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Abstract: Plantations of fast-growing Eucalyptus trees have become a common sight in the western
Iberian peninsula where they are planted to exploit their economic potential. Negative side-effects
of large scale plantations including the invasive behavior of Eucalyptus trees outside of regular
plantations have become apparent. This study uses medium resolution, multi-spectral imagery of
the Sentinel 2 satellites to map Eucalyptus across Portugal and parts of Spain with a focus on Natura
2000 areas inside Portugal, that are protected under the European birds and habitats directives.
This method enables the detection of small incipient as well as mixed populations outside of regular
plantations. Ground truth maps were compiled using field surveys as well as high resolution satellite
imagery and were used to train Feedforward Neural Networks. These models predict Eucalyptus tree
cover with a sensitivity of up to 75.7% as well as a specificity of up to 95.8%. The overall accuracy
of the prediction is 92.5%. A qualitative assessment of Natura 2000 areas in Portugal has been
performed and 15 areas have been found to be affected by Eucalyptus of which 9 are strongly affected.
This study demonstrates the applicability of multi-spectral imagery for tree-species classification
and invasive species control. It provides a probability-map of Eucalyptus tree cover for the western
Iberian peninsula with 10 m spatial resolution and shows the need for monitoring of Eucalyptus in
protected areas.

Keywords: Eucalyptus; map; Natura 2000; invasive species; Portugal; artificial neural networks;
Sentinel 2

1. Introduction

Several species of the Eucalyptus genus have been imported from Australia to various other regions
of the world including Europe in the late 18th century [1]. At first planted mostly for ornamental
reasons, it was gradually discovered that some species were suitable for construction lumber and rapid
in growth. In the mid-20th century a large-scale introduction of Eucalyptus globulus to the European
continent started after advancements in the pulp and paper industry had made its economic potential
more accessible [2]. This process was also driven by national governments, as well as international
organizations, who promoted its properties of a fast-growing renewable resource [3]. While its culture
has become increasingly important to industrial stakeholders, negative effects of plantations on the
environment and ecosystems have become apparent [2,4–6].

Portugal and Spain have become two of the hotspots for plantations of the fast-growing
tree. Although not recognized by Portuguese authorities as invading and being absent in regulatory
legislation [7], Eucalyptus globulus has become invasive in some areas, gradually replacing
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autochthonous species. This poses a risk to fragile ecosystems with direct and indirect implications on
humans [8].

The economic impact of invasive species in Europe has been estimated to be close to 10 billion
euros per year [9] and this is likely to be an underestimate since for almost 90% of the alien species in
Europe the potential environmental and economic impact are still unknown [10].

In Europe, ecosystems in the network of Natura 2000 areas are protected according to the European
habitats (92/43/EEC) and birds directives (2009/147/EC) [11,12]. For each site, a list of protected
species is defined and measures undertaken by the member states should ensure the conservation of
the natural habitat and the protection of wild fauna and flora.

As invasive species can disturb the natural composition of habitats and especially since the presence
of invasive species can lower the conservation level of the sites, monitoring of such species should
be considered [13]. Invasive species monitoring usually relies on field surveys, citizens science [14],
and remote sensing approaches ([15,16]), that help to quantify and localize areas where alien species
penetrate ecosystems. Satellite-based remote sensing approaches can have advantages for two reasons:
firstly because field surveys for large areas can become laborious and secondly because early intervention
and detection of small, incipient populations is critical to achieve effective control [17].

In recent years approaches using machine learning on satellite imagery have become increasingly
popular for environmental management applications [18]. Baccini et al. [19] have used data from
the moderate resolution imaging spectroradiometer (MODIS) in combination with regression tree
models to predict above-ground biomass. Omer et al. [20] have mapped endangered tree species using
WorldView-2 imagery and Support Vector Machines and Artificial Neural Network. Estel et al. [21]
have relied on unsupervised clustering techniques on MODIS time-series data to infer cropping
intensity across Europe. De Alban et al. [22] have applied a supervised random forest classifier on
Landsat imagery to detect change in the Mangrove forest cover in Myanmar. Detection of Eucalyptus
plantations using time-series analysis of MODIS as well as Landsat imagery has been performed
by Le Maire et al. [23] who have mapped Eucalyptus fast rotation plantations using their unique
MODIS Normalized Difference Vegetation Index (NDVI) time-series signature. They have employed
a bounding envelope as a matching function to detect if a pixel’s multi-annual NDVI time-series
signature matches the one of typical Eucalyptus plantations and have compared the result to a Landsat
classification. Recently Dias et al. [24] have explored the performance of several state of the art deep
learning feature extractors on image representations of vegetation index time-series for the detection
of Eucalyptus plantations.

