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Abstract: In this paper, we present a Remote Sens. approach to localize parking cars in a city in order
to enable the development of parking space availability models. We propose to use high-resolution
stereo satellite images for this problem, as they provide enough details to make individual cars
recognizable and the time interval between the stereo shots allows to reason about the moving or
static condition of a car. Consequently, we describe a complete processing pipeline where raw satellite
images are georeferenced, ortho-rectified, equipped with a digital surface model and an inclusion
layer generated from Open Street Model vector data, and finally analyzed for parking cars by means
of an adapted Faster R-CNN oriented bounding box detector. As a test site for the proposed approach,
a new publicly available dataset of the city of Barcelona labeled with parking cars is presented. On this
dataset, a Faster R-CNN model directly trained on the two ortho-rectified stereo images achieves
an average precision of 0.65 for parking car detection. Finally, an extensive empirical and analytical
evaluation shows the validity of our idea, as parking space occupancy can be broadly derived in fully
visible areas, whereas moving cars are efficiently ruled out. Our evaluation also includes an in-depth
analysis of the stereo occlusion problem in view of our application scenario as well as the suitability
of using a reconstructed Digital Surface Model (DSM) as additional data modality for car detection.
While an additional adoption of the DSM in our pipeline does not provide a beneficial cue for the
detection task, the stereo images provide essentially two views of the dynamic scene at different
timestamps. Therefore, for future studies, we recommend a satellite image acquisition geometry
with smaller incidence angles, to decrease occlusions by buildings and thus improve the results with
respect to completeness.

Keywords: vehicle detection; stereo reconstruction; parking space analysis

1. Introduction

Parking in a city can be challenging and is rarely digitally supported. Current navigation systems
guide drivers to the destination address but do not give support while they are looking for free
parking spots. As a result, drivers spend a non-negligible amount of time looking for available spots.
According to an IBM study [1], 30% of vehicles in major cities on the road are looking for parking spots
at any given time, and similar figures are given in scientific literature ([2], p. 213). This inefficiency of
parking space search results in increased congestion and carbon emissions and economic damage [1].
In fact, the average driver in an US city spends around 17 h per year searching for parking, leading to
per-driver costs of 345 US $ due to wasted time, fuel, and emissions [3].

Automatic vehicle detection from high-resolution Remote Sens. images is motivated by different
fields of application, e.g., urban planning, traffic flow management or estimation, and mapping of
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air and noise pollution. Therefore, an algorithm that automatically detects and correctly positions
vehicles in satellite imagery would effectively support parking-related analyses in urban planning,
for instance, detect on-street parking spaces to enable developing parking availability models. To build
these models, there is a necessity to obtain historical ground truth data of on-street parking occupancy
and availability. Therefore, we propose to use globally available high-resolution Remote Sens. images
to obtain historical snapshots of on-street parking availability, providing information about the relative
spatial availability information of parking in a city.

In such a framework, the main technical challenge is to localize the cars in the images, which can
be treated as a visual object detection problem [4]. However, when it comes to the detection of parking
cars vs. moving cars, single satellite images are not an option as the dynamics of the scene are not
captured. Hence, we propose to exploit a minimum amount of temporal information—provided by a
(single pass) stereo satellite image pair with around one minute recording time difference—to enable
reasoning about the movement of cars. To the best of our knowledge, our work represents the first
attempt to detect parking cars in satellite imagery of a city while ruling out the moving cars. While
there exist methods for tracking vehicles in satellite videos [5–7], we argue that in such a setup only
moving cars can be detected by exploiting their motion, while for static cars ground sample distances
(GSDs) of more than 1m do not provide enough details for a car-specific appearance signature in the
image. In our approach, static car detections are learned by feeding a Faster R-CNN framework [8]
with ortho-rectified stereo satellite images, such that the network aims to learn whether a car is visible
in both images. Furthermore, we study the usage of a reconstructed Digital Surface Model (DSM)
as additional modality offering a complementary cue about car locations. We also investigate the
optimal type of information fusion from the different image sources: early fusion, where the model
instantly sees all input images and is able to learn their correlations, and late fusion, where single car
detection networks detect both static and moving cars and the final parking car decision is derived by
a hand-crafted combination of the individual predictions. Overall, we describe a complete pipeline to
achieve parking cars localization from a stereo satellite image pair of a city, from ortho-rectification
and stereo reconstruction to OSM-guided ROI filtering and the final CNN-based parking car detection.

As our study site, we selected the city of Barcelona as it represents typical challenges for parking
space analysis in European cities, such as densely parked cars on-street, partially occluded parking
space under trees, shadows caused by tall bindings, and varying parking spot arrangements. As an
additional contribution of this paper, we present a publicly available dataset [9] of a 4.58 km2 test
area of Barcelona with labeled (parking) cars. While this dataset can be used for single-image car
detection, and thus increases the data diversity in combination with already existing datasets [10–12],
its unique feature is the additional static car labelling, which we hope to stimulate further research in
this direction within the community.

The remainder of this paper is organized as follows. In Section 2, we give an overview of
related work on vehicle detection in Remote Sens. images. Our methodology is presented in Section
3, including a description of our new Barcelona dataset of parking cars. Experimental results are
presented in Section 4 and discussed in Section 5. Concluding remarks are finally given in Section 6.

2. Related Work

Visual object detection is the task of localizing instances of object classes in an image [13], which
also has a broad range of applications in Remote Sens. [4]. With the recent advancement of Remote
Sens. technology and the availability of very high resolution satellite and aerial images, a larger
range of small artificial objects became detectable and got into research focus [4], such as roads [14] or
buildings [15].

From a methodological viewpoint, the nowadays most effective and widely used methods are
based on machine learning, as earlier methods based on template matching [16] or knowledge basis
[17] become ineffective and impractical for complex object types due to their limited flexibility and
difficulty to manually define discriminative rules describing the object signature. Within the machine
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learning paradigm, object detection is treated as a classification problem and classifier parameters are
trained by means of positive and negative image samples [18]. Traditionally, such classifiers are fed
with hand-crafted features extracted from the images such as HOG [19], but nowadays this paradigm
has been outdated by the rise of end-to-end learning methods using deep Convolutional Neural Nets
(CNNs) [13].

Recently, such deep learning methods have also been applied to the problem of vehicle detection
from Remote Sens. images. As one of the first, Mundhenk et al. [10] used a training set of more than
300,000 car samples to train a CNN as a sliding-window classifier for detection. Similarly, Ammour et
al. [20] use mean-shift segmented regions as candidate locations which are then evaluated by a CNN.
While some later proposed methods [21,22] treat the task as a semantic segmentation problem where a
Fully Convolutional Network [23] acts as a pixel classifier, the majority of methods follow effective
CNN-based object detection frameworks such as Faster-R-CNN [8], Single-Shot Detector (SSD) [24],
or Feature Pyramid Network (FPN) [25]. These frameworks typically model the detectable shapes as
(oriented) bounding boxes which are additionally refined by regression.

SSD is a single-stage pipeline where the network both detects and classifies bounding boxes,
and Tang et al. [26] extend this framework from axis-aligned bounding boxes (AABBs) to oriented
bounding boxes (OBBs) for vehicle detection. FPNs provide rich multi-scale features targeted for the
detection of objects at various scales. For Remote Sens. images, importance is attached to efficient
multi-scale object detection when different object sizes need to be detected simultaneously, and FPNs
have therefore been used for multi-class object detection in the Remote Sens. scenario, including vehicle
classes [27–29]. The Faster R-CNN framework treats multiple classes in a two-stage process, where
first a Region Proposal Network (RPN) detects possible candidate locations by inferring objectness
at dense anchor locations in the image. A second CNN then verifies and classifies these proposals.
Among all frameworks, Faster R-CNN is the one most commonly adapted to vehicle detection in the
Remote Sens. domain [11,30–34]. These adaptations mainly focus on the specific characteristics of
vehicles in Remote Sens. imagery: small size and arbitrary orientations. The small size of vehicles
demands for adaptations in the RPN network structure, as the final feature maps need to preserve
high resolution details in the images. This is solved by concatenating high-resolution feature maps
from earlier layers with the upsampled ones from later layers [31–33]. The arbitrary orientation of
vehicles demands for an OBB representation for detection as the original AABBs provide an imprecise
localization result, especially for densely located vehicles with highly overlapping AABBs. Therefore,
more suitable OBB representations are proposed like rectangles with additional orientation angle [34]
or 4-point polygons [11]. Incremental improvements of Faster-R-CNN for vehicle detection include
mining of hard negative samples during training [31], inclusion of context by enlarging the RPN
proposals [32] or addressing the class-imbalance issue by a focal loss function [33].

