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Abstract: Gridded passive microwave brightness temperatures (TB) from special sensor microwave
imager and sounder (SSMIS) instruments on three different satellite platforms are compared in
different years to investigate the consistency between the sensors over time. The orbits of the three
platforms have drifted over their years of operation, resulting in changing relative observing times
that could cause biases in TB estimates and near-real-time sea ice concentrations derived from the
NASA Team algorithm that are produced at the National Snow and Ice Data Center. Comparisons
of TB histograms and concentrations show that there are small mean differences between sensors,
but variability within an individual sensor is much greater. There are some indications of small
changes due to orbital drift, but these are not consistent across different frequencies. Further,
the overall effect of the drift, while not definitive, is small compared to the intra- and interannual
variability in individual sensors. These results suggest that, for near-real-time use, the differences
in the sensors are not critical. However, for long-term time series, even the small biases should be
corrected for. The strong day-to-day, seasonal, and interannual variability in TB distributions indicate
that time-varying algorithm coefficients in the NASA team algorithm would lead to improved,
more consistent sea ice concentration estimates.
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1. Introduction

Sea ice concentrations from passive microwave sensors provide one of the longest satellite-derived
climate records. In the Arctic, these fields are key indicators of climate change, showing a significant
decline in sea ice extent, particularly during summer, e.g., [1]. In the Antarctic, trends are near zero
and exhibit strong interannual variability, e.g., [2]. These sea ice trends are indicative of large-scale
climate change within the polar climate system, e.g., [3]. The large declines in Arctic sea ice extent
have wide-ranging impacts on Arctic ecosystems and human systems, e.g., [4].

Passive microwave (PM) sensors are useful for observing sea ice because, at the frequencies used
for the retrievals, atmospheric emissions are generally small (except for thick, precipitating clouds
and wind-roughening of the open ocean) and surface emission is not dependent on solar illumination.
PM sensors also are typically in a polar orbit and have a wide swath, which yields near-complete
coverage of sea ice regions, except for a gap around the pole. Finally, satellite-borne multi-channel
passive microwave sensors have been in near-continuous operation since 1978, beginning with the
launch of the NASA scanning multichannel microwave radiometer (SMMR) on the Nimbus-7 platform.
SMMR operated until August 1987. Beginning in July 1987, a series of special sensor microwave imager
(SSMI) and special sensor microwave imager and sounder (SSMIS) sensors have been launched on
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U.S. Department of Defense Meteorological Satellite Program (DMSP) platforms. As of 1 July 2020,
three SSMIS sensors are currently operating on board the DMSP F16, F17, and F18 platforms. More
recently, a newer series of PM sensor, the JAXA advanced microwave scanning radiometer (AMSR),
began operating. The AMSR sensors have larger antennas than the SMMR-SSMI-SSMIS series, resulting
in higher spatial resolution. In May 2002, an AMSR sensor was launched on the NASA earth observing
system (EOS) Aqua platform (AMSR-E). It operated until October 2011 and has been followed by
AMSR?2 on the JAXA Global Change Observation Mission for Water (GCOM-W) platform, launched in
May 2012 and continuing operations as of 1 July 2020. AMSR-E and AMSR?2 are generally not directly
connected to the long-term SMMR-SSMI-SSMIS record because the spatial resolution differences
between the sensors results in inconsistency in the time series [5].

For the SMMR-SSMI-SSMIS series, there has been at least one sensor in orbit continuously since
October 1978 with at least some period of overlap with two or more sensors operating simultaneously.
This has allowed direct inter-calibration between sea ice products, resulting in good consistency
in the products and a generally high confidence in the estimated long-term trends. However,
some overlap periods were quite short (as little as two weeks), which is not enough to obtain an
optimal inter-calibration [6]. An analysis of trends, particularly in the Antarctic where trends are
near-zero, indicates that this yields potential inconsistencies and a lower confidence in trend values [7].
Here, we further analyze the stability of brightness temperatures used in passive microwave sea ice
retrievals and assess the sensitivity to seasonal and interannual changes to sensor characteristics and
the properties of sea ice.

2. Materials and Methods

2.1. Background

Sea ice concentration has commonly been empirically derived from passive microwave brightness
temperatures (TBs). Coefficients are derived from the TBs for known pure surface types (100% ice
or 100% open water) and then concentration (fractional ice-covered area) is derived by interpolation
between these pure cases. Several algorithms and algorithm products have been developed through
the years. Four commonly-used current products are:

NASA team (NT) algorithm product at NSIDC [8]

Bootstrap (BT) algorithm product at NSIDC (also used for JAXA AMSR?2) [9]
EUMETSAT ocean and sea ice satellite application facility (OSI-SAF) [10]
NOAA/NSIDC sea ice concentration climate data record [11]

Ll .

