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Abstract: It is still a completely new and challenging task to register extensive, enormous and sparse
satellite light detection and ranging (LiDAR) point clouds. Aimed at this problem, this study provides
a ridgeline-based terrain co-registration method in preparation for satellite LiDAR point clouds in
rough areas. This method has several merits: (1) only ridgelines are extracted as neighbor information
for feature description and their intersections are extracted as keypoints, which can greatly reduce
the number of points for subsequent processing, and extracted keypoints is of high repeatability and
distinctiveness; (2) a new local-reference frame (LRF) construction method is designed by combining
both three dimensional (3D) coordinate and normal vector covariance matrices, which effectively
improves its direction consistency; (3) a minimum cost–maximum flow (MCMF) graph-matching
strategy is adopted to maximize similarity sum in a sparse-matching graph. It can avoid the problem
of “many-to-many” and “one to many” caused by traditional matching strategies; (4) a transformation
matrix-based clustering is adopted with a least square (LS)-based registration, where mismatches are
eliminated and correct pairs are fully participated in optimal parameters evaluation to improve its
stability. Experiments on simulated satellite LiDAR point clouds show that this method can effectively
remove mismatches and estimate optimal parameters with high accuracy, especially in rough areas.
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1. Introduction

Different from conventional two dimensional (2D) remote sensed imagery, light detection and
ranging (LiDAR) can obtain dense point clouds with three-dimensional information of high accuracy.
Over the past decades, with the hardware development and the progress of data processing algorithms,
LiDAR has been carried on various platforms (airborne, unmanned aerial vehicles, vehicle, handheld)
with wide applications, for example, electric power design [1], heritage modeling [2], water surveys [3],
environment survey [4] and urban and land planning [5].

However, up to now, LiDAR has rarely been carried on satellites. There are two main obstacles:
(1) the altitude of satellites is too high, and the distance between laser is certain, resulting in its
low density; (2) the energy of laser emitter is limited, and a large percentage of energy is lost after
long-distance transmission, resulting in its weak signal. In recent years, with the lightweight of laser
sensors and the intensive density of point clouds, increasing attention has been poured into the satellite
LiDAR data [6]. To improve the vertical accuracy of stereo satellite images without ground control, the
ZY(Zi-Yuan)-302 satellite, launched on 30 May 2016, carried with it the first Chinese earth observation
satellite laser altimeter, which can improve the vertical accuracy from 11 m to 1.9 m through active
measurement [7]. ICESat (ice, cloud, and land elevation satellite)-2—launched on 15 September 2018,
loaded a multibeam, non-scan, single-photon laser altimeter ATLAS (advanced topographic laser
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altimeter system) for sea ice change detection, 3D surface information survey and global biomass
estimation [4]. Global ecosystem dynamics investigation (GEDI), launched on 5 December 2018 with a
full-waveform LiDAR, was designed to provide the first global, high-resolution observations of forest
vertical structure [8]. With the successive launch of satellites equipped with lasers, the processing
of satellite LiDAR data exerts a growing interest among researchers [9–11]. Registration of satellite
LiDAR point clouds with sparse density and large footprint is a big challenge, and to date, there is
no relevant research. With the registration algorithms of satellite images are increasingly mature in
multi-spectral [12], multi-temporal [13] and multisensor [14], it’s provide a good example for satellite
LiDAR point cloud registration. Thus, to address its challenge, this study proposes a ridgeline-based
terrain co-registration of satellite LiDAR point clouds.

1.1. Related Work

As one of the crucial steps in 3D point cloud processing, registration has two main phases:
the coarse alignment and the fine alignment [15]. For decades, except ICP (iterative closest point)-based
fine registration, a multitude of coarse registration algorithms have emerged to transform the ‘source’
point clouds to the ‘target’ point clouds. These methods can be categorized into three types: RANSAC
(random sample consensus)-based methods, 4PCS (4 points congruent sets)-based methods and LS
(least square)-based methods.

1.1.1. RANSAC and Its Variations

RANSAC [16], as one of widely used strategies to cope with noise in point cloud registration [17],
is a random, data-driven process with two iterative steps: generating a hypothesis by random samples,
and verifying hypotheses by the remaining data [18]. However, it is of low efficiency and accuracy
when there is a host of outliers.