Since the launch of the Sentinel-2 multi-spectral instruments, a globe-spanning data-set of
medium spatial and temporal resolution is available to the public free of charge. In combination
with cloud computing services such as Google Earth Engine it enables a wide range of organizations
and individuals to solve geospatial analysis problems. The data-set has been widely used in studies
including Shoko and Mutanga [25] who exploited the data to distinguish between C3 and C4 grass
species, Förster et al. [26] who evaluated Sentinel-2 time-series to monitor the spread of invasive
species in central Chile and Vaglio Laurin et al. [27] who employed Sentinel-2 data to distinguish
between tropical forest types, as well as Schmidt et al. [28] who use Sentinel 2 imagery to assess the
conservation status of a Natura 2000 site in Germany.

In their review on articles focused on the Natura 2000 network Orlikowska et al. [29] identified
a lack of studies that cover multiple Natura 2000 sites over large spatial areas and use modelling
approaches to conduct such extensive surveys. Furthermore, Mazaris and Katsanevakis [30] pointed
out that insufficient and inadequate reporting of invasive species in the Mediterranean Natura 2000
sites poses a significant obstacle for conservation management. The lack of monitoring studies in the
Natura 2000 areas can mostly be attributed to the lack of operational datasets and practical applicable
techniques at large-scale ([28,31]).

Motivated by these gaps in research, our study presents a data-driven approach to mapping
Eucalyptus trees exploiting the capabilities of Feedforward Neural Networks (FNNs) on Sentinel 2
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satellite imagery. The main objective of this study is to provide a map of Eucalyptus occurrences in the
western Iberian peninsula in order to contribute to an improved management of invasive species for
the European Natura 2000 network. To the best of our knowledge, it is the first study to provide a 10 m
spatial resolution map of Eucalyptus occurrences, even for areas outside of regular plantations, for the
western Iberian peninsula. The use of Sentinel 2 imagery for invasive species detection in Natura 2000
sites on a country level, as performed by this study, is also a novelty.

2. Data and Method

2.1. Study Sites

Initially, a ground truth map of existing plantations and locations of small incipient populations
that are covered with Eucalyptus was created for three study sites for the year 2018 using a combination
of in-situ observations that were carried out by driving the roads and walking around inside the
study area as well as the visual interpretation of high resolution satellite imagery from Google Earth.
The selected sites are located inside Natura 2000 areas in Portugal, one in the Serras da Freita e Arada
region, Area (1), one in the Cabeção region, Area (2), as well as one further south in the Costa Sudoeste
region, Area (3), as can be seen in Figure 1.

Figure 1. Regions that were selected for training (light red rectangle), validation (gray rectangle) and
evaluation (white rectangles) of the model. Site number (1) is located in the Serras da Freita e Arada
area, site number (2) in the Cabeção area and site number (3) in the Costa Sudoeste region. The ground
truth map for Eucalyptus (black) and Conifers (red) is overlaid.

For Area (1) ground truth maps of Eucalyptus and coniferous forests (mostly Pinus pinaster and
Pinus pinea) were created using high resolution imagery from Google Earth and were validated
by walking and driving around in the study area. In a first step the satellite imagery was viewed
systematically inside the study area and compared to known samples of satellite imagery of Eucalyptus
as visualized in Figure 2. Throughout its life cycle from sapling to a mature tree the appearance on
satellite imagery of Eucalyptus trees changes and these differences in appearance were taken into
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account. In a second step the areas where satellite imagery suggested the occurrence of Eucalyptus
were marked using polygons in Google Earth Engine [32]. In a final step knowledge gathered from
ground observations was used to correct the polygons.

For the Area (2) and (3) maps were compiled using Google Earth imagery only. No validation by
visiting the study sites was performed for Area (2) and (3).

The ground truth map was compiled for the year 2018 under the assumption that areas covered
with Eucalyptus that were observed between October and December 2019 were already present
throughout 2018. Plantations that were cut down recently and that have not been replanted thus might
have been missed. The maps were created using one class for all Eucalyptus species, since Eucalyptus
globulus is the species most used for industrial applications [33] and invasive populations usually have
propagated from such existing plantations. Ground truth maps of coniferous forests in the study areas
were created accordingly in order to measure cross-sensitivity of the algorithm.

Figure 2. In the left pane shows parts of the compiled ground truth map consisting of polygons that
were drawn manually for Eucalyptus and Coniferous forests. Samples of high resolution Google Earth
imagery used to create this map are shown on the right. The 320 m × 320 m neighborhood region that
is considered by the model as an input is visualized as an overlay.

Training was performed inside a fraction of Area (1) (Light red area in Figure 1. The validation of
the algorithm was performed in the gray region of Area (1). The training was performed exclusively in
Area (1) because it was the only area where validated ground truth maps were available. The maps
created for the other two sites were used for the evaluation of the algorithm in different regions.