Each algorithm product employs different passive microwave channels (frequency and
polarization) and different methods of combining channels to estimate concentration. Thus,
concentration values vary between products, e.g., [12]. This yields sometimes significant differences
in the integrated properties of hemispheric total sea ice area and extent, e.g., [12,13]. Sea ice extent
is the total area covered by sea ice above a threshold concentration, typically 15%, and sea ice area
is that area weighted by the concentration at each grid cell. However, while absolute concentration,
extent, and area values differ between the products, trends and variabilities are quite consistent overall,
e.g., [13,14].

In this study, we focus on PM TBs in the context of the NASA Team algorithm product. It is
one of the earliest algorithms used for sea ice concentration products and is still widely used in the
community. It is foundation of the NSIDC sea ice index [15] which provides regularly updated sea ice
extent and area estimates, as well as concentration, anomaly, and trend imagery. The sea ice index in
turn informs the NSIDC Arctic Sea Ice News and Analysis website (https://nsidc.org/arcticseaicenews/),
which provides near-real-time data and regular analyses of sea ice and Arctic climate conditions.
The NASA team algorithm is not superior to other products. Each product has been found to have
limitations, particularly during summer melt where surface water and melt ponds on the ice are
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interpreted by the algorithms as open water [16]. The NASA team is particularly susceptible to
underestimation of concentration during summer melt, e.g., [17].

The NASA Team algorithm is well-described elsewhere in peer-reviewed journal articles [18,19]
and in the product documentation [8], so we will not delve into details here, and provide only a
short summary. The algorithm employs the horizontally and vertically polarized channels of the
19 GHz frequency (19H and 19V) and the vertically polarized 37 GHz frequency (37V). The brightness
temperatures from these channels are combined into two ratios, the polarization ratio (PR) and the
gradient ratio (GR), as defined in Equations (1) and (2) below:

T,(19V) — T, (19H)
Ty(19V) + T, (19H)

PR = 1)
cr - T(37V) = Ty(19V)
T,(37V) + T,(19V)

When PR and GR values are plotted against each other for sea ice and near-sea ice open water
regions, three distinct clusters of points occur, forming the vertices of a triangle (Figure 1). These three
vertices correspond in the Arctic to: open water (OW)), first-year ice (FYI), and multi-year ice. FYI is
ice that has formed since the previous summer (i.e., it is less than one-year old), while MYI is ice that
has survived at least one melt season (i.e., >1-year old). FYI retains more salt in brine solution within
the ice structure, which emits differently in the microwave frequencies; much of the salt/brine drains
during summer melt, resulting in a lower-saline content in MYI. In the Antarctic, there is little MYI
and less distinction between FYI and MYI emission characteristics. So, for the Antarctic, the two ice
types are typically classified as Type A and Type B, though for simplicity, in this paper, we use FYI and
MYI designation for both hemispheres.
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Figure 1. Example of PR and GR values from F17 SSMIS for 28 February 2018. The triangle pattern is
outlined in red with the 100% surface types noted and other concentration percentages sketched in.
Water values are colored in blue and he GR weather filter threshold line is in light blue.
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These three clusters can be used to define coefficients for the three pure (100% concentration)
surface types, called ‘tie points.” Concentration values between these 100% tie points are derived
simply by interpolation between the vertices of the triangle. While most values should fall within the
PR-GR triangle, some do not, as seen in Figure 1. In particular, there is large spread around the 0% ice
(100% OW) tie point. This is due to greater variability in emission over open water from atmospheric
emission (mainly water vapor and cloud liquid water) and wind-roughening of the ocean [20].

This scatter around the open water tie point is addressed by applying a threshold to GR values by
prescribing all GR values > 0.05 to be open water. In practice, this removes most ice with values below
15%. Additionally, a GR filter using the 22V GHz channel instead of 37V GHz provides more filtering
(GR2219 > 0.045) to remove false ice retrievals over open water [19]. Additional quality-control filtering
is done via a “land-spillover” correction to remove false ice from mixed land-ocean pixels along the
coast, and the application of ocean climatology (valid-ice) masks to remove spurious ice (e.g., due to
land-spillover or atmospheric effects) far from where sea ice is not physically realistic [19].

While conceptually the PR and GR define the ice concentrations, tie points are defined for
individual TB channels used in the algorithm: 19H, 19V, and 37V. Thus, there is a set of nine tie points:
values of three TB channels for each of the three surface types. Tie points were defined specific to
each sensor and hemisphere, with adjustments between sensors derived based on inter-calibration
from sensor overlaps, e.g., [6,19,21]. Thus, tie points, once defined for a given sensor and hemisphere,
are not further adjusted. Other products, including Bootstrap and OSI-SAF use dynamic tie points,
with values changing each day. Such an approach for NASA team was investigated by [22], indicating
potential improvement from using varying tie points.

