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Abstract: Estimating extreme precipitation events over complex terrain is challenging but crucial
for evaluating the performance of climate models for the present climate and expected changes of
the climate in the future. New satellites operating in the microwave wavelengths have started to
open new opportunities for performing such estimation at adequate temporal and spatial scales and
within sensible error limits. This paper illustrates the feasibility and limits of estimating precipitation
extremes from satellite data for climatological applications. Using a high-resolution gauge database
as ground truth, it was found that global precipitation measurement (GPM) constellation data
can provide valuable estimates of extreme precipitation over the southern slopes of the Pyrenees,
a region comprising several climates and a very diverse terrain (a challenge for satellite precipitation
algorithms). Validation using an object-based quality measure showed reasonable performance,
suggesting that GPM estimates can be advantageous reference data for climate model evaluation.

Keywords: extreme precipitation; satellite observations; surface observations; IMERG; rain gauges;
gridded data

1. Introduction

Extreme precipitation events (EPEs) have devastating effects on human society. They are
responsible for a substantial number of natural disasters, including landslides and flash floods [1].
Consequently, accurate estimates of heavy rainfall are essential for the risk monitoring of these natural
hazards. In this sense, in situ observation, satellite-based measurements, model outputs, and reanalysis
datasets are very beneficial because they provide continuous spatial and temporal coverage of EPEs.

Gridded products derived from rain gauges are commonly used to evaluate EPEs because of
the advantages of their direct measurement. However, products derived from point-scale gauge
observations can greatly deviate from areal precipitation, especially when the network is too sparse [2].
This issue is crucial in complex areas where sharp gradients play a key role in the distribution of
precipitation. Compared with rain gauge data, satellite-derived precipitation products (SPPs) provide
global and consistent measurement of precipitation, filling the gaps of in situ observations [3,4]. One of
the most recent SPPs is the integrated multi-satellite retrievals from global precipitation measurement
(IMERG) [5]. The IMERG product results from the combination of retrievals from multiple satellites and
has emerged as a powerful tool for natural hazard monitoring [6], including EPEs [7–11]. IMERG is not
only used in hazard monitoring but also in climate research. For example, Zhou et al. [12] constructed
a global database of EPEs that allows analyses of many event-based precipitation characteristics that
conventional datasets are unable to support. Despite its benefits, SPPs are not immune to errors and
suffer from several limitations, including sensor sensitivity, algorithm limitations, and merging errors,
among others [13–15].
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Other sources for evaluating EPEs are reanalyses and climate models. Reanalyses are considered
the best physically consistent estimates of the atmospheric state, and include observations through
data assimilation from multiple sources. They have the potential to describe weather conditions over
a longer period than satellite-derived observations and to produce high-resolution data relative to
gauge observations. For those reasons, reanalyses are useful tools for reconstructing precipitation
patterns and real-time monitoring [16,17]. On the other hand, numerical models are often used
for forecast purposes [18–20]. In this sense, climatologists use global climate models (GCMs) to
assess future global and regional trends of extreme precipitation [21–23]. However, both approaches
have important drawbacks. For example, the reliability of reanalyses depends on the quality of the
observational data and performance of the numerical model. Consequently, agreement between
different reanalysis datasets is not frequent [16,24]. For models, coarse spatial resolutions lead to less
accurate parameterizations that are unable to resolve heavy rainfall [25–29].

There are several studies comparing the strengths and limitations of gridded precipitation products
for EPE detection. Some of them intercompare products on a regional basis [30–34] while others take a
global approach [32,35–37]. However, few studies have attempted to evaluate the potential utility of
IMERG for the study of EPEs in complex terrain [38,39], and none of them have focused on climate
applications for the southern slopes of the Pyrenees.

This work aimed to answer the following questions: (1) From an object-based perspective,
how well is very intense precipitation represented in IMERG products? (2) Could IMERG be a reliable
alternative to gauge-derived products and reanalysis datasets for evaluating extreme precipitation?
To address these questions, we focused on complex terrain in the northeastern Iberian Peninsula.
This area is challenging because it is frequently affected by EPEs and has strong vulnerability to
climate change [18,40,41]. However, it is equipped with a robust rain gauge network that furnishes
reference data. The study included standard metrics and other object-based statistics that measure the
potential utility of IMERG in evaluating certain characteristics of extreme rainfall not addressed by
previous studies.

This paper is organized as follows. In Section 2, we introduce the study area, datasets,
and methodology. Section 3 evaluates the performance of IMERG, focusing on different parameters,
such as the structure, location, intensity, seasonality, and climate zone. Section 4 summarizes the
main conclusions.

2. Study Area, Data, and Methodology

2.1. Study Area

The present study focuses on the western Mediterranean, more precisely on the NE of Iberian
Peninsula (Figure 1). EPEs in this area occur mainly in autumn and are caused by orographic
precipitation, mesoscale convective systems (MCSs), and frontal systems. The synoptic-scale processes
that favor EPEs in this region have been extensively investigated [42–45] and multiple case studies can
be found in the scientific literature [46–51].