To address these challenges, many variations have been developed. Considering that the distance
between inliers is closer than that between outliers, adjacent points sample consensus (NAPSAC) [19]
algorithm was proposed to handle datasets with high dimension and low proportion of inliers.
To improve the registration efficiency, the progressive sample consensus (PROSAC) [20] took initial
matching results as a basis of sorting, and sampled the results from high to low. In ARRSAC (adaptive
real-time random sample consensus) [21], more than one model was generated, and the best model was
selected by iteratively sorting and choosing according to scores of an objective function. GroupSAC [22]
combined both NAPSAC and PROSAC, where points were grouped according to similarities and
then sampled from the largest clustering according to the PROSAC. However, a prior knowledge was
needed for classification. Persad et al. [15] proposed a threshold-free modified-RANSAC to eliminate
false keypoint matches, where a spatial nearest neighbor consistency check was applied to ensure
that true correspondences were stored as inliers. Quan et al. [23] introduced an efficient and accurate
GC1SAC (global-constrained one-point-based sample consensus) algorithm for robust transformation
estimation, where only one correspondence and its LRF were utilized for iterative computation.

1.1.2. PCS and Its Variations

The 4PCS [24] algorithm was developed under the RANSAC framework. Through constructing
and finding similar 4-point congruent sets in the target and source point clouds, it could achieve
satisfactory registration results even with small overlap and noise. The affine invariance constraint and
the LCP (large common point set) strategy were used to find 4-point congruent sets with maximum
overlap. However, it was of huge search space, high complexity and low efficiency.

To speed up, a series of improvements based on 4PCS came into being. In K4PCS (keypoint
4PCS, [25]) algorithm, a keypoint detection was added instead of random sampling to achieve high
registration accuracy. Super 4PCS [26] algorithm adopted an intelligent index strategy to reduce the
computational complexity from O(n2) to O(n). The algorithm could be used for point cloud registration
of large areas, but it had a bottleneck while searching coplanar points in all available source points.
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The generalized 4PCS [27] algorithm improved the construction process by generalizing the 4-point
base, which was no longer strictly limited in a plane. It greatly improved the matching efficiency.
Super generalized 4PCS [28] algorithm was a combination of super 4PCS algorithm and generalized
4PCS algorithm, using an intelligent index strategy and non-coplanar optimization. Semantic keypoint
4PCS [29] was proposed aiming at urban area registration, where semantic keypoints of building
objects were extracted layer by layer, instead of original random sampling points for point cloud
registration. The 2PNS (2 point + normal sets) [30] algorithm used normal vectors between two
points to build matching pairs. It greatly speeded up and can cope with the scene registration
with a small overlap. To reduce the number of 4-point sets, Xu et al. [31] proposed a multiscale
sparse features 4PCS (MSSF4PCS) algorithm, adding a normal vector constraint for point-matching.
At the same time, it optimized matching results and improves registration accuracy by calculating
point characteristics in the neighborhood of 4-point pairs. In V4PCS (volumetric 4PCS) [32,33]
algorithm, volume consistency was added to construct the coplanar four-point base, extending
coplanar four-point-matching to non-coplanar four-point-matching. It could reduce computational
complexity and improves operational efficiency.

1.1.3. LS and Its Variations

Least square (LS) is a mathematical optimization strategy, finding the best function of data by
minimizing the square sum of errors. However, this method is sensitive to noise and when the fitting
function is nonlinear, iteration is required.

Originally, the LS algorithm was widely used for 2D image alignment. Due to its high flexibility
and powerful mathematical model [34], a large amount of LS-based methods was put forward to
enhance its robustness. Gruen and Akca [34] used the LS-based method for surface-matching based on
a generalized Gauss–Markov (GM) model. However, only random errors of target point clouds were
modeled in its observation equations. A constrained total least squares (CTLS) was introduced by
Chen et al. [35] to solve large rotation registration with an errors-in-variables (EIV) model. Compared
with traditional constrained least squares (CLS) methods, it could well solve the impact of random errors.
Aydar et al. [36] considered stochastic properties of both observations and parameters and proposed a
total least square (TLS) registration of 3D surfaces, where an EIV model was utilized and its parameters
were estimated by a TLS method. Ge and Wunderlich [37] proposed a surface-based-matching of 3D
point clouds with a nonlinear Gauss–Helmert model to solve the weighted total least-squares problem.
The Gauss–Helmert least-squares 3D (GH-LS3D) method considered random errors of both target and
source. Ahmed et al. [38] proposed a least-squares registration of point sets over SE(d) (subgroup of
Euclidean group E(d)) using closed-form projections, where the original least-squares problem was
derived from the SDP (semidefinite program) solution via a linear map, solved by a variable splitting
and ADMM (alternating directions method of multipliers). To avoid the influence of gross errors and
extend its application, Yu et al. [39] proposed an advanced outlier detected total least-squares (ODTLS)
method. However, the ODTLS was a dual iterative solution, induced to huge computation.