3. Materials and Methods

An overview of our processing pipeline is shown in Figure 1. Starting from a raw satellite stereo
image pair, we first perform a 3D reconstruction to obtain a Digital Surface Model (DSM) as additional
cue for visual car detection, followed by ortho-rectification to spatially align the images (Section 3.2).
Next, Open Street Map (OSM) data is exploited to filter out non-street areas and consequently reduce
the false positive risks for detection (Section 3.3). The final CNN takes the two RGB ortho-rectified
images and the DSM as input and detects parking cars based on their co-occurrence in both images
(Section 3.4). CNN training and testing of the study city of Barcelona is based on our new publicly
available labeled dataset of parking cars in this region, as described in Section 3.1.
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Figure 1. Overview of our proposed methodology for detecting parking cars in satellite images. The
results of the individual steps are shown for a small sample region.

3.1. Pacaba—Parking Cars Barcelona Dataset

The PaCaBa (Parking Cars Barcelona) dataset [9] (The dataset is available for download at
https://doi.org/10.5281/zenodo.3701453) is an ortho-rectified stereo satellite image dataset with
labeled parking cars. It provides both an annotation of individual cars in the two ortho-rectified stereo
images as well as as a combined annotation of static cars. The image and annotation data is available
for four isolated regions in the city of Barcelona covering 4.58 km2 (see Figure 4). In total, 12,088 and
12,248 cars have been identified in the individual ortho-rectified stereo images, respectively, resulting
in 7303 annotated parking cars.

3.1.1. Satellite Image Acquisition

The satellite images for the study area were acquired with the WorldView-3 high spatial resolution
Earth imaging satellite developed by Digital Globe Inc. (Longmont, CO, USA). Flying at a nominal
altitude of 620 km, the sensor is the highest resolution commercial satellite, reaching a ground
resolution of 0.31 m in panchromatic mode and 1.24 m in multi-spectral mode for nadir viewing
direction. Fast rotation of the satellite allows collecting multiple areas of interest or stereo/tri-stereo
data from the same orbit during a single pass. The stereo images over Barcelona city were acquired
on 20 July 2018, around 11:05 a.m. in North–South direction, within less than one minute. Therefore,
the territory is captured under the same illumination conditions, with no significant shadow changes.
The acquisition viewing angles are of 14.4◦ and −19.7◦ in the along-track direction with respect to the
nadir and 11.4◦ and 9.6◦ in the across-track direction. Consequently, the base to height (B/H) ratio for
the stereo pair is 0.69 and the GSD varies between 0.34 and 0.35 m depending on the different viewing
angles. The optical satellite images were delivered as pan-sharpened with four spectral bands, i.e. Red,
Green, Blue, and Near-infrared, but only the RGB information is used in this work, as Near-infrared
provides no additional useful features for car recognition. For each image, auxiliary data containing
the Rational Functional Model (RFM) are provided by the supplier. Detailed information regarding
the main acquisition parameters are summarized in Table 1.

Table 1. Acquisition properties for the stereo satellite image dataset over Barcelona.

Acq. Date View Acq. Time GSD [m] Viewing Angles [◦] Sun Angles [◦] B/H
In-Track Cross-Track Azimuth Elevation

20 July 2018 Forward 11:04:28.38 0.34 9.4 11.4 147.3 66.5 0.69Backward 11:05:24.54 0.35 −19.7 9.6 147.8

https://doi.org/10.5281/zenodo.3701453


Remote Sens. 2020, 12, 2170 5 of 24

3.1.2. Data Annotation

In order to keep the human annotation task simplistic and manageable, car annotation was
carried out as polygon selections in the two ortho-rectified satellite images, instead of following a
more error-prone process of directly identifying parking cars in the images. Consequently, automatic
postprocessing was done on these manual annotations: first, the polygon representations have been
converted to an OBB representation, and second, parking cars have been identified by checking for
spatial overlap between individual annotations.

The conversion of a given 4-point polygon with vertices v0 = (x0, y0) . . . v3 = (x3, y3) arranged
in clockwise order and corresponding edges e0 . . . e3 to an OBB representation is illustrated in Figure
2. First, the longest edge of the polygon is identified as es and its opposite side as es⊕2, with ⊕ being
the modulo 4 addition defined as

a⊕ b = (a + b) mod 4. (1)

To estimate the orientation of the OBB, an averaged endpoint v∗ of the two longest edges as seen
from vs is calculated as

v∗ =
vs⊕1 + vs⊕2 + (vs − vs⊕3)

2
(2)

and the orientation is calculated from the edge vs to v∗ by

θ = (arctan
y∗ − ys

x∗ − xs
+ 180) mod 180 (3)

The height h and width w is given by the average length of the two longest sides es and es⊕2

as well as the two shortest sides es⊕1 and es⊕3, respectively. The center (x, y) of the bounding box is
calculated as the average of the four vertices v0 . . . v3. Please note that in this representation the front
and back information of cars is neglected, as the orientation θ covers only the half circle. This was
done since identifying the front of cars in satellite images during annotation is hard to achieve, and the
actual full-circle orientation is of minor interest for parking space detection.

𝐯𝐯0

𝐯𝐯1

𝐯𝐯2

𝐯𝐯3

𝐞𝐞0

𝐞𝐞1𝐞𝐞2

𝐞𝐞3

𝐯𝐯𝑜𝑜 − 𝐯𝐯3

𝐯𝐯∗

x
y

(   ,   )

(a) (b)

Figure 2. (a) A 4-point polygon annotation of a car; (b) converted OBB representation described by the
five parameters x, y, h, w, and θ.

The overlap of OBBs is calculated by a skewed version [35] of Intersection over Union (IoU).
By visual inspection, an overlap threshold of 0.3 was chosen to distinguish static cars from moving
cars. In order to combine two overlapping bounding boxes OBB′ = (x′, y′, h′, w′, θ′) and OBB′′ =
(x′′, y′′, h′′, w′′, θ′′), their center points and orientations are simply averaged. From the combined center
point (x̃, ỹ) and orientation θ̃ we extend the width and height in order to fully cover the two bounding
boxes as follows.
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h̃ = max(h′, h′′) +
∣∣y′ − y′′

∣∣ · sin θ̃ (4)

w̃ = max(w′, w′′) +
∣∣x′ − x′′

∣∣ · | cos θ̃| (5)

The effect of the overall data annotation postprocessing is shown in Figure 3 for a small sample
region. Please note that the produced parking cars annotation shown in Figure 3c contains only the
cars that are annotated in both images of Figure 3b.

(a) (b) (c)

Figure 3. The data annotation postprocessing process for a small sample region; (a) raw polygons
(only shown for one image); (b) converted OBB representations in both images; (c) overlapping OBBs
denoting static cars.

3.2. Georeferencing and Stereo Reconstruction

The optical satellite images for Barcelona were delivered as map projected products at Ortho
Ready Standard (OR2A) processing level, in UTM 31 North map projection. They are accompanied
by Rational Polynomial Coefficients (RPCs) that allow the conversion between image and object
coordinates [36] with a predicted geolocation accuracy of less than 3.1 m (CE90) without ground control
points. At OR2A processing level, the provided images are already approximately ortho-rectified, but
without consideration of ground control points or a terrain model describing the elevation variation
within the scene. They have approximate geopositions with planimetric shifts up to several meters.
With the objective of obtaining a highly accurate localization of parking cars, images with a corrected
geometry are needed. Therefore the World View-3 satellite images were ortho-rectified (geometrically
corrected), to remove the effects of perspective (tilt) and relief (terrain). For this, the corresponding
Digital Elevation Model (DEM) of the scene is required.