The study area comprises extends over ~85,000 km2, covering the northeast of the Iberian Peninsula
(Figure 1). It spans latitudes 40◦33′ N–43◦03′ N and longitudes 4◦35′ W–1◦85′ E, with altitudes from 0
to 3300 m. Most of the domain is covered by the Ebro River basin, which is surrounded by a set of
mountainous ranges, the Pyrenees in the north, Duero Mountains in the southwest, and the Teruel
System in the southeast [52]. The area is influenced by large-scale atmospheric circulations originating
from the North Atlantic and the Mediterranean Sea [53]. The impact of these circulations is modulated
by orographically complex terrain [54]. Consequently, MCSs are frequent in the middle and lower
parts of the basin [55], in contrast to the stratiform rainfall of the northwest.

Precipitation estimates in the study area is a difficult task for both rain gauges and satellite
products. On the one hand, the coverage of stations over mountains is usually low, with large areas
with little or no information. Furthermore, the measurement of rainfall at high elevation is more
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susceptible to wind, evaporative loss, and siting [56,57]. On the other hand, satellite-based precipitation
products, such as IMERG, are also prone to uncertainties. For example, rainfall intensity in warm
orographic clouds cannot be accurately captured by infrared (IR) retrievals [58]. The Passive microwave
(PMW) algorithms have also important limitations because of the emissivity of land surface. This bias
is more pronounced during extreme events and over mountainous regions [59–61].
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Figure 1. Topographic map of Ebro Basin including the spatial distribution of Automatic Hydrological
Information System of the Ebro Hydrographic Confederation (SAIH-Ebro) rain gauge stations (white
dots) and Spanish Meterological Agency (AEMET) stations (black dots).

The study area embraces four climate zones (Table 1). Semiarid and Mediterranean regions cover
almost 40% of the domain and include the dry lowlands of the Ebro basin (BSk) and territories near the
Ebro river mouth (Csa and Csb). The temperate region (Cfa and Cfb) is an area of medium altitude
that surrounds the mountain ranges of the domain. Cold climates (Dfb and Dfc) are restricted to areas
of high altitude in the Pyrenees.

Table 1. Climate regions and area covered by each climate region according to Köppen classification.

Climate Region Köppen Definition Description Area (km2) (Percent of Total)

Semiarid BSk Semiarid steppe ~24,102 (28.4%)
Mediterranean

(dry)
Csa Hot-summer Mediterranean climate ~5289 (6.2%)
Csb Warm-summer Mediterranean climate ~3935 (4.6%)

Temperate
(humid)

Cfa Humid subtropical climate ~13,237 (15.6%)
Cfb Temperate oceanic climate ~35,270 (41.5%)

Cold
(humid)

Dfb Hot-summer humid continental climate ~1855 (2.2%)
Dfc Warm-summer humid continental climate ~1255 (1.5%)

Figure 2 shows climate zones and boxplots of the monthly precipitation at eight selected locations
for the 2008–2018 period. There is strong contrast observed between the dry southeast (<50 mm/month),
humid west (50–80 mm/month), and Pyrenees (>80 mm/month). Outliers are mostly in spring and
autumn, suggesting events of extreme precipitation.
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Figure 2. Extended-Köppen climate classification map of the study area. Boxplots of the monthly
precipitation for eight selected locations and the 2008–2018 period. Units are mm/month.

2.2. Datasets

2.2.1. Gauge Dataset and Quality Control

The Automatic Hydrological Information System of the Ebro Hydrographic Confederation
(SAIH-Ebro) comprises 367 rain gauge stations covering the period 2008–2018 (Figure 1; white dots).
The use of this in situ observation network instead of the meteorological network of the Spanish
Meteorological Agency (AEMET) is advantageous because the former is entirely independent of
satellite and reanalysis products. Additionally, data from SAIH-Ebro have been used in previous
research [62–65].

The original time series of observations were reconstructed using the R package reddPrec [66],
following the methodology described in Serrano-Notivoli et al. [67]. Reconstruction was based on
two steps: (1) Quality Control checks (QC) to detect and remove suspect data; and (2) estimation of
daily precipitation for all observations with missing values on all days for the entire cleaned dataset,
based on the nearest observations. The results of QC are available in the Supplementary Material (S2.1).

2.2.2. Grid Reconstruction

Products distributed on regular grids, whether satellite data, gauge-derived datasets, or reanalysis
products, are currently used in most climatological studies. Some gridded datasets are derived from
point-wise measurements, but others are directly computed at the cell level, such as model output.
These products offer several advantages over point data: They are easy to compare with other products;
they allow advanced spatial analysis; and they are useful for model validation, among other tasks.