2.2. Satellite Imagery

For this study 13 bands of the two Sentinel 2 multi-spectral instruments (S2A and S2B), available in
the top-of-atmosphere reflectance catalog in Google Earth Engine, were used [32]. As the spatial
resolution for the bands differs, the lower resolution bands were interpolated to a 10m resolution
using the nearest neighbor approach (see Table 1). In order to get a better distinction between species,
images captured during four different times of the year were used by creating a median composite of
cloud-masked images captured in these four time periods: Winter between 1 January and 1 March,
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Spring between 1 March and 30 April, Summer between 1 and 31 July as well as Autumn between
15th of October and 15 January of the following year. These dates differ from the classical definition of
seasons and were chosen in order to get imagery for the mostly non vegetative winter period as well
as vegetative periods. Generally, in phenological studies of the northern hemisphere the winter season
is chosen to end in February [34]. The other seasons were chosen to get sufficient coverage with cloud
free satellite imagery for the vegetative periods.

Satellite imagery for the western Iberian peninsula including Portugal was evaluated in small
rectangular shards of approximately 25 km by 25 km and been combined to a composite image covering
the whole area of interest.

Table 1. Bands of the two Sentinel 2 multispectral instruments used in this study [35].

S2A S2B

Band Number Central
Wavelength (nm) Bandwidth (nm) Central

Wavelength (nm) Bandwidth (nm)

Spatial
Resolution (m)

1 442.7 21 442.3 21 60
2 492.4 66 492.1 66 10
3 559.8 36 559.0 36 10
4 664.6 31 665.0 31 10
5 704.1 15 703.8 16 20
6 740.5 15 739.1 15 20
7 782.8 20 779.7 20 20
8 832.8 106 833.0 106 10
8a 864.7 21 864.0 22 20
9 945.1 20 943.2 21 60
10 1373.5 31 1376.9 30 60
11 1613.7 91 1610.4 94 20
12 2202.4 175 2185.7 185 20

2.3. Data Analysis

FNNs are a type of artificial neural network which are a commonly used tool for remote sensing
applications such as the analysis of aerial photography and have been used for the detection of tree
biodiversity from satellite imagery [36] as well as tree species classification tasks. They have been
found to yield more accurate results than support vector machine and random forest algorithms [37,38],
as well as nearest neighbor classifiers [39].

In this study a FNN architecture as visualized in Figure 3, consisting of four fully connected
hidden layers with decreasing size, was used. FNNs consist of several layers of artificial neurons (AN)
that are connected to each other. During the prediction process, data is passed from the input layer
to the subsequent layers and altered by each AN depending on its weight and activation function to
eventually produce one or multiple output values, which enables non-linear separation of data [37].

A comparison among several FNN architectures with differently sized layers showed that a
network with the following configuration yielded the best results: The input layer is connected to
the first hidden layer consisting of 120 rectified linear units (ReLUs). The subsequent two layers are
also ReLUs with 60 and 30 units respectively. The output neuron has a sigmoidal activation function
providing a float value between 0 and 1.

In order to take into account the spatial vicinity of the pixel of interest in the prediction process,
pixels located inside a neighborhood region of 32 × 32 pixels (320 m × 320 m) around the pixel of
interest were considered as an input to the model. The size of the neighborhood region was chosen
according to two factors. Firstly, the area should be sufficiently large to extract background information,
while not being too large to be prone to overfitting the model. Secondly, a compromise had to be
found in respect to computational speed, which decreases with a larger size. A neighborhood region of
32 × 32 pixels satisfied these criteria well, as the computational speed is high and enough background
information is collected.
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The networks were trained with Adam, a gradient-based algorithm [40], and binary cross-entropy
as a loss function using the Keras Python implementations [41]. Training and validation data were
randomly shuffled for the training of each model. The training data-set consisted of 60,000 patches of
which each patch contains the sentinel imagery inside the neighborhood region for the four seasons as
well as the ground truth value. The patches were extracted randomly from the total of patches inside
the training region.

The trained networks were fed with satellite imagery in the area of interest and predictions were
calculated. The raw output of a network is a float value between 0 and 1 representing the probability
of each pixel being covered with Eucalyptus.

Figure 3. Visualization of the data-set and the model architecture. Dense layers consist of a number
(in brackets) of artificial neurons that are fully connected to the adjoining layers. “Relu” refers to
rectified linear units and “sigmoid” refers to units that have a sigmoidal activation function.

A map was created by running the prediction algorithm on all pixels of the area of interest resulting
in a gray-scale probability map. In order to assign the two classes “Eucalyptus” and “Not-Eucalyptus”
a threshold was applied to the gray-scale map, resulting in a binary image as can be seen in Figure 4.
The selection of the threshold value is discussed in more detail below.