The 3D information extraction from the stereo satellite imagery comprises Digital Surface Model
(DSM) derivation and ortho-rectification. These steps were performed in the Inpho software from
Trimble, designed for precise image block triangulation and dense 3D point cloud reconstruction
using image matching techniques [37]. To this point, three modules were employed: (1) Match-AT for
image block triangulation, (2) Match-T DSM for 3D reconstruction, and (3) OrthoMaster for image
ortho-rectification.

The WorldView-3 stereo acquisition over Barcelona with two overlapping images allows the
reconstruction of 3D points by applying photogrammetric techniques and dense image matching
algorithms. Overall, the image processing chain comprises the following main steps; (1) image with
metadata information (RPCs) import, (2) orientation refinement using tie points, (3) dense image
matching for 3D reconstruction, (4) DSM and DTM derivation, and (5) image orthorectification based
on the elevation model (Figure A1). For improving the sensor orientation, the initial values of the RPCs
were refined by performing a bias compensation in image space. For this, tie points automatically
extracted in both images were employed. Points with image residuals greater than one pixel were
considered as blunders and therefore rejected. Thereafter, RPC refinement was repeated.

The automatic computation and extraction of 3D information from the stereo satellite imagery
is possible through dense image matching. The matching employed a feature-based strategy on the
higher levels and a semi-global cost-based one on the lower pyramid levels. The 3D object point
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coordinates for each image pixel were determined by forward intersections. Finally, the output was a
dense 3D photogrammetric point cloud in las file format, with a regular distribution (one point per
each image pixel) at a high density of 10 points/m2 (Figure A2). Cities with tall buildings and narrow
streets are challenging environments, as occluded areas, height jumps, and a large number of small
objects w.r.t. the GSD lead to heterogeneous textures in the images, resulting in noisy point clouds
characterized by a high variation in elevation.

The resulting 3D points were further interpolated into a regular raster model of height values
(i.e., DSM). Usually the transition from 3D information to 2.5D grid models through interpolation
tends to smooth the input elevation values. Therefore, to generate a high quality DSM, we defined the
most favorable solution, which is a compromise between achieving fidelity to the true surface and
respecting the limitations according to the density and accuracy of the data source. For minimizing
the smoothness effect, we selected a small grid size of 0.5 m with 20 nearest neighbors and tested the
results when using different search radii to the current grid point. Unreconstructed areas with missing
elevation information were present in the DSM. These were generally caused by non-visible areas
(occlusions) or by a strong elevation difference between buildings/trees and surrounding ground,
where the matching algorithm could not find corresponding points in the stereo pair. To generate
a continuous DSM, these areas were filled by triangulation. Thus, missing elevation was obtained
by interpolating the information of the valid neighboring boundary pixels. Such a model typically
has a very noisy appearance, characterized by a high surface roughness. Therefore, it is not suitable
for ortho-rectification, as it would cause distortion, artifacts, and double mapping effects (Figure A3).
Therefore, from the photogrammetric DSM over Barcelona city, we derived the Digital Terrain Model
(DTM) by using the volume based filtering approach developed by Piltz et al. [38]. The workflow for
DSM and DTM derivation for Barcelona study site was performed with the scientific software OPALS
(Orientation and Processing of Airborne Laser Scanning data) [39].

In ideal cases, the true orthophoto would be the best solution for further investigations, since
it has an accurate geoposition with objects rectified to their correct locations [40,41]. However, due
to the limiting aspects, we ortho-rectified the images by replacing the DSM with the computed
DTM. Since buildings were not modeled in the DTM, they have visible facades in the computed
orthophoto, potentially hiding street information (building leaning effects). Only objects at terrain
level are correctly geolocated. As the main focus of this investigation is on parking cars detection, the
adoption of a DTM-based orthophoto approach was suitable for this task. The selection of a DSM for
ortho-rectification does not change the satellite image content and thus would not provide an increased
visibility on the ground. Our method of 3D reconstruction from satellite images leads to a terrain
model, which provides a smooth mapping from the image-space to the ortho-rectified image. This
correctly represents ground and objects close to it (cars) and has (small) systematic errors for irrelevant
objects like, in our case, buildings.

For each satellite image, the orthophoto was generated with 0.30 m pixel size by using the
exact Cubic Convolution rectification method. The geoposition difference between the two Barcelona
orthophotos is smaller than one pixel (0.3 m). The planimetric position fits very well with the reference
OSM data, therefore no additional ground control and georeferencing is needed.

Detailed information regarding the results of image orientation, matching, DSM/DTM derivation,
and ortho-rectification for the Barcelona dataset are given in Appendix A.

3.3. Region of Interest Generation

Regions of Interest (RoIs), also known as inclusion layers, were generated for two reasons. First,
given the large area of the Barcelona dataset (over 100 km2), it was estimated that a full annotation
of the whole area would take ~1000 h, which would be too long. Second, the process of annotating
vehicles on a satellite image can be a very tedious job. Labeling tasks can take tremendous effort,
especially when the type of object is small, easily confusing and its boundaries are hard to define.
Attentions can be easily lost, and the whole process can be error-prone. Therefore, the aim was to
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reduce the annotation effort by defining smaller areas for the annotations, and consequently, reduce
obvious mistakes on areas where surely vehicles can not be, e.g., building roofs. Therefore, we decided
to manually define smaller RoIs. Based on a basic rule-counting for several streets, the area and number
of cars, resp., the area determined to be annotated was ∼5 km2 to get around 10,000 annotations for
this experiment. To obtain the greatest variability in terrain type and street distribution, four regions
of different sizes and locations were chosen. Therefore, the inclusion layer for Barcelona is distributed
in four regions from 0.5 km2 to 2.3 km2. An overview of the inclusion layer in the city of Barcelona is
shown in Figure 4.

Figure 4. Orthophoto of Barcelona city with highlighted locations of the four ROIs and a detail view,
coordinate reference frame: WGS 84/UTM 31N, units = meters.

Once the RoIs are selected, OSM street lines are superimposed to the ortho-rectified images and
clipped with the RoIs. Then, street lines are filtered to only keep streets with desired OSM tags (e.g.,
primary or residential). The lines are buffered with a certain margin varying on the street type (e.g.,
residential with 20 meters buffer). In the last step, all separate polygons are dissolved to get just one
polygon for each RoI. Only on-street parking is included in the inclusion layer.

3.4. CNN-Based Static Car Detection

The last step in our pipeline is to detect static cars, given the masked and georeferenced
ortho-rectified stereo image pair and DSM. We decided to adapt the Faster R-CNN approach [8],
due to its wide usage and strong performance on various benchmarks [13] (Section 3.4.1). As the
original Faster R-CNN implementation takes a single RGB as input, fusion strategies for processing
the three input images are described in Section 3.4.2.

3.4.1. Adapted Faster R-CNN for Car Detection

Faster R-CNN is a two-stage detector, meaning that in a first stage a set of object proposals
is generated which are verified and classified in the second stage. Additionally, in both stages, a
regression component allows to refine the position and shape of the detected bounding boxes. The
two-stage mechanism has shown to be highly effective for multiclass detection, as one net can focus on
general object characteristics while the other one can derive the discriminating features between the
objects. However, in our single-class scenario this type of task sharing is unnecessary and we thus
only use the first stage and treat the object “proposals” as final detection result. This so called Region
Proposal Network (RPN) has already shown to be effective in other single-class detection scenarios
like pedestrian detection [42]. The RPN is designed as a fully convolutional network that predicts
objectness and bounding box refinement parameters at regularly defined image locations, the so-called
anchors. While in the original version of Faster R-CNN AABBs are detected at various bounding
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box aspect ratios and scales, possible object shapes in our Remote Sens. task can be regularized to
various orientations with a single, fixed aspect ratio and scale. Therefore, similar to others [11,34,43],
we transform Faster-R-CNN to OBB detection which requires to estimate an additional orientation
parameter per bounding box.