Gridded products derived from rain gauges are powerful instruments to evaluate precipitation
estimates but they are subjected to spatial interpolation to convert point-scale measurements into
areal estimates [68]. Interpolation brings additional uncertainties and the quality of the interpolated
precipitation at pixels without gauges is typically lower than that at pixels with gauges [69]. Therefore,
a dense network of rain gauge stations is critical to minimize uncertainties in a gridded product.
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ReddPrec includes a function for grid reconstruction that creates generalized linear models to
compute the reference values (RVs) using precipitation data (occurrence and magnitude) of the 10
nearest neighbors as the dependent variable and geographic information of each station (latitude,
longitude, and altitude) as independent variables. ReddPrec uses a unique and independent model for
each grid point and day [67]. The result was a high-resolution (0.1◦ × 0.1◦) gridded daily precipitation
dataset from 2008 to 2018.

Two types of parameters were calculated to evaluate the performance of the interpolation method,
i.e., the measurement of errors in the reconstructed data and a sensitivity test for intense precipitation.
The interpolated data were validated against 34 rain gauge stations provided by AEMET (Figure 1;
black dots).

Figure 3 (top) shows the mean absolute error (MAE) at the precipitation gauges and their
corresponding grid cells. The boxplots show good results at the monthly scale. The median (red line)
in the MAE for all cases (top center) is <0.3 mm/day and slightly increases on days with precipitation
(top right). Another important test is the ability of the product to capture rainfall intensity. This was
evaluated by the R10mm (R20mm) index, which represents the number of days in a month for which
precipitation exceeded 10 mm (20 mm). Agreement between the interpolated field and AEMET
is clear in both cases, although there is slight underestimation for gridded data (Figure 3 bottom).
The Supplementary Material (S2.1, S2.2, S2.3, and S2.4) includes more metrics about grid validation.
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Figure 3. (Top left) Evaluation of interpolation performance at annual scale (mean). Boxplots of
mean absolute error (MAE) at the monthly scale for all observations (top center) and rainy days
(top right). (Bottom) Time series of the mean R10 mm and R20 mm values for 34 stations and their
pixels in the gridded data. R10 mm and R20 mm were computed using the following expression:
R10 mm =

∑
R10mm cases in month for all stations/ Total Number of stations.

2.2.3. Satellite Datasets

IMERG is a precipitation dataset with a 30-min temporal resolution and 0.1◦ × 0.1◦ spatial
resolution [5]. IMERG combines retrievals from passive microwave observations with infrared
precipitation estimates to produce a quasi-global homogeneous precipitation product based only on
satellite data. IMERG also includes retrievals from the GPM Core Observatory, allowing the detection
of light rain and falling snow [6].

The latest version (IMERG v06b) includes several important updates. The biggest change is
the switch from geosynchronous IR to numerical model data from MERRA-2 and GEOS FP for the
derivation of motion vectors used to propagate the PMW precipitation observations [70]. This change
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was motivated by two reasons: Discrepancies between cloud-top motion and precipitation motion and
the extension of IMERG coverage to the poles.

We used three IMERG v06b level-3 estimates of precipitation, the Early Run (IMERG-E), Late Run
(IMERG-L), and Final Run (IMERG-F). Early and late products are conceptually the same but differ
in their latency (4-h vs. 12-h lag) and how the IR data is folded into the microwave estimate.
IMERG-E and IMERG-L are designed for near real-time applications, whereas IMERG-F is designed for
research purposes. The final product (IMERG-F) incorporates monthly observed data from the Global
Precipitation Climatology Centre (GPCC) dataset, which is derived from ~6700 stations worldwide [71].
IMERG-F is available after a two-month delay.

2.2.4. Reanalysis Dataset

Reanalysis combines model data with ground and satellite observations to generate a globally
complete and consistent dataset using the laws of physics. It produces data that go back several
decades, providing an accurate description of the past climate. The European Centre for Medium-Range
Weather Forecasts recently released a new generation of reanalysis products (ERA5 and ERA5-Land)
that replaced previous products [72]. ERA5-Land (ERA5-L hereafter) [73] is a replicate of the land
component of ERA5 reanalysis but with a series of improvements making it more accurate for
land-surface applications, such as flood or drought analysis. In particular, ERA5-L runs at an enhanced
spatial resolution (0.1◦ vs. 0.3◦ in ERA5) with a one-hour temporal resolution. Observations indirectly
influence ERA5-L through the atmospheric forcing of ERA5. The precipitation output from ERA5-L is
the sum of large-scale and convective precipitation.

Reanalysis datasets are not immune to errors and their performance depends on several
factors: The quality and availability of observations, shortcomings in the assimilation methodology,
and uncertainties derived from models [74,75]. These limitations became more relevant over
mountains [76]. Table 2 summarizes the datasets used in our study.

Table 2. Summary of datasets used in this study.