Figure 4. Model output showing the probability of each pixel being covered with Eucalyptus trees.
The probability is represented as a grayscale value from 0 (black) to 1 (white). In the thresholded
binary image, the two classes “Eucalyptus” and “Not-Eucalyptus” are displayed as white and
black respectively.

2.4. Algorithm Performance and Validation

In order to get a quantitative insight into the performance of the algorithm the model output was
compared to the ground truth maps inside the three validation regions. Once in the validation region
in Area (1), which is close to the training region, as well as in the two other sites where validation
maps were compiled using Google Earth Imagery, Area (2) and Area (3). Inside the validation areas
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the polygons of the ground truth map were systematically sampled at a fixed distance of 10 m and
were compared to the model output. It was determined if the samples were classified correctly or
not and a confusion matrix was compiled to calculate sensitivity, specificity as well as user’s and
producer’s accuracies.

The sensitivity of the algorithm expresses its ability to correctly identify pixels as being
covered with Eucalyptus, while the specificity serves as a measure to quantify the true negative rate
(Pixels correctly identified as Not-Eucalyptus). Sensitivity and specificity were calculated according to

Sensitivity = Peucalyptus =
TP

TP + FN
(1)

where True Positives (TP) refers to the sum of the pixels in the evaluation area that were correctly
identified as “Eucalyptus”, False Negatives (FN) refers to the sum of the pixels that were classified as
“Not-Eucalyptus” but are in fact covered with Eucalyptus, as well as according to

Speci f icity = Pnon−eucalyptus =
TN

FP + TN
(2)

where True Negatives (TN) refers to the sum of the pixels that were predicted to be “Not-Eucalyptus”
and are in fact not covered by Eucalyptus, as well as False Positives (FP) which refers to the sum of
pixels that were identified as “Eucalyptus” but are in fact not covered by Eucalyptus. The Sensitivity
is also referred to as the Producer’s Accuracy for the class Eucalyptus (Peucalyptus). The Specificity is
equal to the Producer’s Accuracy for the class Non-Eucalyptus (Pnon−eucalyptus).

The user’s accuracy indicates the fraction of pixels mapped as one class that actually have this
class assigned in the ground truth map [42].

It was calculated according to

Ueucalyptus =
TP

TP + FP
(3)

for the class Eucalyptus and

Unon−eucalyptus =
TN

FN + TN
(4)

for the class Non-Eucalyptus.
Additionally the overall accuracy (OA) was computed, which measures how well both classes are

predicted. It was calculated according to

OA =
TN + TP

TN + TP + FN + FP
. (5)

2.5. Uncertainty Assessment

Two main sources of uncertainty were identified that influence the classification. Firstly,
the uncertainty introduced in the training process: Each time the model is trained, the training
data-set is shuffled randomly. This means that in each training process the neural network is presented
with the same data, but the order of the items changes and the model can train differently. In order
to take this into account, the model was trained 5 times and all areas of interest were evaluated with
each trained model to get a set of predictions. These five predictions were averaged to get a mean
probability of a pixel being covered by Eucalyptus.

Secondly, the uncertainty introduced by the selection of the threshold: as the threshold is the
decisive factor for the separation of the two classes, Eucalyptus and Not-Eucalyptus, the threshold
can influence an area estimate directly. To get an idea about the optimal value of the threshold
the training area was divided into 31 rectangular subareas. For each sub-area and trained model,
an optimal threshold was calculated. To do so, the area predicted as Eucalyptus at 50 thresholds
between 0 and 1 was calculated and compared to the actual area calculated from the ground truth map.
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The two thresholds, which result in area estimates that are the closest to the ground truth result, were
interpolated linearly to find an optimal threshold. This process was repeated for each prediction of the
5 trained models and for the 31 sub-areas. The distribution of thresholds has a mean value of µ = 0.53
and a standard deviation of σ = 0.19.

2.6. Qualitative Assessment

It was found that the predicted mean probability of a pixel being covered with Eucalyptus
can give insights for early detection of invasive populations that might be missed by looking at
a binary classification result only. For example, the mean probability maps serve well to assess areas
qualitatively and classify the Natura 2000 sites into “not or only slightly affected", “affected” as well as
“strongly affected". The mean probability map was viewed for all selected Natura 2000 sites in Portugal.
Areas that in most parts show low probability of being covered with Eucalyptus were classified as
“not or only slightly affected". Sites that exhibit high probability to be covered with Eucalyptus in
large portions were inspected in more detail by comparison to high resolution Google Earth imagery.
The sites which have large portions covered with Eucalyptus were classified as affected. If it was visible
from Google Earth imagery that sites had occurrences of Eucalyptus outside regular plantations these
sites were classified as strongly affected. Populations were considered outside of regular plantations if
it was visible that they were not part of plots with well defined borders (e.g. populations with fuzzy
outlines, mixed populations with other forest types, detached incipient populations, etc.).

