 
attributes were obtained using the land-based weather stations affiliated with Taiwan’s Central 
Weather Bureau (CWB) and located at Chenggong and Lanyu. The data collected from the weather 
stations comprised the following: pressure, temperature, humidity, solar radiation, rainfall, and wind 
at or near the ground. The presented retrieval models used the data combination of radar reflectivity 
and ground meteorological attributes with a specific gauge instrument. In practice, the 
meteorological attributes should be obtained in advance. Fortunately, because Taiwan has a tight 
cluster of automatic rainfall stations, sufficient ground meteorological attributes of an arbitrary 
location can be obtained. However, when a location lacks an automatic rainfall station, one could 
obtain the meteorological attributes through a self-built meteorological instrument. 

An increased number of input variants necessitates the use of newer algorithms for high-
dimensional and nonlinear regression models. With the rapid development of artificial intelligence 
(AI), regression-type models have become one of the key algorithms in machine learning (ML) and 
are used to solve high-dimensional and nonlinear problems [24–29]. Therefore, an increasing number 
of scholars have used advanced regression algorithm models and applied them to rainfall estimation 
problems to gain more precise estimation values. Some renowned ML models are support vector 
regression (SVR), artificial neural networks (ANNs), Bayesian networks, decision trees, and random 
forests [30–40]. Moreover, studies have used radar reflectivity in ML models; for example, Chiang et 
al. [41] used radar reflectivity in dynamic neural networks for rainfall estimation and prediction, in 
addition to weather radar data in ANNs—which are capable of processing complex nonlinear 
relationships—to conduct quantitative precipitation estimation. Wei [42] developed a typhoon radar 
reflectivity-based rainfall nowcasting model to operationally predict hourly rainfall. An adaptive 
network-based fuzzy inference system was developed to estimate precipitation. 

In the current study, evaluation process was designed for a typhoon-season rainfall retrieval 
model. During the design of the process, radar reflectivity values from multiple scanning angles of 
weather in elevation (i.e., the elevation angles of the antenna) were tested to find the optimal elevation 
angles. Multiple ML algorithms were used to build a more precise rainfall estimation models, 
including linear regression (REG), SVR, and extreme gradient boosting (XGBoost). The XGBoost 
model was developed by Chen and Guestrin [43], and is a popular state-of-the-art algorithm applied 
in ML. XGBoost is a scalable ML system for tree boosting, which is a highly effective and widely used 
ML method; XGBoost improves the deficiencies of traditional tree learning algorithms in processing 
sparse data. Furthermore, XGBoost can simplify learning by models and prevent overfitting; 
therefore, its calculative abilities are superior to those of traditional gradient boosted decision trees 
(GBDTs). Dissertations on XGBoost have already been published in the fields of atmospheric 
composition and atmospheric science, substantiating its usability [44–48]. Currently, there are a few 
applications in rainfall estimation, such as [49,50]; therefore, this new algorithm was adopted in the 
present study to improve the accuracy of rainfall retrieval. Furthermore, the Marshall–Palmer 
formula (hereafter “MP”) proposed in a previous study [9] was used as the benchmark model for the 
estimation values. 

The remainder of this paper is organized as follows. Section 2 introduces the study regions, 
selected typhoon events, raw radar reflectivity collection, and ground meteorological attributes. 
Section 3 outlines the rainfall retrieval case design and algorithm theory. Section 4 describes the 
building of the rainfall retrieval model and its parameter verification, and Section 5 evaluates and 
discusses the results. Section 6 presents the typhoon simulation results, and Section 7 provides the 
conclusion. 
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2. Study Area and Data 

Because typhoons typically move toward Taiwan along an east-to-west path, Chenggong 
weather station on Taiwan’s east coast and Lanyu weather station in Taiwan’s outlying islands were 
selected as the study areas (Figure 1). We preliminarily screened for previous typhoons in Taiwan 
that had moved through the study areas or that had affected Taiwan’s southeastern coastal areas 
(Figure 2). 

Table 1 presents typhoons that affected the study areas from 2008 to 2017 and their dates, total 
rainfall, and intensity. Fourteen typhoon events were collected for this study. According to CWB 
definitions, severe typhoons have maximum windspeeds of 51.0 m/s or higher near the typhoon eye, 
whereas moderate and mild typhoons have windspeeds of 32.7–50.9 m/s and 17.2–32.6 m/s, 
respectively. Statistics showed that moderate typhoons are most common (eight occurrences), 
followed by severe typhoons (five), and mild typhoons (one). 