Specifically, at an anchor position we sample 6 orientations at equally spaced intervals, i.e.,
{0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. The height h and width w are set to 17× 7 pixels (corresponding to
around 5.9× 2.4m on ground level) to cover the actual shape of cars. The dense distribution of cars
has also shown to demand for a finer grid sampling of 8 pixels (2.8 m) for anchor positioning than the
default 16 pixels (5.5 m) value. As the original VGG16 [44] feature extractor pools the input image
to 1/16 of its size, we only keep the layers before the 4th max pooling layer to allow for a 8 pixels
sampling.

In contrast to standard AABB bounding box regression, the localization regression term of the
loss function evaluates the quintuple describing the OBB:

Lloc(v, v∗) = ∑
i∈{x,y,h,w,θ}

smoothL1(vi − v∗i ) (6)

where v∗ is the ground-truth quintuple, v is the predicted quintuple, and smoothL1 is the
outlier-insensitive loss function defined in [45]. From an anchor quintuple (xa, ya, ha, wa, θa) and
predicted bounding box (x, y, h, w, θ), the parametrization quintuple (vx, vy, vh, vw, vθ) is calculated as
follows,

vx =
cos θa(x− xa) + sin θa(y− ya)

ha
, vy =

− sin θa(x− xa) + cos θa(y− ya)

wa

vh = log(
h
ha

), vw = log(
w
wa

), vθ =
(θ − θa − 90) mod 180

90
− 1.

(7)

Accordingly, the predicted bounding box (x̂, ŷ, ĥ, ŵ, θ̂) is calculated from an anchor by

x̂ = vxha cos θa − vywa sin θa + xa, ŷ = vxha sin θa + vywa cos θa + ya

ĥ = exp(vh)ha, ŵ = exp(vw)wa, θ̂ = (vθ · 90 + θa) mod 180
(8)

3.4.2. Fusion Mechanism

As in our approach three input images are jointly evaluated to predict static stars, a central
question is at which stage the data from the different input images is fused. In this paper, we
investigate both a early and late fusion approach, as illustrated in Figure 5.

In early fusion, all three input images are stacked together to form the input for a CNN directly
trained for static car detection. Therefore, the first convolutional layer of the VGG16 RPN is changed
such that it accepts 7-channel inputs instead of 3-channel inputs.

In late fusion, three nets are responsible to detect cars for the respective input modality, and the
final decision is derived by combining the individual predictions. As the ground truth annotation
provides an own, general car annotation for each stereo image, their individual detectors are trained
to detect both static and moving cars. The CNN for the DSM input is trained on static cars like the
CNN of the early fusion approach. Final fusion of individual predictions is achieved by combining
their OBBs in case of an IoU overlap of at least 0.2, similar to the combination of annotated OBBs (see
Section 3.1.2). The confidence value of a static car detection is then averaged from the three individual
confidence values.

The two different fusion mechanism are studied in this work, as there are versatile approaches
with respect to the fusion stage in object detection literature [46]. The power of early fusion lies in the
ability to exploit the correlations between input images. In contrast, late fusion allows for a simplified
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sub-step learning and enables adapting the individual CNNs to the input modality. In our scenario,
late fusion also allows us to study the individual car detection performance of the two modalities RGB
and DSM.

CNN

Car Detections
Image 1

CNN CNN

Car Detections
Image 2

Car Detections
DSM

Static Car 
Detections

CNN

Static Car 
Detections

CNN

Car Detections
Image 1

CNN CNN

Car Detections
Image 2

Car Detections
DSM

Static Car 
Detections

CNN

Static Car 
Detections

(a) (b)

Figure 5. The two fusion mechanism investigated in this paper: (a) early fusion and (b) late fusion.

4. Results

In this section, we report the results achieved with our methodology on our study site of Barcelona.
Specifically, details about Faster R-CNN training are covered in Section 4.1. The evaluation metrics
used are described in Section 4.2 and the final results are reported in Section 4.3.

4.1. Faster R-CNN Training

For our experiments, all images of the overall dataset described in Section 3.1 are randomly split
into training (60%), validation (20%), and test set (20%). Training is performed for 200 epochs with
an initial learning rate of 0.02, which is halved every 30 epochs. For evaluating test performance,
the net from the training epoch with the lowest loss value on the validation set is taken. For every
training image, positive samples are identified by an IoU of more than 0.4 with ground truth samples,
and negative samples by an IoU of less than 0.1. Additionally, a positive sample is accepted only
if the orientation difference to the ground truth is less than 60◦ to avoid forcing the net to do large
refinements in bounding box regression. Negative samples are randomly collected from the image such
that positive and negative samples sum up to 1024. For weight initialization, a VGG16 net pretrained
on ImageNet [47] is used. As for the early fusion approach the first convolutional layer of VGG16
needs to be changed to a 7-channel input, the pretrained weights are used both for channels 1–3 and
4–6 which correspond to the RGB channels of images 1 and 2, respectively. For the DSM channel, the
weights are initialized randomly. Initial tests have shown that this shows superior results compared to
selecting one of the pretrained color channels filter weights from VGG16.

4.2. Evaluation Metrics

In object detection, Average Precision (AP) serves as a standard metric [48] and is thus also used
in this study. AP is derived from precision and recall measures:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(9)

where TP denotes the number of True Positives, FP the number of False Positives, and FN the number
of False Negatives. A true positive is typically defined as a predicted detection with an IoU overlap
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with a ground truth object above a specific threshold t∗. Similarly, a false positive is a predicted
detection with an IoU overlap with a ground truth object less than t∗ and a false negative is a ground
truth object with no predicted detection with a IoU larger than t∗. As the predicted detections come
with a confidence value, precision and recall can be computed as a function of a confidence threshold
c∗, as each threshold delivers a different pair of precision and recall values. From this function, the AP
can be computed as the area under the precision–recall curve.

Complementary to AP, precision and recall, we also report the F1 score of our detection results as
it gives a combined, but more intuitive measure of the achievable precision and recall. The F1 score is
defined as the harmonic mean of precision and recall:

F1 =
2 · Precision · Recall
Precision + Recall

(10)

We report the F1 score as the one achieved with the best value of c∗, i.e., the c∗ that gives the
highest F1 score on the test data.

4.3. Car Detection Results

In Table 2, the results of parking cars detection for both the early and late fusion approach are
compared. A major conclusion from these results is that early fusion performs slightly better than
late fusion (AP of 0.651 vs. 0.628) as it allows to learn the correlations and interactions of the stereo
image pair. Another major conclusion is that using the DSM is not beneficial in our scenario, and even
worsens the results (AP of 0.636 vs. 0.651 for the early fusion approach). This is owed to the fact that
stereo reconstruction is not reliable and accurate enough for the car height level to provide a significant
signature in the DSM.

Table 2. Parking car detection results on the Barcelona test set.

Early Fusion Late Fusion
with DSM w/o DSM with DSM w/o DSM

Precision 0.696 0.745 0.697 0.712
Recall 0.674 0.659 0.706 0.704

F1 Score 0.693 0.700 0.701 0.708
AP 0.636 0.651 0.555 0.628

The values shown in Table 2 are obtained with a IoU threshold t∗ of 0.3. As shown in Table 3, the
results are highly sensitive to this threshold as it decides if a detection is localized with acceptable
precision. While for typical object detection with larger objects a default value of 0.5 is selected [48],
in Remote Sens. object detection the smaller object sizes make this localization precision request less
appropriate [49], given also the lower Ground Truth (GT) localization precision.