Two NASA team algorithm products are distributed by the NASA Snow and Ice Distributed
Active Archive Center (DAAC) at NSIDC. A “final” quality-controlled time series produced by NASA
Goddard [8] and a near-real-time (NRT) version produced by the NSIDC DAAC [23]. The “final”
product includes additional quality control via spatial and temporal gap-filling and manual correction of
spurious retrievals. The “final” product uses NSIDC DAAC gridded TB fields on a polar stereographic
projection [24], based on swath input TBs from Remote Sensing Systems, Inc. The NRT version does
not include gap-filling or manual corrections and uses gridded polar stereographic TBs [25], based on
swath data obtained from the NOAA comprehensive large array-data stewardship system (CLASS).

2.2. Methods

NSIDC internally produces TBs from all three SSMIS currently operating (on F16, F17, and F18),
although only data from F18 are publicly distributed. From 2009 until 2016, F17 was used for public
distribution, but NSIDC switched to F18 for NRT TBs and sea ice concentrations in March 2016 after
issues arose with the SSMIS sensor on F17. The F17 SSMIS is now operating nominally, but NSIDC has
continued to use F18. Initial internal assessment of TBs from the three sensors indicated reasonable
agreement. Thus, the same set of NT tie points, originally derived for F17, were implemented for
near-real-time NT concentrations from F18.

The internal production of SSMIS TBs from F16, F17, and F18 affords the ability to intercompare
data from the three sensors. In a previous study, sea ice extents were examined [13], finding that
differences in sensors resulted in uncertainties in sea ice extent of 30,000-70,000 km? depending on
season and hemisphere. Further, sensitivity to the GR open water threshold and TB and concentration
sources were also investigated.

Here, we take a more detailed look, focusing specifically on TBs and implications for the stability
of the NT tie points. Because the tie points are static for a given sensor, they may not be as representative
during specific seasons, particularly during the melt season. In addition, the sun-synchronous polar
orbits of the satellites drift over time. This means that the equatorial crossing time slowly changes
over the life of the sensor. The F17 crossing time has remained relatively stable, with local time of the
ascending node changing only from ~17:30 at launch to ~18:37 as of 1 July 2020 (Table 1). In contrast,
both F16 and F18 have had larger changes in crossing times, with F16 varying by ~4 h since launch and
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F18 by ~2.5 h. The crossing time variation is on a sinusoidal cycle of ~20 years, so the largest difference
in crossing time occurs ~10 years apart.

Table 1. Launch data and ascending node equatorial crossing time (ECT) at launch and in mid-2020.
ECT at Launch from https://dmsp.bc.edu/html2/ssiesdmspgeneral.html; current ECT from http://www.

remss.com/support/crossing-times/.

Platform Launch Date ECT at Launch Current ECT (1 July 2020)

F16 18 Oct 2003 19:54 15:54
F17 11 Apr 2006 17:34 18:37
F18 18 Oct 2009 20:00 17:33

The polar stereographic gridded TBs used for the NT concentrations are produced as simple
drop-in-the-bucket daily composite fields. This ameliorates the effect of the changing crossing times.
However, near the spring equinoxes, when extent can be fairly far equatorward (especially in the
Arctic), sea ice covered grid cells may be calculated from only one swath per day. With the strong
diurnal cycle, the timing of the one swath could influence the retrieved concentration estimates.

In this paper, we examine the stability of the TB fields via inter-comparisons between the sensors
through different years. First, F16, F17, and F18 are compared in the same year (2018) to determine
the consistency of recent retrievals and whether tie point adjustments are needed. Next, the three
sensors are compared across different years (2009, 2012, and 2018) to assess the stability over time,
particularly for the large ECT changes of F16 and F18. Finally, the sensors are compared on a daily
basis through the year to investigate the representativeness of the static tie points through the year,
particularly during the summer melt season.

All comparisons were done over a defined domain that includes non-land adjacent sea ice regions
and near-ice regions. Monthly climatology “valid-ice” masks were applied to remove ocean grid cells
far from ice. For the Arctic, the NSIDC valid ice product based on a National Ice Center sea ice chart
climatology was used [26]. For the Antarctic, a monthly SST-based climatology was used [19]. Land and
all locations within three grid cells of land were also not included in the analyses; this removed the
influence of potential land contamination of the TBs due to mixed land-ocean grid cells resulting from
the coarse sensor footprints.