 

 
Figure 2. Historical tracks of typhoons during 2008–2017: (a) Fung-Wong, (b) Fanapi, (c) Nanmadol, 
(d) Tembin, (e) Usagi, (f) Matmo, (g) Fung-Wong, (h) Soudelor, (i) Goni, (j) Nepartak, (k) Meranti, 

(l) Megi, (m) Nesat, and (n) Hato. 

Table 1. Typhoons affecting the study areas during 2008–2017. 

Typhoon Duration Rain (mm) Intensity  Typhoon Duration Rain (mm) Intensity 
Fung-Wong 2008/7/27−28 173 Moderate  Soudelor 2015/8/7−09 159 Moderate 

Fanapi 2010/9/19−20 273 Moderate  Goni 2015/8/21−22 140 Severe 
Nanmadol 2011/8/27−30 360 Severe  Nepartak 2016/7/7−10 399 Severe 

Tembin 2012/8/23−28 459 Moderate  Meranti 2016 9/13~09/15 310 Severe 
Usagi 2013/9/21−23 314 Severe  Megi 2016/9/26−29 67 Moderate 

Matmo 2014/7/21−23 394 Moderate  Nesat 2017/7/29−31 112 Moderate 
Fung-Wong 2014/9/19−21 231 Mild  Hato 2017/8/21−23 200 Moderate 

 

2.1. Radar Reflectivity 

This study used radar reflectivity from Taiwan’s southeastern coastal area and outlying islands 
recorded by the Hualien Doppler weather surveillance radar (Figure 1). The reflectivity data from 
this radar in Rainbow® 5 format and CWB hourly observation data were collected for each typhoon 
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that made landfall in Taiwan; the radar reflectivity data over weather stations were collected from 
scanning results of the CWB’s Doppler weather radar at Hualien. The Volume Cover Pattern (VCP) 
21 system used by Hualien radar station can provide radar measurements for nine elevation angles: 
0.5, 1.4, 2.4, 3.4, 4.3, 6.0, 9.9, 14.6, and 19.5°. The VCP21 system can complete scanning at nine elevation 
angles within 6 minutes and, compared with other radar systems (such as VCP11), it has slower 
antenna rotation, resulting in more precise radar reflectivity and velocity data [51]. Figure 3 displays 
a radar reflectivity rotating 360° with the radar at the center, where “range” is the scan range for the 
elevation, and “range_step” is the size of each range bin. 

 

 
Figure 3. Schematics of radar reflectivity parameters of range and range_step. (The example is the 
reflectivity mosaic of Typhoon Matmo at 2014/07/22 1600 UTC; scanning modes in plan position 
indicator. The mosaic was produced by the Central Weather Bureau (CWB). The dBZ values of 0−30 
km from radar center are using the reflectivity from an elevation angle of 6.0°, the dBZ values of 
30−180 km are using the average reflectivity from elevation angles between 1.4° and 4.3°, and the dBZ 
values of greater than 180 km are using the reflectivity from elevation angle of 0.5° [52]). 

Google Earth Pro was used to accurately determine the azimuth and the distance between the 
Hualien radar station and a ground weather station. The azimuth and the distance were 199° and 102 
km, respectively, between the Hualien radar station and Chenggong station, and 183° and 218 km, 
respectively, between the Hualien radar station and Lanyu station. Considering strong winds 
affecting the rainfall location of raindrops over the ground station, the average value of radar 
reflectivity generated in larger station-centered grid spaces (i.e., 10 by 10 km) were selected to 
represent radar reflectivity intensity above the target station. 

2.2. Ground Observations 

This study used hourly meteorological attributes (2008–2017) from CWB weather stations 
(Chenggong and Lanyu). Table 2 presents the meteorological attributes and CWB notations (i.e., PS01, 
PS02, TX01, TX05, RH01, SS02, PP02, RH02, WD01, WD02, WD05, WD06, and PP01). There are 13 
attributes at each station. 

Table 2. Meteorological attributes at or near the ground. 

Attribute (unit) Notation  Attribute (unit) Notation 
Ground air pressure (hPa) PS01  Ground vapor pressure (hPa) RH02 

Air pressure at sea level (hPa) PS02  Surface wind speed (maximum 10-min mean,  WD01 
Ground temperature (°C) TX01  10 m above the surface) (m/s)  

Ground dew point temperature (°C) TX05  Wind direction of WD01 (deg) WD02 
Ground relative humidity (%) RH01  Maximum instantaneous wind speed (m/s) WD05 

Ground global solar radiation (MJ/m2) SS02  Wind direction of WD05 (deg) WD06 
Rainfall duration within 1 h (h) PP02  Precipitation (mm/h) PP01 
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Based on the meteorological attributes of the data collected, the number of model input 
attributes was discovered. However, some attributes may not have exhibited a high degree of 
correlation with the objective attribute (rainfall). Therefore, suitable attributes were required to be 
chosen before model construction. A correlation analysis was used to select the meteorological 
attributes with higher correlations with the rainfall attribute. The correlation coefficient (ρ) is defined 
as follows: ρ =  ∑( ̅)( )∑( ̅) ∑( )  , −1 < ρ < 1 (1) 

where x is the independent variable and y is the dependent variable; �̅� and 𝑦 are the average values 
of x and y. 