Dataset Type of Data Resolution Description Reference

SAIH-Ebro In situ 0.1◦ × 0.1◦ (daily) Gridded data derived from rain gauges network (Ebro
River Basin Authority) Navarro et al. [47]

IMERG-E Satellite 0.1◦ × 0.1◦ (30 min) PMW+IR. Forward propagation. Near real-time (4 h) Huffman et al. [5]

IMERG-L Satellite 0.1◦ × 0.1◦ (30 min) PMW+IR. Backward and forward propagation. Near
real-time (12 h) Huffman et al. [5]

IMERG-F Satellite 0.1◦ × 0.1◦ (30 min) PMW+IR+ monthly GPCC gauge analysis. Post
real-time (3.5 months) Huffman et al. [5]

ERA5-L Reanalysis 0.1◦ × 0.1◦ (hourly) HTESSEL cy45r1 + indirect data assimilation Muñoz-Sabater [56]

2.3. Methodology

2.3.1. Extreme Precipitation Events (EPEs)

An EPE was defined by the R99p index [77]. R99p is a widely used index created by the Expert
Team on Climate Change and Detection Indices for identifying extremely wet days. An advantage
of this metric is that the parameter depends on the distribution of precipitation at each location and
thereby allows comparisons between different climate zones [78].

Cases were selected after reconstructing the 10-year time series of precipitation, which served as a
base period for percentile calculation. The R99p is calculated based on daily precipitation on wet days
(days with daily precipitation ≥ 1 mm). The R99p must be reached by at least 10 rain gauge stations in
the domain. In total, 55 cases were selected.

Table 3 shows the complete list of cases filtered by date, maximum rainfall, climate region,
and coordinates. Most cases are in the northern portion of the domain, others along the Ebro valley,
and a few in the south (see Supplementary Material S1 for maps).
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Table 3. List of cases with extreme rainfall (R99p) for the 2008–2018 period.

No. Date
(mm/dd/yyyy)

Max. Accumulated Rainfall
(mm/Day) Location of Precip. Max. Köppen Climate

(Precip. Max)

1 03/24/2008 100.66 43.027◦ N, 1.073◦ W Dfb
2 05/10/2008 317.86 42.722◦ N, 0.178◦ W Dfc
3 05/24/2008 82.15 42.926◦ N, 0.775◦ W Dfb
4 11/02/2008 114.30 43.027◦ N, 1.570◦ W Cfb
5 02/11/2009 233.26 42.824◦ N, 0.676◦ W Dfb
6 04/15/2009 71.59 42.722◦ N, 0.377◦ W Cfb
7 09/18/2009 121.21 42.722◦ N, 0.178◦ W Dfc
8 10/21/2009 672.37 42.621◦ N, 0.616◦ E Dfc
9 11/08/2009 89.66 43.027◦ N, 2.664◦ W Cfb
10 12/24/2009 118.63 42.621◦ N, 0.616◦ E Dfc
11 01/14/2010 81.64 43.027◦ N, 1.570◦ W Cfb
12 06/09/2010 101.99 42.722◦ N, 0.178◦ W Dfc
13 07/22/2010 136.54 42.824◦ N, 0.676◦ W Dfb
14 10/10/2010 133.86 42.621◦ N, 0.715◦ E Dfc
15 10/24/2010 95.75 42.621◦ N, 0.616◦ E Dfc
16 11/03/2011 137.53 42.621◦ N, 0.318◦ E Dfb
17 11/05/2011 164.63 42.926◦ N, 0.775◦ W Dfb
18 11/06/2011 186.21 42.926◦ N, 0.775◦ W Dfb
19 03/21/2012 56.13 42.519◦ N, 0.616◦ E Dfc
20 10/19/2012 230.01 42.824◦ N, 0.278◦ W Dfc
21 10/20/2012 294.94 42.824◦ N, 0.278◦ W Dfc
22 01/15/2013 122.35 43.027◦ N, 1.670◦ W Cfb
23 01/19/2013 85.28 42.824◦ N, 0.278◦ W Dfc
24 06/18/2013 143.88 42.621◦ N, 0.715◦ E Dfc
25 10/04/2013 140.38 42.824◦ N, 0.278◦ W Dfc
26 11/05/2013 163.18 43.027◦ N, 1.570◦ W Cfb
27 04/03/2014 104.55 42.316◦ N, 1.908◦ E Dfb
28 07/03/2014 266.56 42.824◦ N, 1.471◦ W Cfb
29 11/29/2014 135.61 42.316◦ N, 1.908◦ E Dfb
30 01/30/2015 104.53 43.027◦ N, 1.570◦ W Cfb
31 02/25/2015 150.42 43.027◦ N, 1.272◦ W Cfb
32 06/10/2015 99.42 42.722◦ N, 0.178◦ W Dfc
33 07/21/2015 99.94 43.027◦ N, 1.570◦ W Cfb
34 07/31/2015 97.26 42.824◦ N, 1.471◦ W Cfb
35 11/02/2015 125.97 40.487◦ N, 0.079◦ W Csb
36 11/25/2015 171.08 43.027◦ N, 1.272◦ W Cfb
37 01/10/2016 74.07 42.621◦ N, 0.417◦ E Dfc
38 02/27/2016 87.50 43.027◦ N, 1.570◦ W Cfb
39 05/09/2016 110.97 42.316◦ N, 1.908◦ E Dfb
40 11/05/2016 71.70 42.621◦ N, 0.616◦ E Dfc
41 11/21/2016 84.70 42.824◦ N, 0.676◦ W Dfb
42 11/23/2016 136.80 42.824◦ N, 0.278◦ W Dfc
43 01/10/2017 115.75 43.027◦ N, 1.570◦ W Cfb
44 01/15/2017 101.07 43.027◦ N, 1.670◦ W Cfb
45 01/16/2017 121.38 43.027◦ N, 1.868◦ W Cfb
46 02/04/2017 90.61 42.722◦ N, 0.178◦ W Dfc
47 05/11/2017 81.57 42.722◦ N, 0.178◦ W Dfc
48 10/18/2017 120.39 40.792◦ N, 0.318◦ E Csb
49 12/11/2017 48.13 42.418◦ N, 0.417◦ E Cfa
50 01/06/2018 71.58 42.926◦ N, 1.968◦ W Csb
51 03/01/2018 103.62 42.722◦ N, 0.178◦ W Dfc
52 04/11/2018 100.86 43.027◦ N, 1.272◦ W Cfb
53 05/26/2018 123.37 42.418◦ N, 1.073◦ W Cfb
54 10/14/2018 103.09 42.722◦ N, 0.178◦ W Dfc
55 10/19/2018 135.29 40.690◦ N, 0.516◦ E Csa
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2.3.2. Metrics