3. Results

We analyze differences in TBs via histograms of the TB distribution. Such histograms show a
bimodal distribution with an open water peak at lower TB and an ice peak at higher TB [21]. These two
peaks roughly correspond with 0% ice and 100% ice respectively, with the distribution around each
peak indicative of surface variability of each pure surface type. Histograms were created for each day
and then summed or averaged to create annual histograms. The histograms were produced in 1 K bins.
Histograms were created for the three SSMIS sensors on F16, F17, and F18 and comparisons were done
for three years: 2009 (F16 and F17 only; F18 was launch in October 2009), 2012, and 2018. These three
years were selected to encompass the largest range of ECT values for F16 and F18.

3.1. Comparison of Sensors in 2018

First, examining 2018, the TB histograms of the sensors qualitatively match very well (Figures 2
and 3 for 19H; see Supplement, Figures S1-58, for other channels). The two peaks of the distributions,
corresponding to open water (low TB) and 100% ice (high TB corresponding to primarily FYI) almost
completely overlap. The peaks either fall into the same 1 K bin or differ by only one bin. Qualitatively,
the distributions between the sensors appear to have better agreement than was documented for F13
(SSMI) and F17 (SSMIS) [21].
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Figure 2. Annual histogram of Arctic (Northern Hemisphere) 19H TBs for 2018 for SSMIS on (a) F17
and F16, and (b) F17 and F18. The F17 tie point values for open water (OW), FYI, and MYI are overlaid

in red.
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Figure 3. Annual histogram of Antarctic (Southern Hemisphere) 19H TBs for 2018 for SSMIS on (a) F17
and F16, and (b) F17 and F18. The F17 tie point values for open water (OW), FYI, and MYT are overlaid

in red.
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Tie point values for F17 used in the NSIDC processing of CLASS TBs [6] are overlaid on the
histogram distributions. Note that the tie point values for open water are not coincident with the peaks,
but are shifted to slightly warmer TBs. This accounts for variability in the ocean surface. TB over open
water can be increased due to higher emission from surface roughening of the ocean (due to winds) and
atmospheric emission (water vapor and cloud liquid water) [20]. Placing the tie point value at a higher
TB than the peak accounts for these influences and yields 0% ice even when there is some emissive
“noise” in the open water signal. For ice, the FYI tie point closely coincides with the peak for 19H in the
Northern Hemisphere. However, the distribution does include higher TBs. This distribution beyond
the FYI tie point reflects variability in the sea ice properties. Surface roughness, salinity, and snow
properties all affect the emission. In the Southern hemisphere, the peak is shifted slightly lower than
the FYI tie point; this means that peak distribution is slightly less than 100%. This likely reflects a more
dynamic ice cover with more leads and open water in the Antarctic, particularly near the northern ice
edge where the ice can be rather diffuse. Thus, the distribution around each tie point reflects variability
in the microwave emission due to surface and atmospheric effects. In practice, this means that some
retrievals by the sea ice concentration algorithm will obtain ice concentrations below 0% and above
100%. Since these are non-physical, such values are truncated to 0% and 100%. However, truncated
values do effectively contribute to overall variability in the retrievals and should be considered when
estimating concentration uncertainty, e.g., [12].

3.2. Comparison of Sensors in Different Years

As noted above (Table 1), while the F17 orbit has remained relatively stable, both the F16 and
F18 platforms have experienced substantial drift in their orbits. Particularly near the equinoxes,
when diurnal effects in the polar regions are strongest, this is a potential concern in that it may
impart an artificial trend to sea ice fields if the TB distributions substantially change. To assess this,
we compared the F16 and F18 TB distributions with the F17 distribution in 2009, 2012, and 2018.
The F16 orbit varies by ~4 h between 2009 and 2018; the F18 orbit varies by ~2.5 h between 2012 and
2018. In contrast, the F17 orbit varies by only ~1 h across all years.

The comparisons show little change in the relative distributions of F17 and F16 19H TBs between
2009 and 2018 (Figure 4) and for F17 and F18 between 2012 and 2018 (Figure 5). There are different TB
distributions between years because of different ice conditions, but the differences between the sensors
appear consistent, i.e., all sensors track the different ice conditions similarly. There is a slight change in
the F16 open water peak in 2018, but otherwise the distributions line up well with F17. Other channels
show similar characteristics (not shown). Since the F17 orbit changes little, this indicates that, at least
qualitatively, the orbital changes in F16 and F18 do not substantially affect the gridded TB fields.