Typically, |ρ| > 0.7 represents a strong correlation, and |ρ| < 0.3 represents a weak correlation 
[53]. Based on these definitions, ρ absolute values over 0.3 were adopted as the attribute data in this 
study. Figure 4 displays the correlation analysis results for each weather station. In the figure, for 
example, the ρ value of PS01 (−0.274) was computed by Equation (1), where x is the ground air 
pressure (i.e., PS01) and y is the precipitation (i.e., PP01). Table 3 presents the selected meteorological 
attributes of Chenggong station (TX01, RH01, WD05, PP01, PP02, and SS02) and Lanyu station (PS01, 
PS02, TX01, RH01, WD05, PP01, and PP02) and their corresponding statistical values. 

 

 
Figure 4. Analysis results of correlation coefficient: (a) Chenggong station; (b) Lanyu station. 

2.3. Dataset Definitions 

A total of 2339 hourly records were collected. The data were then divided into three datasets: 
radar reflectivity {Z}, ground meteorological attributes {G}, and rainfall {R}. The {Z} dataset contained 
radar reflectivity from all elevation angles, and the mathematical expression was {Z}={Zi}I=1,9, where i 
represents the radar elevation angles in the VCP21 system (i is from 1 to 9 representing the elevation 
angles at 0.5, 1.4, 2.4, 3.4, 4.3, 6.0, 9.9, 14.6, and 19.5°, respectively). {G} contained meteorological 
attributes filtered through correlation analyses, expressed mathematically as {G}={Gk}k=1,6, where k 
represents the meteorological attributes (for Chenggong station, k is from 1 to 6 representing TX01, 
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RH01, WD05, PP01, PP02, and SS02, respectively; and for Lanyu station, k is from 1 to 7 representing 
PS01, PS02, TX01, RH01, WD05, PP01, and PP02, respectively). {R} was the rainfall dataset. 

Table 3. Statistical values of the employed data attributes. The collection time ranges from 2008 to 
2017 (including 14 typhoon events). The sampling frequency is one hour and a total of 2339 records 
were collected. 

Station Attribute (unit) Min-max Mean St. Dev. 

Chenggong 

Ground temperature, TX01 (°C) 23.8−33.8 27.1 1.83 
Ground relative humidity, RH01 (%) 48−100 83.7 9.82 

Maximum instantaneous wind speed, WD05 (m/s) 1.6−49.2 12.6 7.50 
Precipitation, PP01 (mm/h) 0−66 3.41 6.96 

Rainfall duration within 1 h, PP02 (h) 0−1 0.47 0.46 
Ground global solar radiation, SS02 (MJ/m2) 0−3.95 0.37 0.79 

Lanyu 

Ground air pressure, PS01 (hPa) 927.7−975.5 962.4 7.21 
Air pressure at sea level, PS02 (hPa) 963.1−1012.5 998.9 7.47 

Ground temperature, TX01 (°C) 21.9−28.8 25.0 1.07 
Ground relative humidity, RH01 (%) 71−100 92.1 6.12 

Maximum instantaneous wind speed, WD05 (m/s) 2.3−71.3 24.8 12 
Precipitation, PP01 (mm/h) 0−63 2.2 5.6 

Rainfall duration within 1 h, PP02 (h) 0−1 0.34 0.42 

3. Case Design and Algorithms 

This section presents the process for evaluating the optimal rainfall retrieval model. As 
illustrated in Figure 5, the various models, including three ML-based models (REG, SVR, and 
XGBoost) and the MP formula, in addition to the designed cases, were used to build retrieval models. 
The case designs for the rainfall retrieval model were based on the datasets established in the 
previous section. The dataset combinations of three cases are described as follows: 
• Case 1 used radar reflectivity {Z} to retrieve rainfall rate. This case used radar reflectivity from 

every elevation angle as the model input to establish separate models. For example, the radar 
reflectivity from an elevation angle of 0.5° formulates ML-based rainfall retrieval models 
(namely subcase 1.1). That is, R = f1(Z1), where f1() can be an ML-based model or the MP formula. 
Because there were nine elevation angles, nine models were established (i.e., subcases 1.1 to 1.9). 
An additional model, subcase 1.10, featured a specific model that used radar reflectivity of all 
elevation angles; that is, R = f2({Zi}i=1,9), where f2() represents using ML-based models. 