We assessed the performance of IMERG using both statistical and graphical methods (see Table 4
for details). The standard metrics used include MAE, relative bias (RB), probability density functions
(PDFs), and the correlation coefficient (CC). MAE and RB highlight differences between datasets,
whereas CC is a measure of the match between reference data and precipitation estimates.

Table 4. List of metrics used to quantify the performance of rainfall products 1.

Metrics Equation Perfect Score

Mean Absolute Error (MAE) MAE = 1
n

n∑
i=1
|Pi −Oi| 0

Relative Bias
(RB)

RB =
∑n

i=1(Pi−Oi)∑N
i=1 Oi

0

Correlation Coefficient (CC) CC =
1
n
∑n

i=1(Pi−P)(Oi−O)
σP σO

1

Structure (S)
[SAL] S =

V(RP)−V(RO)
0.5 [V(RP)+V(RO)]

0

Amplitude (A)
[SAL] A =

D(RP)−D(RO)
0.5 [D(RP)+D(RO)]

0

Location (L)
[SAL] L =

(|x(RP)−x(RO)|+2 |r(RP)−r(RO)|)
d

0

1 Here, n is the total number of samples; Oi means gauge observation, and O is the average of gauge observation.
Pi and P are predicted data from rainfall products. σP, σO are standard deviations of P and O. V(RO) and V(RP) are
weighted averages of scaled precipitation volumes of all objects in the domain for gauges RO and predicted data
RP. D(RO) and D(RP) are domain-averaged precipitation values. x(RO) and x(RP) are the centers of mass of the
precipitation field. r(RO) and r(RP) are the weighted average distances between individual objects and x. d is the
largest distance between two boundary points in the domain.

The structure-amplitude-location method (SAL) [79] evaluates precipitation fields by identifying
objects in both a predicted and observed field at a given time, and decomposing errors into three
components. The power of SAL lies in its ability to discriminate between errors, i.e., structure (S),
amplitude (A), and location (L). The structural component S considers the gradient around an object and
its size. Component A considers domain-wide accumulation. The L component combines information
about the distance between predicted and observed mass centers and the error of a weighted average
distance between the precipitation object centers of mass. A perfect forecast is characterized by zero
values for all three SAL components.

3. Results and Discussion

3.1. Standard Evaluation of Extreme Rainfall

Standard comparisons for the 55 cases were performed against the gauge-derived dataset.
In general, reanalysis and IMERG-F showed good agreement with the rain gauge data (see S3.1 and
S3.5 for a complete comparison). Conversely, the early and late versions of IMERG overestimated very
intense precipitation rates (≥100 mm/day). This issue can be clearly observed in Figure 4 (second and
fifth columns) and the Supplementary Material (S3.1, S3.2, S3.3, S3.4, and S3.5).

Another interesting disagreement is with light rain detection (fourth column). IMERG products
had problems in detecting weak precipitation (≤1 mm) because of the sensitivity of the satellite sensors,
but this issue is not crucial in the analysis of EPEs [80,81]. For reanalysis data, the sharp gradient
between rain and no-rain areas is poorly represented (third and fourth columns). A reason that may
explain this issue is that sharp gradients and discontinuities are always difficult to model in systems of
partial differential equations [82].