The lone exception to this pattern is the F16 37H channel in the Antarctic (Figure 6). There is a
notable shift, particularly in the ice peak. Interestingly, F16 has moved into better agreement with
F17 (and F18) more recently, very closely matching in 2018. Since the NASA team algorithm does
not employ the 37H channel, this drift in F16 does not impact NT concentration retrievals, however
it would be important for other algorithms (e.g., Bootstrap) that do use the 37H channel. As noted
above, the good overall TB agreement between sensors despite the satellite orbit drift is at least
partly explained by the daily composite drop-in-the-bucket gridding, which mutes effects of changes
in observation time by temporally averaging several swaths. Statistical methods could be used to
assess the differences and adjust tie points to match the distributions and optimize consistency of sea
ice products between sensors and over time, but our focus in this paper is to simply illustrate the
differences between the distributions.
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Figure 4. Annual histogram of Arctic (Northern Hemisphere) 19H TBs for F17 and F16 SSMIS in
(a) 2009, and (b) 2018 (same as in Figure 2a). The F17 tie point values for open water (OW), FYI,
and MYI are overlaid in red.
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Figure 5. Annual histogram of Arctic (Northern Hemisphere) 19H TBs for F17 and F18 SSMIS in
(a) 2009, and (b) 2018 (same as in Figure 2b). The F17 tie point values for open water (OW), FYI,
and MYI are overlaid in red.
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Figure 6. Annual histogram of Antarctic (Southern Hemisphere) 37H TBs for F17 and F16 SSMIS in
(a) 2009, and (b) 2018. Note that 37H is not used in the NT algorithm.

3.3. Daily Variations in Brightness Temperature Histograms

In the previous section, we showed that the annual average histograms of TBs qualitatively
compare well between the F16, F17, and F18 SSMIS sensors, even across different years. Here, we
investigate day-by-day variations in the histograms for each sensor, channel, and year. This also
allows more precise quantification of the difference through analysis of the average values of the
distribution peak.

It is clear that there is considerable daily and seasonal variation in the TB distribution (Figure 7).
The open water (OW) peak is more consistent through the year, which is not surprising. TB is a
function only of the emitting surface emissivity and the physical temperature. Water emissivity at
these microwave frequencies is stable. The distribution around the water peak is due to the synoptic
surface wind-surface roughening and atmospheric emission.

There is a slight increase in peak OW TB in the Arctic during June through August. This is likely
an ocean surface temperature influence. As noted earlier, the Arctic domain used for the histograms is
based on a monthly valid-ice mask encompassing all regions with sea ice plus a buffer of open water
beyond based on a valid-ice climatology mask. With much lower summer sea ice extent in recent years,
there is more open water and that water absorbs solar energy, warming the ocean surface.

The most notable characteristic in the distributions is the large variability in the ice peak, particularly
during summer. There are two reasons for this. One is that FYI extent decreases through the summer
and the MYI signature becomes more dominant. This is particularly prevalent in the Antarctic where
nearly all of the seasonal ice cover is lost during the summer. Another factor, particularly in the Arctic,
is the well-known surface melt and melt pond effect, e.g., [17]. At the microwave frequencies used by
the NASA team algorithm (and most other algorithms), emission comes from the surface or very near
the surface. Thus, liquid water on the ice surface contributes substantially to the retrieved microwave
emission signature. This results in an underestimation of concentration.

To quantify these variations, the daily histogram distributions are averaged through each of the
three years. In the Arctic, the full year is analyzed (Table 2). In the Antarctic, the small amount of
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remaining summer ice leads to very high variability, so only the winter (May through October) period
is analyzed here (Table 3). The full year statistics for the Antarctic are provided in the Supplement

(Table S1).
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Figure 7. Daily histogram 19H TBs for F17 and F16 SSMIS for (a) Arctic (Northern Hemisphere), and
(b) Antarctic (Southern Hemisphere). The x-axis is TB (K) with F17 tie points overlaid in red. The y-axis

is time, starting with 1 January at the top, ending with 31 December at the bottom. The color scale is

the number of observations in each 1 K bin for each day.

Table 2. Arctic annual average and standard deviation (SD) of daily brightness temperature histogram
distribution water and ice peak values for F17 and differences between F16 and F18 with F17. The NASA
Team F17 open water and FYT tie point (TP) values are also provided for reference.