• Case 2 used meteorological attributes {Gk}k=1,6 of weather stations to retrieve rainfall rate; that is, 
R = f3({Gk}k=1,6), where f3() represents using ML-based models. 

• Case 3 combined reflectivity intensity {Z} and meteorological attributes {G} to retrieve rainfall 
rate. Nine elevation angles (Z1 to Z9) separately combined with {Gk}k=1,6 can build nine models 
(i.e., subcases 3.1 to 3.9). For example, for subcase 3.2, R = f4(Z2, {Gk}k=1,6), where f4() represents 
ML-based models. An additional model, subcase 3.10, featured a specific model that combined 
meteorological attributes with the radar reflectivity of all elevation angles; that is, R = f5({Zi}i=1,9, 
{Gk}k=1,6), where f5() represents using ML-based models. 

Then, the corresponding performance criteria for the rainfall observation values and rainfall 
retrieval values were calculated. Based on the comparison results, the optimal calculation model and 
corresponding dataset were selected. 

 

 
Figure 5. Schematic of the rainfall retrieval model case analysis and evaluation process. 
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3.1. Algorithms 

This section explains the theoretical bases for the REG, SVR, and XGBoost models. 
 
1. REG 

Linear regression is a crucial and widely used regression technique, and the main strength is 
that results are easy to interpret. When linear regression is performed for a set of independent 
variables x = (x1,…xr), r is the number of variables, assuming that the linear regression relationship 
between y and x is as follows: 

y = β0 + β1 x1+ …+ βr xr + ε (2) 

where β0, β1, and βr are regression coefficients, and ε is the random error. In this study, rainfall was 
estimated with datasets {Z} and {G} using linear regression. 
 
2. SVR 

The basic theory of SVR is to find the most suitable hyperplane within a space. Training data 
were set as (x1, y1),…, (xi , yi), with x as the input characteristic and y representing the characteristic’s 
corresponding regression value. SVR’s mathematical representation is similar to the following 
regression formula: 

f(x) = w · x + b, w ∈ Rd , b ∈ R (3) 

If the difference between the regression value f(xi) and truth value yi is very small, then the 
predictive value f(x) can be accurately derived after inputting property x, and weight w is the 
hyperplane sought in SVR. 
 
3. XGBoost 

XGBoost is a novel sparsity-aware algorithm for sparse data and a weighted quantile sketch for 
approximate tree learning [43]. The basis of XGBoost is gradient boosting (GB). GB iteratively 
generates models with weaker convergence results in ML and sums each weak model’s predictive 
results to optimize or minimize the loss function. Boosting can also be defined as raising or 
improving, and each addition of training generated by the new weak model improves on the previous 
results [54]. 

GB is simply a framework in which different algorithms can be entered, the most common being 
decision trees. The classic classification and regression tree was used in this study, and can also be 
referred to as GBDT [55]. Because each algorithm generates residuals, each subsequent calculation 
will establish a new algorithm calculation based on the gradient direction of the previous residual 
reduction, and the residual will decrease with multiple iterations. The derivation process of the GB 
formula is explained as follows. 

The optimal prediction function F′(x) minimizes L(y, F(x)) projected by x onto y: 𝐹’(𝑥) = arg min 𝐸 , [𝐿(𝑦,𝐹(𝑥))] (4) 

where F(x) is the function of weak classifier P={P1,P2,…}. 
The weak classifier equation can be expressed as: P = 𝛽 , 𝛼  (5) 

where αm is the parameter of the mth regression tree, and βm is the weight of the same tree in the 
prediction function. 

The mth weak classifier is expressed as 𝛽 ℎ(𝑥,𝛼 ); therefore, the prediction function F’(𝑥; P) 
can be expressed as: 



Remote Sens. 2020, 12, 2203 9 of 21 

 

F’(𝑥; P) =  𝛽 ℎ(𝑥;𝛼 ) (6) 

The mth weak classifier in Equation (6) should be established on the prediction loss function 
generated by the m-1 weak classifier to predict the direction of descent; −𝑔 (𝑥 ) represents the 
direction in which the mth iteration weak classifier is built, and the formula is: 

-𝑔 (𝑥 ) = − ( , ( ))( ) ] ( ) ( )  , 𝑖 = 1 … .𝑁 (7) 

αm and βm can be expressed as follows: 𝛼 = arg min [−𝑔 (𝑥 ) − 𝛽 ℎ(𝑥;𝛼 )]  (8) 

𝛽 = arg min 𝐿(𝑦 ,𝐹 (𝑥 ) + 𝛽 ℎ(𝑥 ;𝛼 )) (9) 

To avoid overfitting, each weak classifier is typically multiplied by the learning rate v: 𝐹 (𝑥) =  𝐹 (𝑥) + 𝑣𝛽 ℎ(𝑥;𝛼 ) (10) 

XGBoost is built on the basis of this derivation formula and has two more Taylor expansions 
than GB when calculating residuals; as a result, XGBoost has superior convergence in its loss function 
prediction. 