A closer look at other metrics reveal new issues partially hidden in the previous selection. Figure 5
(left) compares the PDF for all cases. There is a problem common to the ERA5-L and IMERG products;
both were unable to reproduce the peak of light rain observed by rain gauges. Two more problems
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were found in the reanalysis data, an overestimation of pixels with moderate rain rate (≥25 mm/day)
and a rapid drop in the right tail of the distribution (also seen in the scatter plot). On the other hand,
all IMERG versions overestimated very intense precipitation (≥75 mm/day). This problem is clear in
the scatter plots Figure 5 (right), but the monthly surface gauge information helped to reduce bias
in the final version of the product. ERA5-L and IMERG-F gave the best correlations (0.81 and 0.77,
respectively).Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 20 
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3.2. Evaluation of Rainfall Structure and Intensity

A further step in evaluating the performance of IMERG was an analysis of the spatial structure
of the precipitation. Standard grid point quality measurements are appropriate for the verification
of fields with synoptic-scale structures but might be less useful for complex structures at scales
< 100 km, such as precipitation. A classic example that illustrates the limitation of standard grid point
comparisons is the “double penalty problem” [83,84]. This issue can be interpreted in terms of the
categorial precipitation verification terminology: A forecast is penalized twice, for not getting the
precipitation at the correct location (miss) and forecasting the precipitation at the wrong location (false
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alarm). Thus, a faithful representation of precipitation in terms of size and intensity may obtain poor
scores for the standard metrics if the location is slightly incorrect. With the object-based approach,
predicted and observed precipitation areas are reduced to regions of interest that can be compared to
one another in a meaningful way [85]. We used the SAL method mentioned above. This method was
originally developed to appraise the predictive skills of numerical weather prediction models (NWP)
but can be applied to any gridded dataset. SAL provides a three-way assessment of a gridded rainfall
field, structure, amplitude, and location. The S component compares the volumes of the normalized
precipitation objects and provides information about their size and shape. The A component represents
a normalized difference between the domain-average forecast and observation fields and is the only
one that is independent of the identification of features, because it depends on the total precipitation
amount. A positive (negative) value indicates overestimation (underestimation) of total precipitation.
The L component combines information about the distance between predicted and observed mass
centers and the error of a weighted average distance between the precipitation object centers of mass.
A and S are in the range [−2,2], with a zero value corresponding to a perfect forecast. For location (L),
zero indicates that the two fields’ mass centers are identical.

Figure 6 shows SAL diagrams for satellite products and reanalysis. The gray-shaded box represents
the 25th and 75th percentiles of the A and S components. In general, ERA5-L has a smaller dispersion,
with few outliers. However, reanalysis (S > 0.9) was poorer than IMERG-F (S ~ 0.6) in terms of the size
and shape of precipitation (vertical dotted line is the median of the distribution). This issue is better
shown by the side-by-side histogram. Figure 7 compares histograms of IMERG-F and ERA5-L for
the distribution of the S component of SAL. ERA5-L systematically predicted larger and flatter areas
(S > 0.9), whereas IMERG-F gave a more realistic representation of the precipitation field structure.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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Figure 6. Structure-Amplitude-Location (SAL) scores of 24-h accumulated precipitation for 55 cases
and IMERG-E (A), IMERG-L (B), IMERG-F (C), and ERA5-L (D) datasets. Each scatter point is colored
by its location component. The gray-shaded box spans the middle two quartiles (Q1–Q3) of the
amplitude (y-axis) and structure (x-axis) components. The dotted line represents the median structure
and amplitude component scores. S-A-L = 0-0-0 means a perfect score.
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Figure 7. Side-by-side histogram comparing scores of the structure component (S) for IMERG-F and
ERA5-L datasets. S evaluates the size and shape of a precipitation field by comparison with the reference
data. Results range from −2 to +2. S = 0 means a perfect score and −2 (+2) means underestimation
(overestimation).

Additionally, IMERG-L and ERA5-L slightly overestimated domain-average precipitation, whereas
IMERG-E and IMERG-F obtained a nearly perfect score (Figure 6, A-Component). The identification of
the center of mass (L-Component) was similar between products, with ERA5-L being slightly better.
In this case, data assimilation represents a clear advantage for the reanalysis dataset.

Rainfall intensity was also evaluated by comparing the pixels of the maximum rain rate. Figure 8
compares the relative bias of the ERA5-L and IMERG products for those pixels.
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Figure 8 shows that ERA5-L systematically underestimated precipitation maxima (dark blue),
whereas IMERG-F achieved better results (light blue/light red). IMERG-E and IMERG-L included
the largest biases (positive and negative). Conversely, IMERG-E showed good performance for the
location of precipitation maxima (16 cases), although ERA5-L was the best option (20 cases).

From Figure 8, we presume that reanalysis is unable to reproduce very high precipitation rates.
This problem is also observed in the density plots of precipitation (Figures 5 and 9 and Supplementary
Material (S4)). PDFs show that the top end of the distribution in ERA5-L is far from observations.
This might be an important issue in the evaluation of EPEs. Two factors could explain this behavior:
The coarser spatial resolution to model small-scale process [86] and the lower number of observations
assimilated into the model [76]. In the first case, existing studies indicate that very high resolutions up
to 4–6 km are necessary to accurately model snow and orographic precipitation [87,88]. For the second
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case, ERA5-L runs without data assimilation and observations indirectly influence the simulation
through atmospheric forcing. This issue may be crucial in complex terrains.

3.3. Seasonality and Climate Regions

Many areas of the domain are strongly influenced by the seasonal variation of precipitation [89].
Thus, for example, precipitation in the Ebro Basin falls mainly in spring and autumn, with summer
and winter generally registering the minimum rainfall. Conversely, precipitation along the southern
face of the Pyrenees is homogeneously distributed across all seasons (Figure 2).