Arctic Annual Avg. Peak Value (K) Annual Avg. SD Peak Value (K)

Year Sensor 19V 19H 37V 19V  19H 37V
Water OWTP 1822 116.5 206.5

2009 F17 183.2 1137 206.6 51 115 3.7
2012 F17 183.0 113.8 206.5 4.3 11.2 3.1
2018 F17 182.8 115.1 206.6 39 13.2 29
2009 F16-F17 -0.3 0.9 0.2 58 15.5 3.6
2012 F16-F17 -0.9 -0.3 0.1 3.6 15.2 3.2
2018 F16-F17 -0.2 -14 -0.3 4.8 17.8 2.1
2012 F18-F17 -1.1 0.1 0.0 50 14.6 25
2018 F18-F17 -0.8 -1.7 0.0 45 16.1 2.3

Ice FYITP 251.7 2354 242.7

2009 F17 250.3 2293 244.5 102 162 10.1
2012 F17 2483 225.1 2439 146 228 10.3
2018 F17 250.3 2279 243.5 109 179 10.9
2009 F16-F17 0.1 -0.1 1.0 52 13.0 3.8
2012 F16-F17 0.1 0.3 0.4 5.7 17.1 3.2
2018 F16-F17 -0.7 -1.0 -0.6 6.1 11.6 4.2
2012 F18-F17 0.0 1.3 0.5 6.2 159 3.7
2018 F18-F17 -0.6 -0.1 -0.4 59 11.7 4.1
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Table 3. Antarctic May—October average and standard deviation (SD) of daily brightness temperature
histogram distribution water and ice peak values for F17 and differences between F16 and F18 with F17.
The NASA Team F17 open water and FYI (Type A) tie point (TP) values are also provided for reference.

Antarctic May-Oct. Avg. Peak Value (K) May-Oct. Avg. SD Peak Value (K)

Year Sensor 19V  19H 37V 19V 19H 37V
Water OWTP 187.7 1184 208.9

2009 F17 183.0 113.8 206.8 1.3 3.1 1.3
2012 F17 183.3 1145 207.0 1.3 29 1.1
2018 F17 1825 1135 206.2 1.3 3.1 1.3
2009  F16-F17 -0.6 0.4 0.0 1.1 2.2 1.0
2012 Fl16-F17 -04 -0.3 0.2 0.8 1.7 0.8
2018  F16-F17 0.2 0.2 0.1 1.1 23 1.0
2012 F18-F17 -1.3 0.1 -0.5 1.1 2.3 1.0
2018  F18-F17 -0.8 0.0 0.2 1.1 23 0.9

Ice FYITP 2562 241.1 246.6

2009 F17 254.8 2322 247.8 2.0 6.1 3.5
2012 F17 2547 2343 249.8 33 53 3.1
2018 F17 2539 234.0 249.5 3.3 7.0 27
2009  F16-F17 0.2 0.1 0.2 1.0 8.1 3.0
2012 Fl16-F17 0.3 0.8 0.5 34 8.7 1.6
2018  F16-F17 0.5 0.4 0.6 44 9.3 2.8
2012 F18-F17 -0.8 -0.6 -0.3 44 8.5 2.5
2018  F18-F17 0.2 1.0 0.3 3.8 8.1 1.8

In the Arctic, the open water and ice peaks are generally consistent for F17 in the three years,
with the peak TB values within 1-2 K. The variability (standard deviation) is higher for ice than for
water. This reflects both the inherent greater variability of the ice cover (ice type, snow cover) and the
variation during the year due to changes in the distribution of FYI and MYI and melt effects. The 19H
channel has the largest TB variability, both for open water and ice.

The differences of the F16 and F18 SSMIS with F17 are generally 1 K or less, which are of similar
magnitude as the differences seen in earlier inter-sensor comparisons, e.g., [6,19,21]. The average
differences between sensors is small compared to the intra-annual variability and the variability in
the TB peak differences is on the same scale as the TB peak variation for a single sensor (i.e., F17).
This means that the day-to-day and seasonal variations in the TB histogram from a single sensor are as
great or greater than the differences in the TB histogram between sensors.

In the Antarctic, even examining only winter conditions, the ice peak variability is higher than
the water peak. Similarly, as for the Arctic, the variability from a single sensor is higher than the
differences between sensors. These results again indicate that on a given day, uncertainty in TB values
from any one sensor are as high or higher than the difference between TBs from different sensors.
However, for long-term trends, even small average differences can result in biases in time series.
Thus, the difference here should be examined further for potential tie point adjustments in long-term
time series.

In terms of any effect of orbit drift, the results are not definitive. Some channels on F16 and F18
do show a small trend in the differences with F17. For example, for 19H in the Arctic, the F16-F17
difference changes from 0.9 K to —0.3 K to —1.4 K from 2009 to 2012 to 2018. However, other channels
do not show any clear trend; for example, F16-F17 19V changes from -0.3 K to —0.9 K and then back to
-0.2 K. If there is an effect from orbital drift, it appears small and not necessarily consistent.