3.2. Programming Tools 

The SVR and XGBoost models were implemented using the open-source scikit-learn and Keras 
libraries in Python 3.7 (Python Software Foundation, Wilmington, DE, USA [56,57]). Because CWB 
radar reflectivity data were stored as Rainbow® 5 files, Python wradlib modules were then used to 
analyze the data and obtain the radar reflectivity. 

3.3. Performance Criteria 

The performance criteria used in this study included the root mean square error (RMSE), mean 
absolute error (MAE), relative RMSE (rRMSE), relative MAE (rMAE), and efficiency coefficient (CE). 
The formulas are defined as follows: 

RMSE =  1𝑁 (ℎ − ℎ )  (11) 

MAE =  1𝑁 |ℎ − ℎ | 
 

(12) 

rRMSE = RMSEℎ  (13) 

rMAE = MAEℎ  (14) 

CE = 1 − ∑ (ℎ − ℎret)∑ (ℎ − ℎ )  (15) 

where N is the number of data records; ℎ  is the ith observation value; ℎ  is the ith retrieval 

value; ℎ  is the average observation value; and ℎ  is the average retrieval value. 
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4. Modeling 

Because there were only 14 typhoon events, this study adopted the following approach to use 
data to effectively improve the quality of model training. During a testing typhoon, the data for the 
other 13 typhoons were used as the training and validation dataset; the trained model parameters 
were then used in the simulation of the testing typhoon. During another testing typhoon, the same 
approach was used for model building and the simulation of the testing typhoon. 

The model training and validation process in this study used 10-folder cross-validation, in which 
90% of the data were randomly selected as training data each time; the remaining 10% were used as 
validation data and not repeated until all of the data had been part of the 10% testing set. Lastly, the 
final accurate value was obtained by averaging the results of each test set. The four typhoons with 
the greatest rainfall were selected as the testing typhoons: Tembin in 2012 (459 mm), Nepartak in 2016 
(399 mm), Matmo in 2014 (394 mm), and Nanmadol in 2011 (360 mm). 

4.1. Parameter Calibration 

This section discusses the processes used to verify and optimize the parameters of the SVR and 
XGBoost models. Possible values for the parameters were searched for in the process to execute the 
model’s best-fit data capabilities. Parameters were calibrated through trial and error; that is, a single 
parameter was fixed and another parameter was adjusted to verify which parameter combination 
had a lower error. Because of the many case models designed in this study, the verification process 
for model parameters in Cases 1–3 and their optimal results are explained using the examples of 
Chenggong station with a radar angle of 6.0° and Lanyu station with a radar angle of 4.3°. 

Figure 6 displays the verification results for the SVR models, for which the main parameters 
were penalty coefficient C. The C represents the degree of punishment for samples outside the 
margin, and the value is related to the degree of tolerance of error. The C values of 0.001, 0.01, 0.1, 1, 
2, and 3 were used for verification in this study, with 10 to 1000 iterations. First, the RMSE for each 
iteration was drawn, fixing the C value at 0.001 and so on for every C value, to determine the smallest 
parameter for RMSE. The results showed that the optimal C values for Chenggong station for Cases 
1–3 were 3, 2, and 3, respectively, whereas the optimal C values for Lanyu station in Cases 1–3 were 
3, 0.01, and 0.01, respectively. 

Figure 7 and Figure 8 present the verification results of the XGBoost models; XGBoost 
parameters include learning rate, min_child_weight, and max_depth. The min_child_weight refers 
to the minimum sum of instance weight needed in a child, and the max_depth is used to prevent 
overfitting, to avoid the tree growing very deep. The scope of the verification learning rate was 0.0001, 
0.001, 0.01, 0.1, 0.2, 0.3, and 0.4, with 10 to 1000 iterations; min_child_weight was configured at 1, 2, 
and 3 for verification, and the max_depth verification scope was 3 to 15. Parameters were verified 
using trial and error, first by fixing the learning rate and adjusting the iterations to obtain the smaller 
parameter set in RMSE. Once the optimal learning rate parameter was obtained, the optimal 
parameter sets for min_child_weight and max_depth were verified. Table 4 lists the verification 
results for the optimal XGBoost model parameters in Cases 1–3. 
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Figure 6. Parameter C verification results for SVR models in Cases 1–3: (a−c) Chenggong station at a 
radar elevation angle of 6.0°; and (d−f) Lanyu station at a radar angle of 4.3°. 