2.7. Quantitative Assessment and Comparison to Other Data-Sets

Additionally it was attempted to derive a quantitative estimate of the area covered by Eucalyptus
trees. Therefore the area of pixels classified as Eucalyptus was calculated using each optimal threshold
and each model in Google Earth Engine [32] resulting in a set of area estimates.

This set of estimates was used to calculate a mean and the standard deviation of the estimate.
Where stated, uncertainty refers to the standard deviation (std) of the set of area estimates A
(areas calculated for all trained models and all optimal thresholds) divided by the mean (mean).

Uncertainty =
std(A)

mean(A)
(6)

The results were compared to the Copernicus CORINE land cover data-set [43] and the Tree
Canopy Cover data-set by the Global Land Cover Facility [44]. In order to derive a conservative
estimate for the percentage of forest that is covered with Eucalyptus, the area estimated by this
study was divided by the maximum forest cover of the two data-sets. As forest cover has changed
significantly in some regions due to wildfires in the last decade the years 2010, 2012 and 2018 were
taken into account. For the Tree Canopy Cover data-set areas with a canopy cover of more than 35%
were considered. For the CORINE data-set classes between 211 and 321 were considered. Agricultural
areas were included because inspection of the data-set and comparison with satellite imagery showed
that much of the Eucalyptus plantations were classified in the agricultural range of the data-set.

In order to compare the study results to forest inventory data, the area covered with Eucalyptus
was calculated for rectangular shards inside the evaluation area. This area was then divided by the
total area of the shard as well as by the area covered with forests for better comparison with National
Forest Inventory (NFI) data.

3. Results

3.1. Model Performance

The sensitivity and specificity of the model is visualized for 50 thresholds between 0 and 1 in
Figure 5 for the three study sites. In the validation region of Area (1) close to where the model was
trained a sensitivity of 0.757 and specificity of 0.958 is observed while the cross-sensitivity for conifers
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was 0.155 at a threshold of 0.53. In the Cabeção region a sensitivity of 0.623 and a specificity of 0.985
(cross-sensitivity 0.102) was measured at a threshold of 0.53. In the Costa Sudoeste region a sensitivity
of 0.629 and a specificity of 0.955 were recorded at the same threshold as well as a cross-sensitivity of
0.163 was measured.

Figure 5. Model performance for the validation regions in three different study locations. The continuous
output of the model was thresholded at 50 values between 0 and 1. For each threshold (abscissa) the
sensitivity and specificity (ordinate) was calculated. Both cross-sensitivity and cross-specificity were
calculated using ground truth maps for coniferous forests in the respective regions.

Table 2 shows the confusion matrix of the classification at a threshold of 0.53 for the combined
validation regions (Area (1), Area (2) and Area (3) combined). See Table A1, Table A2, Table A3 for
the three areas separately. High per class user’s accuracies were found: 81.4% for Eucalyptus and
94.1% for Non-Eucalyptus predictions. The accuracies for Eucalyptus vary with the validation sites
and the user’s accuracy is ranging from 54.9% for Area (2) to 87.1% for Area (3). The OA for the three
combined validation regions is 92.5%.

Table 2. Confusion Matrix for the model output at a threshold of 0.53 for all three validation
regions combined.

Reference

Eucalyptus Non-Eucalyptus Total User’s Accuracy Producer’s Accuracy

M
od

el

Eucalyptus 278,578 63,785 342,363 0.814 0.672
Non-Eucalyptus 136,228 2,188,458 2,324,686 0.941 0.972

Total 414,806 2,252,243 2,667,049

3.2. Predictions

The model predictions were compared to the ground truth maps. As can be seen in Figure 6
high Eucalyptus probabilities correlate well with the plots covered with Eucalyptus in the ground
truth map. The areas which are covered with coniferous forests on the contrary mainly correlate with
low probabilities. It can also be seen that in some areas the algorithm is cross-sensitive to coniferous
forests, falsely marking these with high probabilities of being covered with Eucalyptus. Additionally it
is visible, that in both Area (1) and Area (3), the prediction matches the ground truth data better than
in Area (2). In Area (2) only small Eucalyptus plantations were present and the result shows that also
coniferous forests were marked with moderately high probabilities.

One can also see that, for instance, in Area (2) a binary classification with a single threshold
could obscure information. Since it is vital for invasive species control to detect even small incipient
populations a probability map can provide a good guide on where to search.
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Figure 6. Plots of Eucalyptus (blue outlines) and coniferous (red outlines) forests in the three study
areas. The predicted mean probability of a pixel being covered with Eucalyptus trees is shown in the
range from 0 (black) to 1 (white) for the year 2018.

Figure 7 shows the mean probability of the five model realizations for the year 2018 in the
evaluation area covering Portugal and parts of Spain as well as all Portuguese Natura 2000 sites
that were evaluated in this study. The map reveals the hot-spots of plantations and occurrences of
Eucalyptus in the evaluation area and can be used for further analysis.