Table 3. AP of early fusion car detection results w/o DSM dependent on the IoU threshold t∗.

t∗ 0.2 0.3 0.4 0.5 0.6

AP 0.751 0.651 0.478 0.286 0.115

While the evaluation metrics reported in Table 2 are helpful to quantitatively compare the
performance of our methods, only limited conclusions can be drawn for the actual detection
performance for parking cars. This is owed to the imperfect ground truth annotation where moving cars
located at the same spot are treated as positive samples and static cars occluded in one of the images
are treated as negative samples, in addition to erroneous car annotations in view of the challenging
image quality. Therefore, in order to get more insights on our results, we visually investigated the
failure cases on 14 out of the 57 test images (corresponding to a test area of 0.5 km2), as shown in Table
4. On these images, overall 379 cars have been detected by our method, with 21 of them being FPs.
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However, only 5 FPs are attributed to two different moving cars located at the same spot. In total, 598
cars are located in the test area subset, but 240 are missed. However, most of these failure cases (160)
are fully visible in both images, but the cars have a less significant optical signature, leading to a FN
prediction for the high confidence threshold used. In contrast, 80 cars are missed because they are not
visible in one of the images, either due to a tree (19) or building (61) occlusion.

Table 4. Visually examined failure categories for FPs and FNs collected on 14 out of 57 test images.

Detected Static Cars 379 FPs 21 FNs 240
Image Clutter 16 (76.2%) Visible 160 (66.7%)
Moving Cars 5 (23.8%) Occl. by trees 19 (7.9 %)

Occl. by buildings 61 (25.4 %)

Results of a runtime analysis of our method are shown in Table 5. Runtime performance is not a
major issue in our application scenario, but still a rapid prediction time is seen as an additional benefit
of the Faster R-CNN fraB’zmework. An image covering 1 km2 can be analyzed for parking cars within
0.05 s (1 s on a CPU), meaning that an entire city like Barcelona with an area of 101.4 km2 could be
scanned for parking cars in under 4 min (around 76 min on a CPU).

Table 5. Runtimes of our method measured on a Nvidia Titan X GPU (3072 CUDA-Cores @ 1000MHz,
12GB GDDR5) and an Intel Xeon E5-2697v 2.6 GHz CPU.

GPU Training Time (200 epochs, 2.75 km2) GPU Prediction Time per km2 CPU Prediction Time per km2

320 min 2.2 s 45 s

5. Discussion

The main idea of our paper is to exploit stereo image pairs to differentiate moving from static
cars. As shown in the examples of Figure 6, this can be efficiently achieved, given that parking cars
remain static in the one minute stereo image acquisition interval, and in turn the moving cars do not.

Figure 6. Two sample regions, where moving cars are effectively ruled out by our method and only
parking cars are detected (from left to right: first stereo image, second stereo image, detections).
Blue boxes depict ground truth, whereas green boxes depict the detections predicted with our early
fusion methodology w/o DSM.

In Figure 7, detection results for some exemplary regions of our dataset are shown. It can be
seen that on a local level car detection is partly erroneous, for example, by single false positives and
negatives as well as a wrong orientation regression. However, on a global scale, the parking cars
and thus parking space can be broadly derived. In the following, we investigate and discuss our car
detection results in the view of parking space analysis and review error sources.
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Figure 7. Examples of parking car detections on the Barcelona test set. Blue boxes depict ground truth,
whereas green boxes depict the detections predicted with our early fusion methodology w/o DSM.

5.1. Conditions Affecting Detection Performance

Commonly, the detection of cars in ortho-rectified satellite images of city scenery is hindered by
challenging conditions like low image resolution, shadows, occlusions, and the high amount of image



Remote Sens. 2020, 12, 2170 14 of 24

clutter. In our results, the detection of individual cars is shown to be error-prone mainly for areas with
tree covering and densely parked cars, as depicted in Figure 8. Cars which are partly occluded by trees
pose a specific challenge both to prediction and GT annotation, and consequently the reliability in
these areas is reduced. For instance, in Figure 8a, the prediction and GT annotations disagree in the
orientation of the cars. Densely aligned objects like cars are a problematic condition in Remote Sens. in
general due to the difficulties arising in fine anchor sampling [50]. This can be also observed in our
results: for instance, in the row consisting of ten parking cars shown in Figure 8b, both a false positive
and false negative occur. Still, the parking area is broadly predicted.

(a) (b)

Figure 8. Problematic conditions leading to individual false detections: (a) tree covering and (b)
densely parked cars (from top to bottom: first stereo image, second stereo image, and detections).

5.2. Limitations

Apparently, a specific limitation of our methodology is owed to the sake of simplicity in GT
generation, where individual cars have been selected in both images independently. As shown in
Figure 9a, it can happen that by coincidence two moving cars cover the same location in both images.
Consequently, such cases are treated as static cars both in training and prediction. However, our
empirical investigation (see Table 4) has shown that the influence of this failure case is minor, as in a
test area of 0.5 km2 with 598 parking cars, only 5 such cases occurred.

(a) (b)

Figure 9. Limitations of our proposed method: (a) two different cars covering the same spot lead to a
false positive detection and (b) cars parked closed to high buildings are occluded in one of the stereo
images.

Another implicit assumption we make is that a static car is visible in both images. Obviously, as
illustrated in Figure 9b, this assumption can be violated by occlusions, e.g., when cars are parked close
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to buildings. It was shown empirically that around 10% of parking cars (61 out of 598 cars as depicted
in Table 4) get lost due to this restriction, for our specific set-up.

Because the satellite position along its orbit has different in-track and cross-track viewing angles,
there are areas in the images occluded by high buildings, trees, and other artificial objects on the
ground. Being the second most populous municipality of Spain, Barcelona is a large city with tall
buildings, but currently not exceeding 150 m in height. From a thorough analysis of the derived
DSM, it follows that typical buildings in the city center have 30 m height. Moreover, building have
similar rectangular atrium-shapes following the regular distribution of street directions. This was
double-checked with additional visualization of the satellite images and OSM data. In the city center,
the street network has a conventional grid pattern, with arterial roads and local streets parallel and
orthogonal to each other, forming a pattern of squares (Figure 10).

(a) (b) (c)

Figure 10. Barcelona street network type (grid pattern with streets that intersect at right angles); detailed
view of (a) WV-3 forward image, (b) DSM 0.30 m resolution with filled occlusions by interpolation,
and (c) OSM street view.

The typical distance between two buildings is approximately 20 m. This covers not only the street
width (10 m), but also the sidewalks and parking areas on both street sides. Figure 11a illustrates a
profile-view for visible and non-visible areas during image acquisition, where we assume a particular
case with the satellite track parallel with the street azimuth and an in-track viewing angle of 0◦.

(a) (b)

Figure 11. Satellite image acquisition: (a) profile-view illustration of visible and non-visible areas
(satellite track parallel with street azimuth and a null in-track viewing angle) and (b) satellite viewing
geometry for street visibility.

The street visibility can be analyzed with the incidence angles (νc), azimuth of the camera sensor
(αc), and street direction (αs). According to Figure 11b, the non-visible street areas ωo can be described
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by both the geometry of the city (hb, αs) and satellite viewing geometry (αc, νc), with the following
formula,

ωo = hb sin(−αs + αc) tan νc (11)

where ωo is the non-visible distance on the ground hidden by buildings; hb the building height;
αs and αc are the street and camera azimuths, respectively; and νc the incidence angle.

The incidence angle (νc) is defined as the angle between the ground normal and looking direction
from the satellite sensor (note that we define those angles at the ground, whereas the Nadir angle
at the satellite may be different by a few degree because of Earth curvature). For the two Barcelona
satellite images, the incidence angles are 20◦ and 24◦. The azimuth of the camera sensor (αc) is the
angle between North and the viewing direction projected on the ground, clockwise positive from 0◦ to
360◦. The Barcelona stereo images have azimuth angles of 228◦ and 345◦ for the forward and backward
scenes, respectively.

Streets located in the central area of the city have a regular distribution with right angle
intersections (Figure 11). Therefore, there are mainly two types of streets: (a) with a southwest
to northeast direction (αs = 45◦) and (b) with a southeast to northwest direction (αs = 135◦). The
building height hb is 30 m.

For computing the visible part of the streets, the street width (ωs) needs to be considered, too. The
visibility can then be computed by subtracting the non-visible distance (ωo) from the street width (ωs):
ω = ωs- ωo.