 

Figure 7. XGBoost model verification results for Cases 1–3 of Chenggong station at a radar elevation 
angle of 6.0°: (a−c) learning rate; (d−f) min_child_weight and max_depth. 

Table 4. Verification results for optimal XGBoost model parameters in Cases 1–3. 

Station Chenggong  Lanyu 
Parameter learning rate min_child_weight max_depth  learning rate min_child_weight max_depth 

Case 1 0.3 1 3  0.2 3 7 
Case 2 0.2 1 7  0.2 2 10 
Case 3 0.4 3 9  0.3 1 11 

 



Remote Sens. 2020, 12, 2203 12 of 21 

 

 
Figure 8. XGBoost model verification results for Cases 1–3 of Lanyu station at a radar angle of 4.3°: 
(a−c) learning rate; (d−f) min_child_weight and max_depth. 

4.2. Model Performance 

Based on the approaches in the previous section, the optimal parameter set was found through 
completing the verification process for all cases. This section compares the error indices of all the 
cases. Figure 9a presents the RMSE results for the MP, REG, SVR, and XGBoost models in every case 
and under every elevation angle at Chenggong station; the figure demonstrates that (1) XGBoost 
models had the lowest error index, followed by SVR, REG, and MP; and (2) Case 3 had the lowest 
error index among the cases, followed by Cases 2 and 1. Based on the optimal model, XGBoost, Case 
2 used ground station data and did not consider radar reflectivity from each elevation angle; 
therefore, the error values were the same; Case 3 used both elevated radar data and ground station 
data and had superior performance compared with Case 2. By illustrating the error results of these 
two cases (Figure 10a), we found that using different radar reflectivity could display changes in their 
error quantities. Figure 10a also demonstrates that optimal retrieval results were observed at an 
elevation angle of 6.0° (error index value = 2.520 mm/h). 

Figure 9b presents the model verification results for every case of rain retrieval at Lanyu station. 
This figure demonstrates that, similarly, XGBoost models showed optimal performance and that 
Cases 2 and 3 had superior performance. Figure 10b illustrates the RMSE error values for both cases 
in XGBoost models for further evaluation, demonstrating that radar reflectivity data at an elevation 
angle of 4.3° had the best results (error index value = 2.016 mm/h). 
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Figure 9. Root mean square error (RMSE) verification results for every retrieval model and case: (a) 
Chenggong station; (b) Lanyu station. 

 

 
Figure 10. Comparison of RMSE for Cases 2 and 3 in the XGBoost model: (a) Chenggong station; (b) 
Lanyu station. 
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5. Evaluation and Discussion 

This section presents an evaluation to determine the optimal model and dataset combinations 
under different elevation angles. Table 5 presents the XGBoost model with Case 3 datasets as the 
optimal combination at Chenggong and Lanyu stations under every elevation angle; this study 
compared the average performance between stations and found that Lanyu station (RMSE = 2.359 
mm/s) outperformed Chenggong station (RMSE = 2.706 mm/s). 

Table 5. Evaluation of the optimal models using Case 3 data under each angle. 

Angle 
Chenggong station  Lanyu station 

Optimal model case RMSE (mm/h)  Optimal model case RMSE (mm/h) 
0.5° XGBoost with Case 3 2.827  XGBoost with Case 3 2.391 
1.4° XGBoost with Case 3 2.750  XGBoost with Case 3 2.102 
2.4° XGBoost with Case 3 2.832  XGBoost with Case 3 2.087 
3.4° XGBoost with Case 3 2.782  XGBoost with Case 3 2.227 
4.3° XGBoost with Case 3 2.636  XGBoost with Case 3 2.016 
6.0° XGBoost with Case 3 2.520  XGBoost with Case 3 2.289 
9.9° XGBoost with Case 3 2.584  XGBoost with Case 3 2.093 

14.6° XGBoost with Case 3 2.649  XGBoost with Case 3 2.802 
19.5° XGBoost with Case 3 2.761  XGBoost with Case 3 2.532 
All XGBoost with Case 3 2.723  XGBoost with Case 3 3.050 

 Average of all subcases 2.706  Average of all subcases 2.359 
 

The Chenggong station is situated in the southeast of the main island of Taiwan and is possibly 
affected by terrain factors, with the Coastal Mountain Range (150 km long, 10 km across from east to 
west, with an average height of 1000 m and the tallest peak height of 1682 m; Figure 11a) sheltering 
the station. Model verification results demonstrated that favorable results can be obtained under a 
specific elevation angle of 6.0°. According to Figure 11a, the range of theoretical elevation angles can 
be calculated. Waco [58] reported that the upper circulation of strong hurricanes extends into the 
tropopause of the atmosphere at 15–18 km. Houze et al. [59] and Houze [60] reported that the 
convective cell of Hurricane Ophelia (2005) reached approximately 17 km in echo top height. In this 
study, we assumed that the height of the cloud top in a tropical cyclone is 18 km (Figure 11a). The 
distance from the Hualien radar station to the Chenggong station is 102 km and to the northern tip 
of the Coastal Mountain Range is 15 km. Therefore, the range of radar elevation angles can be derived 
from 3.81° to 10.01°. As a result, the model demonstrated its validity regarding the optimal angle of 
6.0°. 