The seasonal analysis of extreme precipitation is important not only in terms of occurrence but also
for the synoptic conditions that produce them. Most of the extreme events in our study were recorded
during the fall (22), followed by winter, spring, and summer (15, 11, and 7 cases, respectively). During
spring, summer, and autumn, a 500-hPa trough and a strong insolation are usually responsible for
extreme convective precipitation [55]. Conversely, in winter, northwest flow predominates, favoring
persistent precipitation in the headwaters of the Pyrenees (see Supplementary Material S3.1 for an
overview of precipitation in all cases).

Figure 9 (left) compares the seasonal distribution of the PDFs between gauges, ERA5-L, and IMERG
products (see S4 for a case-by-case comparison). In general, IMERG-F correctly reproduced the
distribution of precipitation in all seasons, especially at the top end of the distribution, where reanalysis
underestimated heavy rainfall rates and the early and late products overestimated them. Pixel-by-pixel
comparison Figure 9 (right) shows that IMERG-E and IMERG-L yielded the poorest correlations.
The bias correction in IMERG-F clearly improved the results of satellite data, obtaining similar (SON)
and better (JJA) correlation coefficients relative to ERA5-L. However, reanalysis was still better in
MAM and DJF, during which intense convective activity is less common.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 

 

[87,88]. For the second case, ERA5-L runs without data assimilation and observations indirectly 

influence the simulation through atmospheric forcing. This issue may be crucial in complex terrains. 

3.3. Seasonality and Climate Regions 

Many areas of the domain are strongly influenced by the seasonal variation of precipitation [89]. 

Thus, for example, precipitation in the Ebro Basin falls mainly in spring and autumn, with summer 

and winter generally registering the minimum rainfall. Conversely, precipitation along the southern 

face of the Pyrenees is homogeneously distributed across all seasons (Figure 2). 

The seasonal analysis of extreme precipitation is important not only in terms of occurrence but 

also for the synoptic conditions that produce them. Most of the extreme events in our study were 

recorded during the fall (22), followed by winter, spring, and summer (15, 11, and 7 cases, 

respectively). During spring, summer, and autumn, a 500-hPa trough and a strong insolation are 

usually responsible for extreme convective precipitation [55]. Conversely, in winter, northwest flow 

predominates, favoring persistent precipitation in the headwaters of the Pyrenees (see 

Supplementary Material S3.1 for an overview of precipitation in all cases). 

Figure 9 (left) compares the seasonal distribution of the PDFs between gauges, ERA5-L, and 

IMERG products (see S4 for a case-by-case comparison). In general, IMERG-F correctly reproduced 

the distribution of precipitation in all seasons, especially at the top end of the distribution, where 

reanalysis underestimated heavy rainfall rates and the early and late products overestimated them. 

Pixel-by-pixel comparison (Figure 9 right) shows that IMERG-E and IMERG-L yielded the poorest 

correlations. The bias correction in IMERG-F clearly improved the results of satellite data, obtaining 

similar (SON) and better (JJA) correlation coefficients relative to ERA5-L. However, reanalysis was 

still better in MAM and DJF, during which intense convective activity is less common. 

 

Figure 9. (A) Seasonal density plots of precipitation for gauges, IMERG-E, IMERG-L, IMERG-F, and 

ERA5-L. (B) Scatter plots comparing seasonal precipitation at every grid point. 

Extreme precipitation patterns are diverse, owing to the strong spatial heterogeneity of the study 

area. Thus, for instance, the Ebro Valley is prone to severe hailstorms caused by deep convection [90]. 

Conversely, orographic enhancement plays a key role in extreme precipitation over the Pyrenees [91]. 

Therefore, an accurate evaluation of the product should include climate zones. 

Figure 10 shows heat maps of the correlation (CC) ordered by season and climate region (cold: 

Dfb, Dfc; temperate: Cfa, Cfb; Mediterranean: Csa, Csb). In general, IMERG-E obtained the poorest 

score, followed by IMERG-L. The gauge adjustment of IMERG-F greatly increased the correlation 

with the reference data. For cold climates (Pyrenees), reanalysis had a stronger correlation than 

IMERG-F. A likely explanation for the shortcomings of IMERG is the underestimation of precipitation 

Figure 9. (A) Seasonal density plots of precipitation for gauges, IMERG-E, IMERG-L, IMERG-F, and
ERA5-L. (B) Scatter plots comparing seasonal precipitation at every grid point.

Extreme precipitation patterns are diverse, owing to the strong spatial heterogeneity of the study
area. Thus, for instance, the Ebro Valley is prone to severe hailstorms caused by deep convection [90].
Conversely, orographic enhancement plays a key role in extreme precipitation over the Pyrenees [91].
Therefore, an accurate evaluation of the product should include climate zones.