By applying the above equations and considering a street cross section, we obtain different values
for the two types of streets in the two images. In the forward scene, the visible distances are 19.4 m for
streets with 45◦ azimuth and 9.1 m for streets with 135◦ azimuth, i.e., visibility of 97% and 46% for
northeast- and northwest-oriented streets, respectively. For the backward image, the resulting visible
distances are 8.3 m and 13.2 m (visibility 41% and 66% for the northeast- and northwest-oriented
streets, respectively). Thus, at least the western halves of the streets are visible in both images.

Obviously, the smaller the incidence angles, the better is the street visibility. Therefore, to avoid
reduced visibility and to have as few occlusions as possible in the images, the acquisition collection
parameters should be taken into account when ordering satellite imagery in urban areas. Concerning
occlusions caused by buildings, small in-track and cross-track angles are recommended for a better
visibility. The acquisition geometry can be specified in the technical documentation when ordering
satellite images (additional costs are charged). In case of archive images, there is typically hardly
any choice of viewing directions. Using two image pairs, one looking eastwards and one looking
westwards, would allow observing the entire parking space with short interval in-track imagery. To
reduce the occlusions caused by trees, images can be acquired during leaf-less periods; however, the
low sun elevation angle leads to a lower image quality under these circumstances.

5.3. 3D Reconstruction

It is evident from the results that in our scenario the reconstructed DSM is not helpful for the
detection of cars. Normal family cars, our investigated objects, are usually less than 1.5 m high, 5
m long, and 2 m wide. Expressed in pixels, by taking into account the GSD of the WorldView-3
satellite images (0.35 m for Barcelona), they have dimensions of less than 14 pixels length and 6 pixels
width. As a result of different viewing angles of the sensor with a B/H ratio of 0.69, the corresponding
change in parallax for cars (apparent shift in position) is approximately 3 pixels in image space.
The reconstruction of the Barcelona city from the stereo image pair is performed using dense image
matching. Because of the smoothness constraint and regularization in dense image matching [51,52],
the heights of small individual objects may not be reconstructed. Therefore, in the resulting 3D point
cloud cars do not have higher elevations compared to their surroundings. A detailed description of
single objects height estimation from WV-3 DSM is found in [53], where a minimum pixel size of 15 is
reported for vehicle lengths, in order to get reconstructed.
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The computed DSM with a spatial resolution of 0.5 m × 0.5 m shows the Barcelona cityscape, but
with some “noise, artifacts, and roughness” effects that appear on the road network especially due
to moving objects and building shadows. Figure 12 shows a detail view of the computed DSM for a
street intersection and surrounding buildings. Even if buildings appear in the DSM with irregular
contours they have quite well reconstructed heights. In contrast, parked cars do not show any height
information in the DSM. The elevation of the two streets and in the intersection area is thoroughly
constant.

(a) (b)

Figure 12. Example of moving objects, shadowing, occlusions effects and parked cars not being
reconstructed: (a) pansharpened WV-3 image and (b) corresponding Digital Surface Model (DSM).

Moreover, the DSM contains areas with missing elevation information, caused by occlusions or by
a substantial height difference between buildings, trees, and the surrounding ground. To summarize,
cars appear to be too small to have a significant height signature in the DSM. Still, the DSM allows
to discern street level from building level which could be possibly exploited by a CNN to rule out
building areas for car detection. However, confusing structures on building roofs with cars seems to
be very seldom, and thus a CNN can not benefit from the additional DSM information.

However, while the 3D content from the DSM had an adverse effect on the static car detection, the
terrain model extracted from the satellite image stereo pair is necessary to correctly ortho-rectify the
image content at street level. A parallax-free image pair (e.g., from a hypothetical pair of satellites flying
along the same orbit with the same viewing direction of their cameras) would require an alternative
source for the DTM in order to execute the ortho-rectification and integration with other data sources,
e.g., inclusion layers.

6. Conclusions

We have presented a novel approach to localize parking cars in a city, where the Faster R-CNN
detector is trained and applied to ortho-rectified stereo satellite images to discriminate static from
moving cars. Our main hypothesis was that the time interval between the two stereo images allows to
capture the static/moving feature of a car, as in general parking cars remain at the same spot while
moving cars do not. This hypothesis was validated on a new labeled dataset of the city of Barcelona,
which we also made publicly available to the research community. It is shown that with our approach
parking areas can be widely captured and that false positives from moving cars covering the same
spot are a seldom case in practice (five such cases occurred on an investigation area of 0.5 km2 with
598 parking cars).

On a methodological level, we studied the usage of an additional DSM derived from stereo
reconstruction as well as the influence of the fusion stage where the different modalities are combined.
Early fusion has shown to have a better performance as it allows the detector to directly learn the
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appearance of static cars in both stereo images. The reconstructed DSM is able to capture building
heights, but the street car level can not be reconstructed in a quality that would be helpful for detection.

We particularly investigated the issue of street areas which are only visible in one satellite image.
While the parking cars missed by the detector are typically isolated (e.g., individually missed cars in a
row of parking cars), such occlusions can lead to the omission of all cars parking on the same street
side. We have explored that on our stereo dataset of Barcelona in the worst case more than half of the
street area is occluded, and in reality ~10% of parking cars are actually missed. A major conclusion
from our occlusion study is that for the given application one should consider acquisition setups with
minimal incidence angles to reduce occlusion areas. This would generally mean a smaller baseline
of the cameras and thus a smaller depth resolution for stereo reconstruction, a drawback which can
anyhow be neglected as we have seen that stereo reconstructions can not be exploited given the small
car size and high GSD, and that the stereo images are primarily needed to obtain two views of the same
scene at different timestamps. We also used the stereo pair for DTM extraction and ortho-rectification.

For future work we aim to study and exploit local contexts for the detection of parking cars.
Evidently, cars are prevalently parked close to each other and with a similar orientation. We believe
that these conditions can be used as a prior for parking car detection where nearby cars regularize the
detection process to dissolve ambiguous cases.
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AABB Axis-Aligned Bounding Box
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DTM Digital Terrain Model
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GSD Ground Sample Distance
GT Ground Truth
IoU Intersection over Union
OBB Oriented Bounding Box
OPALS Orientation and Processing of Airborne Laser Scanning
OSM Open Street Map
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RFM Rational Functional Model
RoI Region of Interest
RPN Region Proposal Network
RPCs Rational Polynomial Coefficients
TP True Positive
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Appendix A

Figure A1 shows the photogrammetric processing chain for stereo reconstruction and orthophoto
derivation.

Figure A1. The general workflow for satellite image processing, 3D reconstruction, DSM, digital terrain
model (DTM), and orthophoto derivation.

During satellite triangulation, a total number of 177 tie points were automatically extracted
using a feature detector, followed by finding the point correspondences between images. The final
standard deviation of the bundle adjustment was at sub-pixel level (0.95 pixels) and the estimated
bias-correction model for Barcelona dataset contained two shifts—in X and Y directions—for each
images. The correction parameters corresponding to the forward image are 1.71 pixels and 0.23 pixels
in X and Y directions, respectively, whereas the backward image is shifted with −1.71 pixels in X and
with −0.23 pixels in Y direction. The standard deviations of the estimated parameters vary between
−0.036 and +0.037 pixels. All processes were performed using a system with an Intel(R) Core i7 3.50
GHz Processor and 32 GB RAM. Key performance figures are summarized in Table A1.

Table A1. Image orientation and 3D reconstruction.

No. of Tie Points Sigma [pix] Matching Proc. Time [h] LAS File [GB] No. of Points [mil.]

177 0.95 13 24 1.028

Figure A2 illustrates the reconstructed 3D point cloud of Barcelona city coloured by RGB and
elevation attributes.

Figure A3 shows an illustration of a test area as true orthophoto, that has a good geoposition
with objects rectified to their correct locations, but shows distortion effects and artifacts along building
roof edges, caused mainly by the high roughness of the photogrammetrically derived DSM. Moreover,
buildings obscure the objects close to them, since their walls can be thought of as a rapid change in
elevation. In the orthophoto generation process, these occluded areas are not detected and instead a
double projection is created, known as “ghost images” or “double mapping effect”. When a building
is orthorectified, it will obtain the original position in the rectified image, but it will also leave a “copy”
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on the terrain (see double projected roof in the right image of Figure A3. During reprojection, rays
are projected back to both the occluded area and the obscuring object (building), therefore the “false”
image data is rectified in the occluded areas.)