The Lanyu station generally had lower RMSE at lower elevation angles (approximately 1.4–4.3°), 
according to the model results, possibly because of less interference from land elevation factors when 
the electromagnetic pulses (radar beam) sent and received by the radar station pass across sea level, 
resulting in superior error results closer to the error index values at lower elevation angles. As 
illustrated in Figure 11b, the theoretical radar elevation angle can be calculated for the Lanyu station. 
The distance between the Hualien radar station and the Lanyu station is 218 km, with the maximum 
elevation angle at 4.72°. As a result, the model results appear reasonable regarding the optimal angle 
of 4.3°. 
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Figure 11. Theoretical radar elevation angles at the (a) Chenggong station and (b) Lanyu station. 

6. Simulations 

The four testing typhoons were simulated to evaluate the retrieval effectiveness. Figure 11a,b 
presents the retrieval results of the testing typhoons at Chenggong and Lanyu stations: Chenggong 
station’s retrieval results were obtained at an elevation angle of 6.0° under Case 3 conditions, and 
Lanyu station used retrieval values at an elevation angle of 4.3° under Case 3 conditions. In the 
figures, the thick gray line represents the timeline (or hyetograph) of the observation data and hourly 
rainfall of the four testing typhoons: the first timepoints for the typhoon simulations were 2011/8/27 
12:00 for Nanmadol (total = 53 hours), 2012/8/23 11:00 for Tembin (23 hours), 2014/7/21 21:00 for 
Matmo (46 hours), and 2016/7/7 10:00 for Nepartak (47 hours). 

Among the four typhoons, Matmo had the highest rainfall between both stations (observation 
value = 66 mm/h at Chenggong station and 61 mm/h at Lanyu station). Figure 2f shows that the path 
of Matmo’s center was very close to both stations, resulting in heavy rain. Rainfall observation 
records for the four typhoons at both stations showed that Chenggong station was more likely to see 
rainfall than Lanyu station, possibly because of the “wind sweep” rainfall phenomenon caused by 
the terrain of Central Mountain Range and the impact of the Coastal Mountain Range on the 
typhoon’s peripheral circulation as it drew nearer Taiwan’s east coast; when the typhoon airflow 
encounters the slope and is forced to rise, the water vapor in the air begins to condense from the 
lowering temperatures in higher altitudes and forms terrain rainfall. Conversely, Lanyu station is 
situated on the ocean, and therefore sees topographical rainfall; this is similar to the peak rainfall 
patterns observed for Typhoons Tembin (Figure 2d) and Nepartak (Figure 2j) at Chenggong and 
Lanyu stations reflecting the possible effects of topographical rainfall. Furthermore, Nanmadol did 
not exhibit significant single-peak rainfall patterns, possibly because its trajectory was from south to 
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north—drawing near Taiwan’s southern tip and following the southern edge of the Central Mountain 
Range (Figure 2c), resulting in continuous and sustained rainfall. 

In Figure 12, the orange solid line represents the MP model’s retrieval value, the green solid line 
represents that of the REG model, the black dashed line represents that of the SVR model, and the 
blue solid line represents that of the XGBoost model. For simulations at Chenggong station (Figure 
12a), the rain pattern variations retrieved by the four models exhibited greater differences, and peak 
rainfall was significantly underestimated; this may be because of faster structural variations of 
typhoon circulation at Chenggong station, resulting in radar data and ground meteorological 
attributes changing faster, and thus exhibiting high and unsteady variation; therefore, the models 
exhibited higher biases when estimating rainfall. At Lanyu station (Figure 12b), the overall rain 
patterns in the MP, REG, SVR, and XGBoost models were approximately similar to observed rain 
patterns. The peak time points in the MP, REG, SVR, and XGBoost models reflected underestimated 
rainfall variation and peak values. 