The results serve well to qualitatively analyze the Eucalyptus cover for Natura 2000 sites. In Table 3
the Natura 2000 sites that were detected to be affected by Eucalyptus are listed. Sites not listed in the
table were not found to be significantly affected. The probability map for all affected sites is shown in
Figure 8.

The cover with Eucalyptus is visualized for the year 2018 for the western Iberian peninsula in
Figure 9. For comparison a map provided by Cerasoli et al. [33] that relies on NFI data is provided.
In general the hotspots with high Eucalyptus forest cover found by this study match the NFI-data well.
Most hotspots with a Eucalyptus forest cover above 75% in the NFI data-set are also detected by this
study. A few exceptions indicating a higher coverage are discussed below.
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Figure 7. Map of the evaluation area. The determined mean probability of a pixel being covered
with Eucalyptus is shown for the study area in the range from 0 (black) to 1 (white) for the year 2018.
The Natura 2000 areas that were studied are highlighted with red outlines. The landmass is visualized
as a gray background.

Table 3. Summary of the affected Natura 2000 sites that are in large parts covered with Eucalyptus.
Strongly affected sites were found to have populations of Eucalyptus outside of regular plantations. See
Table A4 for sites that have been found to be not affected or only slightly

Natura 2000 Name Site Code State

Azabuxo-Leiria PTCON0046 strongly affected
Costa Sudoeste PTCON0012 affected
Malcata PTCON0004 affected
Monchique PTCON0037 strongly affected
Montemuro PTCON0025 affected
Mourão/Moura/Barrancos PTZPE0045 affected
Paul da Madriz PTZPE0006 strongly affected
Paul de Arzila PTCON0005 strongly affected
Rio Paiva PTCON0059 strongly affected
Rio Vouga PTCON0026 strongly affected
S. Mamede PTCON0007 affected
Serras da Freita e Arada PTCON0047 strongly affected
Serra da Lousã PTCON0060 strongly affected
Sicó / Alvaiázere PTCON0045 affected
Valongo PTCON0024 strongly affected
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Figure 8. Map of Natura 2000 areas that are in large parts covered with Eucalyptus. The determined
mean probability of a pixel being covered with Eucalyptus is shown for the study area in the range from
0 (black) to 1 (white) for the year 2018. Names of affected sites in italic font. Strongly affected sites in
regular font.

From Figure 9 it can be seen that uncertainty of area estimates is especially large along the
coastline. This can be attributed to the fact that for shards along the coastline the area covered with
forests is low compared to the shard size and miss-classifications over seawater lead to inaccurate
results. It was also found that, in general, the uncertainty is lower for shards that have a large total
area covered with Eucalyptus, i.e., areas with large plantations, as compared to areas with only small
populations of Eucalyptus. Some hotspots that were identified by this study which are not reported by
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the NFI were analysed in more detail using Google Earth Imagery. These hotspots are marked with
numbers from 1 to 4 in Figure 9. For hotspot 1 and 2 the estimated Eucalyptus forest cover is larger
than what the NFI reports mainly due to the fact that in these regions forest cover is very low and only
little missclassifications lead to a high estimated Eucalyptus forest cover. For hotspot 4 it was found
that the algorithm is particularly cross-sensitive to coniferous forests and Acacia species in this region.
Hotspot 3 on the contrary was identified as covered with Eucalyptus which is not reported by the NFI
with a comparable magnitude. Here the NFI here reports a cover of below 25 % and this study reports
a mean cover of 45%.

Figure 9. Distribution of areas covered with Eucalyptus in the western Iberian peninsula for the year
2018. The top map shows the percentage of the total area that is covered with Eucalyptus. The bottom
map visualizes the percentage that is covered with Eucalyptus with respect to the maximum forest
cover (FC) in the years between 2010 and 2018. Uncertainty of the estimates is shown in a separate
map. For comparison a map based on data published by Cerasoli et al. [33] which relies on National
Forest Inventory (NFI) data for the year 2015 is shown.