Figure 10 shows heat maps of the correlation (CC) ordered by season and climate region (cold:
Dfb, Dfc; temperate: Cfa, Cfb; Mediterranean: Csa, Csb). In general, IMERG-E obtained the poorest
score, followed by IMERG-L. The gauge adjustment of IMERG-F greatly increased the correlation with
the reference data. For cold climates (Pyrenees), reanalysis had a stronger correlation than IMERG-F.
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A likely explanation for the shortcomings of IMERG is the underestimation of precipitation over the
mountains, especially in winter when there is snow or ice on the surface (see cases 5, 10, 37, and 46 of
the Supplementary Material S3.1, S3.4, and S3.5). In such circumstances, PMW sensors have difficulty
discriminating rain from no rain [12]. This issue is consistent with earlier studies of IMERG [38,80,92].
However, precipitation estimates in complex terrain are also a difficult task for in situ observations.
Thus, the use of gauge-derived datasets as ground truth should be taken with caution [2,63,93].
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Figure 10. Heat maps of the correlation between gauges, IMERG products, and ERA5-L, ordered
according to season and climate region. We assumed that the center of EPE includes maximum rainfall
pixels and defines the climate region that is most affected by each EPE. N/A means no cases. Climate
regions are grouped in three categories: Cold climates (Dfc and Dfb), temperate climates (Cfa, Cfb),
and Mediterranean climates (Csa and Csb).

Interestingly, IMERG-F attained a greater correlation than the reanalysis in JJA for temperate
and Mediterranean climates, as well as in SON for the latter. There was a strong spatial gradient of
precipitation in most of these cases (Figure 4, second to fifth columns). Therefore, we suggest that
IMERG-F has better skills in capturing the sharp gradients of severe summer/autumn convective
storms (see S3.1, S3.4, S3.5, and S4 for a case-by-case comparison).

4. Conclusions

Recent satellite-based precipitation products, such as IMERG, are becoming increasingly attractive
because of the ability to represent the strong spatiotemporal variability of precipitation. For this reason,
they can be an effective alternative to interpolated fields of rain-gauge measurements for validating
numerical models, especially in areas poorly covered by rain gauge networks. The objective of the
present study was to evaluate the performance of IMERG products in the representation of EPEs over
an orographically complex region of the Iberian Peninsula. For this assessment, we used the R99p
index, which identified 55 EPEs in the 2008–2018 period. Results were validated against a gridded
precipitation dataset derived from a high-density rain gauge network.
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Results showed that EPEs were well captured by satellite products and reanalysis data. Overall,
ERA5-L and IMERG-F obtained the best scores, but IMERG-E provides a better representation of the
maximum rainfall pixels (location and intensity). However, IMERG-E and IMERG-L are less useful for
a complete evaluation of EPEs. Reanalysis was superior regarding the location and spatial distribution
of precipitation but failed in the intensity analysis. In this direction, ERA5-L might be negatively
influenced by the coarse resolution of atmospheric forcings provided by ERA5 (~31 km). Conversely,
IMERG was more accurate for precipitation maxima detection and the representation of sharp spatial
gradients of precipitation. Climate regions and seasonal variability may also be important in the
performance of the products. Thus, reanalysis had a greater correlation in winter and cold climate
zones, whereas IMERG-F was better in summer and autumn for the temperate and Mediterranean
climate zones. These results suggest that ERA5-L is more accurate for dynamically forced precipitation
detection while IMERG is the best option for convective activity. Our main recommendation is therefore
to select one or the other according to the parameter of interest, type of precipitation, and climate
zone to be evaluated. Thus, for example, IMERG gives a more realistic representation of the typical
summertime convective storm in the Ebro valley whereas ERA5-L performs the best in the Pyrenees in
wintertime. For a general purpose, reanalysis may be a good option.

The application of this research can be useful for several purposes. First, it could help algorithm
developers track issues related to EPEs. Second, it would help in determining the strengths and
weaknesses of various precipitation products. Third, it might be useful for modelers performing
sensitivity tests of extreme precipitation in a more detailed way, revealing potential issues in their
dynamical cores and parameterizations. In this sense, state-of-the-art GCMs are now working at a
0.5◦/0.25◦ spatial resolution (e.g., HighResMIP GCMs; [94]), facilitating better-resolved processes and
fine parameterizations that must be validated with high-quality observational data.
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Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6.
Geosci. Model Dev. 2016, 9, 4185–4208. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.atmosres.2012.09.014
http://dx.doi.org/10.1016/j.atmosres.2018.12.011
http://dx.doi.org/10.1016/j.atmosres.2020.105068
http://dx.doi.org/10.5194/gmd-9-4185-2016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area, Data, and Methodology 
	Study Area 
	Datasets 
	Gauge Dataset and Quality Control 
	Grid Reconstruction 
	Satellite Datasets 
	Reanalysis Dataset 

	Methodology 
	Extreme Precipitation Events (EPEs) 
	Metrics 


	Results and Discussion 
	Standard Evaluation of Extreme Rainfall 
	Evaluation of Rainfall Structure and Intensity 
	Seasonality and Climate Regions 

	Conclusions 
	References