3.4. Sensitivity of Sea Ice Concentration to Different Sensors

A final assessment of the impact of the different sensors and years is done by examining the
effect of the brightness temperatures on NASA Team sea ice concentration estimates. Concentration
maps between the different sensors show only small differences over most of the ice cover, with
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larger differences only near the ice edge (see Supplement, Figures S9 and 510). Here, we illustrate the
differences by calculating the concentration corresponding to the TBs of the peaks of each channel’s
histogram. Concentrations were calculated for each day and then annual averages and standard
deviations were calculated (Table 4). As expected from the histogram distribution, the water peak
is a negative concentration, which compensates for atmospheric effects. The ice peak corresponds
fairly closely overall with the FYI tie point. However, in summer, due to melt and loss of FYI, the peak
drops to a lower temperature. Thus, only the winter period (Dec-May in the Arctic; Jun—Nov in the
Antarctic) are used in the calculations here. Full year statistics (not shown) are similar with the only
significant difference being a lower average total concentration; differences between sensors and years
are consistent with those shown here (Table 4). The winter ice peak TB values correspond to near
100% ice for the Arctic and 80-85% ice concentration for the Antarctic. This is consistent with the
well-known low bias in NT concentrations in the Antarctic [27].

Table 4. Annual average NT sea ice concentration (%) values corresponding to the daily TB histogram
peak values for water and ice for F17 and the F16-F17 and F18-F17 difference. Standard deviation
values are in parentheses.

Arctic (%) Antarctic (%)

Year Sensor Water Ice* Water Ice*

2009 F17  -39(44) 97.7(66) -43(25) 80.1(22.5)
2012 F17  -38(43) 971(37) -4.0(25) 84.6(20.5)
2018  F17  -35(40) 979(62) -42(25) 78.1(27.8)
2009 F16-F17 -03(39) 03(64) -0.6(20) 0.5(10.1)
2012 F16-F17 -08(3.1) 00(23) -07(1.6) -04(118)
2018 F16-F17 -07(31) -04(89) -07(21) 02(1L5)
2012 F18-F17 -0.1(35) 11(25) -0.1(20) -02(16.2)
2018 FI8-F17 -05(29) 08(.9) -06(19) 0.7(11.4)

*Ice values are for winter only (December-May for the Arctic; June-November for the Antarctic).

The differences between sensors is small in all years, <1% concentration with a standard deviation
of <10% except for the ice peak in the Antarctic, which has values ~10-15%. However, in light of the
overall variability in the Antarctic ice peak (20-30% standard deviation for F17), this variability is not
surprising. This means that the TB differences between sensors appear to not substantially affect the
total concentration. There is also not any obvious systematic change over the years, suggesting that
any effect of sensor drift is small. We note that this sensitivity test is for only the water and ice peak TB
values in the histogram, i.e., near 0% and near 100% sea ice conditions. It is possible that intermediate
concentration values may show larger differences. Also, even small differences in concentration can
potentially lead to biases in sea ice extent as grid cells with concentrations near the 15% threshold flip
between “ice” and “ice-free”.

4. Discussion

The focus of this study is to assess the near-real-time TBs from NOAA CLASS that NSIDC
distributes as daily composite polar stereographic grids and the potential impact of their differences
on sea ice concentration estimates from the NASA team algorithm. NSIDC switched the NRT SSMIS
sensor from F17 to F18 in 2016. Internal assessment at the time determined that TB agreement was
reasonably good and the effects of the change on NRT sea ice concentration and extent fields from
the NASA team algorithm were small. Thus, algorithm tie point adjustments were not necessary
for near-real-time processing. This study confirms that any adjustments would be small and would
not have a large effect on the concentration estimates. The effects of the impacts on sea ice extent
estimates were assessed in [13] and differences were small and on the same scale as internal variability
from a single sensor. Since 2016, the F17 SSMIS has largely been operating nominally. NSIDC is now
considering making data from both F17 and F18 SSMIS, as well as F16 SSMIS, available.
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Overall, there is good agreement between sensors with annual TB histograms matching very
closely. There are small biases between sensors, but these are much smaller than intra- and inter-annual
variations of TBs from a single sensor. The variation in the daily differences between sensors and is
similar to the daily variation within a single sensor. Effectively, the variation in conditions of emissive
properties of the surface are greater than the differences between sensors. This points to the potential
advantage of using multiple sensors to provide an ensemble average TB estimate with accompanying
uncertainty estimates. Similarly, the differences in concentration are small and are likely not critical for
near-real-time processing.

While average biases between sensors are small, they are potentially important for production
of long-term time series. The biases found here are similar in magnitude to those found in previous
inter-sensor comparisons where tie point adjustments were made. Thus, when the long-term NASA
team concentration product switches from its current F17 SSMIS source to F18, an inter-calibration and
algorithm tie point adjustment would likely be beneficial to provide the most consistent long-term
record. Such consistency is critical to assess trends, particularly where trend magnitudes are small,
such as in the Antarctic.