4. Discussion

In this study we demonstrated the use of FNNs to detect Eucalyptus forests/trees in the western
Iberian Peninsula and later analyzed the Natura 2000 areas in particular, for invasive populations.
The invasive behavior of Eucalyptus forests poses a risk to the high biodiversity of Natura 2000 areas
and thus their detection is important for sustainable forest management and natural conservation.
The classification result for Eucalyptus trees varied strongly with respect to the chosen threshold values
in the model output, resulting in different sensitivity, specificity and OA. Thus, different threshold
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values can be selected as needed, for instance, for classification with high sensitivity or high specificity.
With this method, we obtained a classification OA of 92.5%. This is a comparable result to the ones
observed by different high-resolution classification studies done by Du et al. [45] for crop area using
Worldview-2 satellite data, De Alban et al. [22] for mangrove forest cover and Guirado et al. [46] for
tree cover estimation, using various machine learning techniques. Furthermore, our study in some
regions showed slightly higher accuracy compared to an earlier study done by Le Maire et al. [23],
using MODIS data. Also, our approach showed comparable or better OA, when compared with recent
two-class classification studies done using Sentinel-2 imagery: Wessel et al. [47] obtained an OA of 91%
using Support Vector Machine techniques to classify beech trees; Hawrylo et al. [48]—OA of 78% using
Support Vector Machine techniques for the detection of scot pines; Ottosen et al. [49]—OA of 90% for
mapping tree-cover using a k-means unsupervised classification technique; Adjognon et al. [50]—OA
of 80% for mapping tree-cover using Random Forest technique. Our approach to automated Eucalyptus
detection uses a rather simple, computationally inexpensive, yet effective model. This approach is
highly scaleable and could easily be used for other medium to high resolution landcover classification
tasks in different parts of the world.

Although this approach showed high accuracy, misclassifications are unavoidable. Various sources
of misclassification observed in the study can be attributed to: (1) radiometric error in the imagery and
percentage of clouds, (2) error due to mixed/heterogeneous pixel, and (3) error due to the algorithm
and its parameters. We paid attention to obtaining cloud free imagery and thus minimized errors due
to cloud coverage, and with 10m resolution Sentinel-2 imagery the error due to mixed pixels is also
minimized. Still, errors that can be attributed to the modeling approach, for example, the selection
of optimal threshold values can have an impact. For this study the thresholds were calculated by
comparison with the ground truth map in multiple small areas which lead to a wide distribution of
optimal thresholds and made quantitative estimates challenging.

It is noteworthy to mention that classification accuracy is based on ground-truth data. There could
have also been an error in the creation of these ground truth maps, especially the ones derived from
Google Earth (for Area 2 and 3). The imagery provided by Google Earth is composed of imagery from
different times and the creation of validation maps from it can thus be prone to errors. In the Serras da
Freita e Arrada region (Area 1) this source of error was minimized by including ground observations
to correct the map. The other two regions have not been validated using in-situ observations. Also the
training data is to a large extent based on plantations of Eucalyptus and the samples of incipient
populations are underrepresented in the training set which could influence the result. The choice of
a training region inside one Natura 2000 area could also affect the result. The creation of validated
ground truth maps in further areas and a training of the algorithm in multiple spatially independent
regions could lead to a result that can generalize better.

Apart from being cross-sensitive to coniferous forests, it was found that the method is also
cross-sensitive to species including several Acacia species such as Acacia mearnsii and Acacia longifolia,
which are also considered invasive species in Portugal [8]. The cross-sensitivity of the algorithm could
be connected to a similarly higher reflectance in the near-infrared wavelength region of this group
of species as compared to Eucalyptus, as it was found for other invading species by Asner et al. [16].
Further investigation and quantification of the cross-sensitivity is necessary.

Finally, our study detected that 15 Natura 2000 areas in Portugal were affected, with nine of them
strongly affected by Eucalyptus. These results were validated using Google Earth imagery and further
investigation of the sites with field observations could strengthen the findings. As the expansion
of Eucalyptus can lead to a replacement of autochthonous species, to a lowering of biodiversity [5]
and can affect fungal communities in stream waters [6] further monitoring of these sites should be
undertaken. We also call for future research to detect invasive species in the other Natura 2000 areas,
especially the Continental and Boreal regions in the European Union. The Continental and Boreal
regions are under-represented in terms of ecological research among the Natura 2000 areas [29] and
furthermore these areas are experiencing an accelerated global warming [51], making them more
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vulnerable to biological invasions ([52,53]). Detection of invasive species with machine learning
and Sentinel 2 satellite imagery, as shown by this study, could help mitigate the negative impact of
these species, by conveying results to stakeholders, such as authorities who are responsible for the
management of Natura 2000 sites.

5. Conclusions

Our study emphasizes the importance of multi-spectral satellite imagery for invasive species
control and shows the need for monitoring of Eucalyptus especially in protected areas such as Natura
2000 areas in Europe. The results show that some Natura 2000 sites in Portugal are already strongly
affected. Other areas are affected but would need sustainable management soon in order to avoid
becoming strongly affected too. Our study fills the research gap on multi-site studies covering a large
spatial extent of the Natura 2000 network. It is also the first study to provide a map of Eucalyptus
occurrences with a 10m spatial resolution for the western Iberian peninsula.