Figure A2. 3D point cloud of Barcelona city colored by RGB and elevation information with a zoom of
a selected area in the city center.

Figure A3. Artifacts and distortion effects in the true orthophoto (center and right images) caused by
the high roughness of the image-matched DSM (left image).

For enhancing the quality of the orthophotos, by reducing the distortion, double mapping effects
and artifacts, we replaced the photogrammetric DSM with the DTM. The newly obtained orthophotos
have the disadvantage of not handling sharp changes in elevation, because the terrain model does not
include any objects on it, i.e., buildings and vegetation. As buildings are not modeled in the DTM, they
have visible facades in the computed orthophoto, hiding street information (building leaning effects).

For a comparative view, Figure A4 shows the DTM and DTM-based orthophoto for the same area
(as in Figure A3).

For deriving the DTM from the photogrammetric DSM over Barcelona city, we used the
volume-based filtering approach developed by Piltz et al. [38] and implemented in the OPALS software.
The mask for the open terrain was computed by setting the minimum height of the off-terrain objects
to 3 m and the maximum width to 80 m. The width was set in accordance with the maximum
length/width of existing buildings in the Barcelona dataset. Finally, the areas with missing elevation
information were filled by triangulation.
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Figure A4. DTM (left image) and DTM-based orthophoto (center and right images).

Figure A5. Barcelona digital models: (a) shaded view of the reconstructed DSM; (b) shaded and
color-coded view of the DTM; (c) orthophoto.

References

1. IBM Global Parking Survey: Drivers Share Worldwide Parking Woes. Available online: https://www-03.
ibm.com/press/us/en/pressrelease/35515.wss (accessed on 6 July 2020).

2. Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems, 3rd ed.; Routledge: New York, NY,
USA, 2013.

3. Searching for Parking Costs Americans $73 Billion a Year. Available online: https://inrix.com/press-
releases/parking-pain-us/ (accessed on 6 July 2020).

4. Cheng, G.; Han, J. A survey on object detection in optical Remote Sens. images. ISPRS J. Photogramm. Remote
Sens. 2016, 117, 11–28. doi:10.1016/j.isprsjprs.2016.03.014. [CrossRef]

5. Xiao, W.; Vallet, B.; Schindler, K.; Paparoditis, N. Street-side vehicle detection, classification and change
detection using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2016, 114, 166–178.
doi:10.1016/j.isprsjprs.2016.02.007. [CrossRef]

6. Zhang, J.; Jia, X.; Hu, J. Error Bounded Foreground and Background Modeling for Moving Object Detection
in Satellite Videos. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1–11. doi:10.1109/TGRS.2019.2953181.
[CrossRef]

7. Xuan, S.; Li, S.; Han, M.; Wan, X.; Xia, G. Object Tracking in Satellite Videos by Improved
Correlation Filters With Motion Estimations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1074–1086.
doi:10.1109/TGRS.2019.2943366. [CrossRef]

8. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems 2015, Montreal, QC,
Canada, 7–12 December , 2015; pp. 91–99.

9. Zambanini, S.; Login, A.M.; Pfeifer, N.; Soley, E.M.; Sablatnig, R. PaCaBa - Parking Cars Barcelona Dataset,
2020. Available online: https://doi.org/10.5281/zenodo.3701453 (accessed on 6 July 2020).

10. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A large contextual dataset for classification, detection
and counting of cars with deep learning. In Proceedings of the European Conference on Computer Vision
2016, Amsterdam, The Netherlands, 8–16 October 2016; pp. 785–800.

https://www-03.ibm.com/press/us/en/pressrelease/35515.wss
https://www-03.ibm.com/press/us/en/pressrelease/35515.wss
https://inrix.com/press-releases/parking-pain-us/
https://inrix.com/press-releases/parking-pain-us/
https://doi.org/10.1016/j.isprsjprs.2016.03.014
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014
https://doi.org/10.1016/j.isprsjprs.2016.02.007
http://dx.doi.org/10.1016/j.isprsjprs.2016.02.007
https://doi.org/10.1109/TGRS.2019.2953181
http://dx.doi.org/10.1109/TGRS.2019.2953181
https://doi.org/10.1109/TGRS.2019.2943366
http://dx.doi.org/10.1109/TGRS.2019.2943366
https://doi.org/10.5281/zenodo.3701453


Remote Sens. 2020, 12, 2170 22 of 24

11. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale
dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 2018, Salt Lake City, UT, USA, 18-22 June 2018; pp. 3974–3983.

12. Razakarivony, S.; Jurie, F. Vehicle detection in aerial imagery: A small target detection benchmark. J. Vis.
Commun. Image Represent. 2016, 34, 187–203. doi:10.1016/j.jvcir.2015.11.002. [CrossRef]

13. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object
detection: A survey. Int. J. Comput. Vis. 1809, 1–58. doi:10.1007/s11263-019-01247-4. [CrossRef]

14. Liu, W.; Zhang, Z.; Li, S.; Tao, D. Road Detection by Using a Generalized Hough Transform. Remote Sens.
2017, 9, 590. doi:10.3390/rs9060590. [CrossRef]

15. He, H.; Zhou, J.; Chen, M.; Chen, T.; Li, D.; Cheng, P. Building Extraction from UAV Images
Jointly Using 6D-SLIC and Multiscale Siamese Convolutional Networks. Remote Sens. 2019, 11, 1040.
doi:10.3390/rs11091040. [CrossRef]

16. Stankov, K.; He, D.C. Building detection in very high spatial resolution multispectral images using the
hit-or-miss transform. IEEE Geosci. Remote Sens. Lett. 2012, 10, 86–90. doi:10.1109/LGRS.2012.2193552.
[CrossRef]

17. Baltsavias, E. Object extraction and revision by image analysis using existing geodata and knowledge:
current status and steps towards operational systems. ISPRS J. Photogramm. Remote Sens. 2004, 58, 129–151.
doi:10.1016/j.isprsjprs.2003.09.002. [CrossRef]

18. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
19. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition 2005,lSan Diego, CA, USA, 20–26 June 2005;
Volume 1, pp. 886–893.

20. Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M. Deep learning approach for car
detection in UAV imagery. Remote Sens. 2017, 9, 312. doi:10.3390/rs9040312. [CrossRef]

21. Audebert, N.; Le Saux, B.; Lefèvre, S. Segment-before-Detect: Vehicle Detection and Classification through
Semantic Segmentation of Aerial Images. Remote Sens. 2017, 9, 368. doi:10.3390/rs9040368. [CrossRef]

22. Terrail, J.O.D.; Jurie, F. On the use of deep neural networks for the detection of small vehicles in ortho-images.
In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20
September 2017; pp. 4212–4216. doi:10.1109/ICIP.2017.8297076. [CrossRef]

23. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12 June
2015; pp. 3431–3440.

24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector.
In Proceedings of the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 8–16
October 2016; pp. 21–37.

25. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017,
Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

26. Tang, T.; Zhou, S.; Deng, Z.; Lei, L.; Zou, H. Arbitrary-oriented vehicle detection in aerial imagery with
single convolutional neural networks. Remote Sens. 2017, 9, 1170. doi:10.3390/rs9111170. [CrossRef]

27. Azimi, S.M.; Vig, E.; Bahmanyar, R.; Körner, M.; Reinartz, P. Towards multi-class object detection in
unconstrained Remote Sens. imagery. In Proceedings of the Asian Conference on Computer Vision 2018.
Perth, Australia, 2–6 December 2018, pp. 150–165.

28. Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning RoI Transformer for Oriented Object Detection in Aerial
Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019; pp. 2844–2853. doi:10.1109/CVPR.2019.00296. [CrossRef]

29. AL-Alimi, D.; Shao, Y.; Feng, R.; Al-qaness, M.A.; Elaziz, M.A.; Kim, S. Multi-Scale Geospatial Object
Detection Based on Shallow-Deep Feature Extraction. Remote Sens. 2019, 11, 2525. doi:10.3390/rs11212525.
[CrossRef]

30. Fan, Q.; Brown, L.; Smith, J. A closer look at Faster R-CNN for vehicle detection. In Proceedings of
the 2016 IEEE Intelligent Vehicles Symposium (IV), Gotenburg, Sweden, 19–22 June 2016; pp. 124–129.
doi:10.1109/IVS.2016.7535375. [CrossRef]

https://doi.org/10.1016/j.jvcir.2015.11.002
http://dx.doi.org/10.1016/j.jvcir.2015.11.002
https://doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.3390/rs9060590
http://dx.doi.org/10.3390/rs9060590
https://doi.org/10.3390/rs11091040
http://dx.doi.org/10.3390/rs11091040
https://doi.org/10.1109/LGRS.2012.2193552
http://dx.doi.org/10.1109/LGRS.2012.2193552
https://doi.org/10.1016/j.isprsjprs.2003.09.002
http://dx.doi.org/10.1016/j.isprsjprs.2003.09.002
https://doi.org/10.3390/rs9040312
http://dx.doi.org/10.3390/rs9040312
https://doi.org/10.3390/rs9040368
http://dx.doi.org/10.3390/rs9040368
https://doi.org/10.1109/ICIP.2017.8297076
http://dx.doi.org/10.1109/ICIP.2017.8297076
https://doi.org/10.3390/rs9111170
http://dx.doi.org/10.3390/rs9111170
https://doi.org/10.1109/CVPR.2019.00296
http://dx.doi.org/10.1109/CVPR.2019.00296
https://doi.org/10.3390/rs11212525
http://dx.doi.org/10.3390/rs11212525
https://doi.org/10.1109/IVS.2016.7535375
http://dx.doi.org/10.1109/IVS.2016.7535375


Remote Sens. 2020, 12, 2170 23 of 24

31. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle detection in aerial images based on region convolutional
neural networks and hard negative example mining. Sensors 2017, 17, 336. doi:10.3390/s17020336. [CrossRef]

32. Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical Remote Sens. images via modified faster R-CNN.
Appl. Sci. 2018, 8, 813. doi:10.3390/app8050813. [CrossRef]

33. Yang, M.Y.; Liao, W.; Li, X.; Rosenhahn, B. Deep learning for vehicle detection in aerial images. In
Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, Athens,
Greece, 7–10 October 2018; pp. 3079–3083.

34. Li, Q.; Mou, L.; Xu, Q.; Zhang, Y.; Zhu, X.X. R3-Net: A Deep Network for Multioriented Vehicle
Detection in Aerial Images and Videos. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5028–5042.
doi:10.1109/TGRS.2019.2895362. [CrossRef]

35. Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-Oriented Scene Text Detection via
Rotation Proposals. IEEE Trans. Multimedia 2018, 20, 3111–3122. doi:10.1109/TMM.2018.2818020. [CrossRef]

36. Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom
sensors. Photogramm. Rec. 2012, 27, 58–73. doi:10.1111/j.1477-9730.2011.00665.x. [CrossRef]

37. Trimble Geospatial. Available online: https://de.geospatial.trimble.com/products-and-solutions/inpho
(accessed on 6 July 2020).

38. Piltz, B.; Bayer, S.; Poznanska, A.M. Volume based DTM generation from Very High Resolution
Photogrammetric DSMs. ISPRS Arch. 2016, 41, 83–90.

39. Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS–A framework for Airborne Laser Scanning
data analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. doi:10.1016/j.compenvurbsys.2013.11.002.
[CrossRef]

40. Bang, K.I.; Habib, A.F. Comparative Analysis of Alternative Methodologies for True Ortho-Photo Generation
from High Resolution Satellite Imagery. In Proceedings of the ASPRS Annual Conference 2007, Tampa, FL,
USA, 7–11 May 2007.

41. Amhar, F.; Jansa, J.; Ries, C. The generation of true orthophotos using a 3D building model in conjunction
with a conventional DTM. ISPRS Arch. 1998, 32, 16–22.

42. Zhang, L.; Lin, L.; Liang, X.; He, K. Is Faster R-CNN Doing Well for Pedestrian Detection? In Proceedings of
the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 8–16 October 2016; pp.
443–457.

43. Koo, J.; Seo, J.; Jeon, S.; Choe, J.; Jeon, T. RBox-CNN: Rotated bounding box based CNN for ship detection in
remote sensing image. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, Seattle, WA, USA, 6–9 November 2018; pp. 420–423.

44. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In
Proceedings of the International Conference on Learning Representations (ICLR) 2015, San Diego, CA, USA,
7–9 May 2015.

45. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, 2015.
Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

46. Feng, D.; Haase-Schuetz, C.; Rosenbaum, L.; Hertlein, H.; Timm, F.; Glaeser, C.; Wiesbeck, W.; Dietmayer,
K. Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets,
Methods, and Challenges. arXiv 2019, arXiv:1902.07830. Available online: https://arxiv.org/abs/1902.07830
(accessed on 6 July 2020).

47. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2009, Miami, FL, USA,
22–24 June 2009; pp. 248–255.

48. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. doi:10.1007/s11263-009-0275-4. [CrossRef]

49. Yan, J.; Wang, H.; Yan, M.; Diao, W.; Sun, X.; Li, H. IoU-adaptive deformable R-CNN: Make full use of IoU
for multi-class object detection in Remote Sens. imagery. Remote Sens. 2019, 11, 286. doi:10.3390/rs11030286.
[CrossRef]

50. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards More Robust
Detection for Small, Cluttered and Rotated Objects. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV) 2019, Seoul, Korea, 27 October–2 November 2019.

https://doi.org/10.3390/s17020336
http://dx.doi.org/10.3390/s17020336
https://doi.org/10.3390/app8050813
http://dx.doi.org/10.3390/app8050813
https://doi.org/10.1109/TGRS.2019.2895362
http://dx.doi.org/10.1109/TGRS.2019.2895362
https://doi.org/10.1109/TMM.2018.2818020
http://dx.doi.org/10.1109/TMM.2018.2818020
https://doi.org/10.1111/j.1477-9730.2011.00665.x
http://dx.doi.org/10.1111/j.1477-9730.2011.00665.x
https://de.geospatial.trimble.com/products-and-solutions/inpho
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
http://dx.doi.org/10.1016/j.compenvurbsys.2013.11.002
https://arxiv.org/abs/1902.07830
https://doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.3390/rs11030286
http://dx.doi.org/10.3390/rs11030286


Remote Sens. 2020, 12, 2170 24 of 24

51. Stentoumis, C.; Karkalou, E.; Karras, G. A review and evaluation of penalty functions for Semi-Global
Matching. 2015 IEEE International Conference on Intelligent Computer Communication and Processing
(ICCP), Cluj-Napoca, Romania, 3–5 September 2015; pp. 167–172.

52. Lhuillier, M.; Quan, L. Robust dense matching using local and global geometric constraints. In Proceedings
of the 15th International Conference on Pattern Recognition 2000, Barcelona, Spain, 3–7 September 2000;
Volume 1, pp. 968–972.

53. Loghin, A.M.; Otepka-Schremmer, J.; Pfeifer, N. Potential of Pléiades and WorldView-3 Tri-Stereo DSMs to
Represent Heights of Small Isolated Objects. Sensors 2020, 20, 2695. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s20092695
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials and Methods
	Pacaba—Parking Cars Barcelona Dataset
	Satellite Image Acquisition
	Data Annotation

	Georeferencing and Stereo Reconstruction
	Region of Interest Generation
	CNN-Based Static Car Detection
	Adapted Faster R-CNN for Car Detection
	Fusion Mechanism


	Results
	Faster R-CNN Training
	Evaluation Metrics
	Car Detection Results

	Discussion
	Conditions Affecting Detection Performance
	Limitations
	3D Reconstruction

	Conclusions
	
	References