Both Chenggong and Lanyu stations exhibited significant peak rain patterns for Typhoon 
Matmo. Retrieval results mostly demonstrated that Lanyu station outperformed Chenggong station 
in grasping rainfall trends (i.e., fewer instances of underestimation); the reason might be smaller 
variations in the typhoon structure and circulation, and stable development of the typhoon structure, 
and the absence of topographical interference allowing radar reflectivity signals to more accurately 
reflect rainfall. Conversely, the typhoon circulation and structure rapidly changed when the typhoon 
circulation encountered land and the Central Mountain Range, resulting in greater fluctuations in 
radar reflectivity signals at Chenggong station; as a result, the ability of the retrieval model to reflect 
rainfall at Chenggong station was worse compared with at Lanyu station. 

 

Figure 12. Retrieval results for the top four major typhoons: (a) Chenggong station at an elevation 
angle of 6.0° under Case 3; (b) Lanyu station at an elevation angle of 4.3° under Case 3. 

Next, the models were further compared in terms of their performance for each performance 
criterion. In absolute errors, MAE and RMSE indices were used to evaluate overall performance in 
all four typhoons; as presented in Figure 13a,b, the XGBoost model fared better than the MP, REG, 
and SVR models in absolute errors, and Lanyu station exhibited smaller absolute errors compared 
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with Chenggong station. In relative errors, rMAE and rRMSE indices were used; Figure 13c,d shows 
that the XGBoost model outperformed the MP, REG, and SVR models and that Lanyu station 
exhibited smaller relative values compared with Chenggong station. Lastly, in terms of CE (Figure 
13e), the XGBoost model produced the highest CE at both stations and that for Lanyu station was 
slightly higher, at 0.903, compared to 0.885 for the Chenggong station. 

 
Figure 13. Performance comparison of Chenggong and Lanyu stations: (a) mean absolute error 
(MAE), (b) relative mean absolute error (rMAE), (c) RMSE, (d) relative root mean square error 
(rRMSE), and (e) efficiency coefficient (CE). 

7. Conclusions 

The aim of this study was to develop a typhoon-season rain retrieval model that could estimate 
possible rainfall in the study area when typhoons struck Taiwan. The studied sites were Chenggong 
weather station on Taiwan’s southeast coast and Lanyu weather station in Taiwan’s outlying islands. 
Rainfall retrieval cases and a process for evaluating the optimal model were designed, and the model 
case designs employed combined datasets of radar reflectivity factors from multiple elevation angles 
and ground meteorological attributes. The scope of the study was 14 typhoons from 2008 to 2017, and 
the radar reflectivity at nine elevation angles were provided by the VCP21 system at the CWB’s 
Hualien weather surveillance radar station. The case models in this study were constructed using the 
ML algorithms REG, SVR, XGBoost, and MP. 

The results at the experimental stations can be summarized as follows: 
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• In the process of building the rainfall-retrieval models, combining radar reflectivity with ground 
meteorological attributes (Case 3) achieved superior rainfall-retrieval results compared with 
only inputting radar reflectivity (Case 1) or only ground meteorological attributes (Case 2). 

• When the experimental station radar elevation angles were evaluated, radar reflectivity at an 
elevation angle of 6.0° combined with ground meteorological attributes were the optimal input 
variables for rainfall retrieval at Chenggong station; at Lanyu station, the optimal input variables 
were radar reflectivity at an elevation angle of 4.3° combined with ground meteorological 
attributes. 

• Simulation results of the testing typhoons (Nanmadol in 2011, Tembin in 2012, Matmo in 2014, 
and Nepartak in 2016) demonstrated that Lanyu station exhibited smaller error index values in 
model retrieval than Chenggong station. This study speculated that this is because Lanyu station 
is situated on the ocean, where a typhoon circulation encounters little to no topographical 
interference to affect its structure when passing; as a result, the radar reflectivity signals are 
better reflected off the variations (gradients) of water vapor and possibly rain. By contrast, 
Chenggong station is affected by rapid changes in typhoon circulation and structure when a 
typhoon circulation encounters land and the Coastal Mountain Range and the Central Mountain 
Range, resulting in greater fluctuations in radar reflectivity signals. As a result, the Chenggong 
station retrieval models were worse at predicting rainfall than those at Lanyu station. 

• In terms of model errors, the XGBoost model at both Chenggong and Lanyu stations exhibited 
smaller error indices than the MP, REG, and SVR models (including absolute errors (MAE and 
RMSE) and relative errors (rMAE and rRMSE)). In terms of efficiency performance during 
retrievals, Lanyu station’s XGBoost model had the highest efficiency coefficient (0.903), and 
Chenggong station’s XGBoost model had the second highest (0.885). 

Finally, based on the radar reflectivity at optimal radar elevation angles and ground 
meteorological attributes verified in this study’s evaluation process, entering the combined dataset 
into a high-performance algorithm (XGBoost) can effectively improve the accuracy of rainfall 
retrieval during typhoon season. As a result, the concrete study results also demonstrate the 
contribution of this study. 
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