One concern with the F16 and F18 SSMIS record is the substantial orbital drift of the satellites.
This is particularly salient in terms of tie point adjustment. In the past, such adjustments occurred
once during an overlap period. Some overlap periods were very short and possibly at non-optimal
times of the year, which affects the quality of the adjustment [6]. However, even if a full-year of overlap
is used to optimally adjust tie points for consistency, the orbit drift and changing observation times
could erode that consistency over several years and introduce an artificial trend. The analysis here of
potential sensor drift effects is not conclusive. The histogram comparisons between sensors do not
show a systematic shift in all channels. Differences in average water and ice peak values show potential
small trends in some channels. However, there isn’t an obvious systematic effect on the concentration
estimates. Thus, the effect of sensor drift, if present, appears to be very small for concentration fields.

The high daily and intra-annual variability and the potential effect of orbital drift in the TB
histogram distributions indicates that constant tie points have limitations. A recommendation here is
to consider implementing dynamic (time-varying) tie points to the NASA team algorithm, as has been
done for the Bootstrap and OSI-SAF products. Such an approach was investigated by [21] and showed
promise, particularly for MYI concentration. Dynamic tie points automatically adjust for changes in
sensor properties and orbital drift. They also adjust to changing surface conditions, such as surface
melt. The onset of melt for Arctic sea ice is becoming earlier, e.g., [28]. With constant tie points, this
trend in melt onset imparts a trend in concentration during the melt period.

Such enhancements would also benefit weather and climate forecasts at all temporal scales. An
accurate surface boundary layer, especially in terms of ice vs. open ocean, is critical to obtaining
accurate synoptic forecasts. For example, improvements in sea ice fields have increased the accuracy of
polar ice and atmospheric circulation forecasts in U.S. Navy models [29,30]. While seasonal forecasts
are less sensitive to initial conditions, an understanding of the stability of the microwave observed
sea ice can inform the assessment of seasonal forecast models, which are becoming more relevant as
the Arctic Ocean opens up to more human activity [31]. Finally, as noted earlier, uncertainties in the
stability and consistency of sea ice extent records results in uncertainties in long-term climate trends,
particularly when trends are small and/or borderline statistically significant [7].

5. Conclusions

Passive microwave brightness temperatures constitute a fundamental climate data record that
is the foundation of several key geophysical parameters, with sea ice being one of the most iconic.
The value of these TB records is their long-term, continuous record, their all sky capability over sea ice,
and near-complete daily coverage. Compiling such a record requires stitching together data from a
series of sensors and adjusting TBs to optimize consistency over time. Newer sensors, such as AMSR-E
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and AMSR2 provide enhanced capabilities and higher spatial resolution, but are not necessarily
consistent with the longer-term SMMR-SSMI-SSMIS record.

Here, we have analyzed three SSMIS sensors, on the DMSP F16, F17, and F18 platforms, all currently
(as of 1 July 2020) operating. Overall, there is good consistency between the sensor TBs, with histogram
distributions nearly coincident. Differences in the histogram peak values for open water and sea ice
are mostly within 1 K on average. The net effect of these TB differences corresponds to an average <1%
NT concentration difference between sensors. The variability in the TB and concentration differences
between sensors is nearly the same as the variability within a single sensor. Thus, for day-to-day
quasi-operational sea ice concentration processing, such as those produced by the NSIDC DAAC, using
any of the sensors is acceptable. The larger satellite orbit drift of the F16 and F18 platforms compared
to F17 does not seem to have a large effect on the gridded daily-averaged TB fields. Some TB channels
in F16 and F18 exhibit small trends relative to F17, which could be due to the orbital drift, but there is
not a clear effect on concentration estimates.

Comparison of the three sensors suggests that all sensors provide useful information. Thus,
providing data from all available sensors would be beneficial as more information is better than less
information. Multiple observations can provide insight into the uncertainty range of a given (e.g.,
ensemble) TB estimate. Currently, the NSIDC DAAC does distribute another gridded TB product,
on the EASE2 grid, which does include TB fields from all available SSMI and SSMIS sensors [32]. It
could be beneficial to provide all sensors for the polar stereographic gridded fields as well.

Finally, the variability in the TB fields, both day-to-day, as well as seasonal and interannual,
indicates that deriving static tie points for each sensor is not optimal. The NASA team algorithm
concentration retrievals would benefit from implementing dynamic tie points, as has been done for
the Bootstrap and OSI-SAF concentration products. This approach is currently being considered for a
future reprocessing effort.
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