The use of FNNs on Sentinel 2 imagery proved to be a feasible method for invasive species
mapping. This method makes it possible to create moderate temporal and spatial resolution maps
of Eucalyptus occurrences with an OA of 92.5%, which enable early intervention for invasive species
control. More sophisticated modeling and the use of additional data could lead to improved results.
Our results show that the method is suitable for qualitative and quantitative assessments and can help
inform policymakers and protect Natura 2000 areas from bio-diversity loss.
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Appendix A

Table A1. Confusion Matrix for the model output at a threshold of 0.53 for Area (1).

Reference

Eucalyptus Non-Eucalyptus Total User’s Accuracy Producer’s Accuracy

M
od

el Eucalyptus 105,323 24,052 129,375 0.814 0.757
Non-Eucalyptus 33,744 546,950 580,694 0.942 0.958

Total 139,067 571,002 710,069

Table A2. Confusion Matrix for the model output at a threshold of 0.53 for Area (2).

Reference

Eucalyptus Non-Eucalyptus Total User’s Accuracy Producer’s Accuracy

M
od

el Eucalyptus 21,013 17,269 38,282 0.549 0.623
Non-Eucalyptus 12,697 1,169,326 1,182,023 0.989 0.985

Total 33,710 1,186,595 1,220,305
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Table A3. Confusion Matrix for the model output at a threshold of 0.53 for Area (3).

Reference

Eucalyptus Non-Eucalyptus Total User’s Accuracy Producer’s Accuracy

M
od

el Eucalyptus 152,242 22,464 174,706 0.871 0.629
Non-Eucalyptus 89,787 472,182 561,969 0.840 0.955

Total 242,029 494,646 736,675

Table A4. Summary of the Natura 2000 sites that have been found not be affected or only slightly.

Natura 2000 Name Site Code State

Alvão / Marão PTCON0003 not affected/only slightly
Alvito/Cuba PTCON0035 not affected/only slightly
Arade / Odelouca PTCON0052 not affected/only slightly
Arrábida / Espichel PTCON0010 not affected/only slightly
Barrocal PTCON0049 not affected/only slightly
Cabeção PTCON0029 not affected/only slightly
Cabrela PTCON0033 not affected/only slightly
Caia PTCON0030 not affected/only slightly
Caldeirão PTCON0057 not affected/only slightly
Cambarinho PTCON0016 not affected/only slightly
Carregal do Sal PTCON0027 not affected/only slightly
Castro Verde PTZPE0046 not affected/only slightly
Complexo do Açor PTCON0051 not affected/only slightly
Comporta / Galé PTCON0034 not affected/only slightly
Côrno do Bico PTCON0040 not affected/only slightly
Douro Internacional e Vale do Águeda PTZPE0038 not affected/only slightly
Dunas de Mira, Gândara e Gafanhas PTCON0055 not affected/only slightly
Estuário do Sado PTCON0011 not affected/only slightly
Estuário do Tejo PTCON0009 not affected/only slightly
Évora PTZPE0055 not affected/only slightly
Fernão Ferro / Lagoa de Albufeira PTCON0054 not affected/only slightly
Gardunha PTCON0028 not affected/only slightly
Peneda / Gerês PTCON0001 not affected/only slightly
Guadiana PTCON0036 not affected/only slightly
Litoral Norte PTCON0017 not affected/only slightly
Minas de St. Adrião PTCON0042 not affected/only slightly
Monforte PTZPE0051 not affected/only slightly
Monfurado PTCON0031 not affected/only slightly
Montesinho / Nogueira PTZPE0003 not affected/only slightly
Morais PTCON0023 not affected/only slightly
Moura / Barrancos PTCON0053 not affected/only slightly
Nisa / Lage da Prata PTCON0044 not affected/only slightly
Paul do Taipal PTZPE0040 not affected/only slightly
Peniche / Sta Cruz PTCON0056 not affected/only slightly
Piçarras PTZPE0058 not affected/only slightly
Reguengos PTZPE0056 not affected/only slightly
Ria de Aveiro PTCON0061 not affected/only slightly
Ria Formosa / Castro Marim PTCON0013 not affected/only slightly
Rio Lima PTCON0020 not affected/only slightly
Rio Minho PTCON0019 not affected/only slightly
Rios Sabor e Maçãs PTZPE0037 not affected/only slightly
Romeu PTCON0043 not affected/only slightly
Serra D’Arga PTCON0039 not affected/only slightly
Serra da Estrela PTCON0014 not affected/only slightly
Serra de Montejunto PTCON0048 not affected/only slightly
Serras d’Aire e Candeeiros PTCON0015 not affected/only slightly
Sintra / Cascais PTCON0008 not affected/only slightly
Tejo Internacional, Erges e Pônsul PTZPE0042 not affected/only slightly
Vale do Côa PTZPE0039 not affected/only slightly
Vale do Guadiana PTZPE0047 not affected/only slightly
Veiros PTZPE0052 not affected/only slightly
Vila Fernando PTZPE0053 not affected/only slightly
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