1.2. Contribution

As one of the important topographic feature lines, ridgelines play a vital role in terrain skeleton
structure representation, forming topography boundaries together with valley lines [40]. They have
two special advantages: stability, and distinctive when point clouds are sparse. Thus, this paper
proposes a ridgeline-based terrain co-registration in preparation for satellite LiDAR point clouds in
rough areas. The main contribution of the paper manifests in four aspects:

(1) for extensive and enormous raw data, only point clouds of ridgelines are extracted as neighbor
information for feature description, and then their intersections are regarded as keypoints. This step
can efficiently reduce the number of points for subsequent processing and extracted keypoints is of
high repeatability and distinctiveness.
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(2) for the direction instability of the LRF’s X and Y axes decomposed by traditional coordinate
covariance, this study designs a new LRF construction method by combining both 3D coordinate
covariance and normal vector covariance, which can effectively improve its direction consistency.

(3) the descriptor-matching is converted into a graph-matching, where a minimum cost–maximum
flow method is adopted. It can efficiently achieve a global optimum in a sparse-matching graph and
avoid the problem of “many-to-many” and “one to many” caused by traditional nearest neighbor-based
or ratio-based matching strategies.

(4) different from traditional RANSAC or 4PCS-based methods, the registration makes full use of
correct correspondences, where a transformation matrix-based clustering method is applied to reject
gross error and select the maximum similar sample set and then optimal parameters are solved by the
Rodriguez-LS-based algorithm. This step can effectively eliminate mismatches and obtain optimal
parameters with high accuracy.

1.3. Overview

The paper is organized as follows. Section 2 introduces three kinds of DEM to analog satellite
LiDAR point clouds in experiments. Section 3 presents the details of the ridgeline-based terrain
co-registration method for satellite LiDAR point clouds. In Section 4, criteria for accuracy analysis
are introduced. Experimental results and evaluations of the proposed method are shown in Section 5.
Section 6 discusses the effect of different overlap, topography and noise on the proposed co-registration
algorithm. Finally, a conclusion and some future researches related to this study are presented
in Section 7.

2. Datasets

It is noteworthy that since there is no satellite LiDAR point cloud up to now, we use existing
worldwide DEM (digital elevation model) data and airborne LiDAR point clouds to simulate satellite
LiDAR point clouds. In the following experiments, three kinds of worldwide DEM data are utilized:
ALOS DEM, ASTER GDEM and SRTM DEM, where the point distance of generated point clouds is
equal to the resolution the original DEM.

ALOS DEM: it is an acquisition of the advanced land observing satellite (ALOS), launched
in 2006, with a phased array L-band synthetic aperture radar (PALSAR). It has three observation
modes: high resolution, scanning synthetic aperture radar and polarization. The horizontal and
vertical accuracy of the DEM can reach 12 meters. The data were downloaded from the website:
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm.

ASTER GDEM: it is a global digital elevation data jointly released by the American National
Aeronautics and Space Administration (NASA) and the Japanese Ministry of Economy, Trade and
Industry (METI). The DEM is based on the observation results of Terra, a new generation of earth
observation satellite of NASA. It is made of 1.3 million stereo image pairs collected by ASTER (advanced
spaceborne thermal emission and reflection radiometer) sensors, covering all land areas between 83◦N
and 83◦S. Its horizontal accuracy is 30 m with 95% confidence, and the elevation accuracy is 20 m with
95% confidence. The data were downloaded from the website: http://reverb.echo.nasa.gov/reverb/.

SRTM DEM: it is provided by NASA’s shuttle radar topographic mission (SRTM), covering
areas between 60◦N and 60◦S. According to its accuracy, SRTM DEM can be divided into SRTM1
and SRTM3, with the corresponding resolution of 30 m and 90 m, respectively. The SRTM3 DEM
is available for over 80% of the globe. SRTM1 DEM was also produced but is not available for all
countries. The resolution of the DEM data used in the following experiments is 90 m. The vertical
accuracy of the DEM is reported to be less than 16 m. The data were downloaded from the website:
http://srtm.csi.cgiar.org/download.

IN 2011–2013: 2011–2013 Indiana statewide LiDAR, provided by the OpenTopography facility
with support from the National Science Foundation under NSF Award Numbers 1833703, 1833643
and 1833632. Ownership of the data products resides with the State of Indiana. All Lidar, DEM
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and ancillary data products produced through this project are public domain data. The data were
downloaded from the website: https://portal.opentopography.org.

As shown in Figure 1, in the experiments, we mainly used the following six datasets, where
Figure 1a–c is with different resolutions in the same region and Figure 1d–f are of small overlap with
the same resolution. For the first three data (Figure 1a–c)—although their resolutions and accuracy
are different—trends of their topography are basically coincident from a macro perspective. From the
microscopic view (Figure 1f,g), with the decreasing resolution, their details become poor and blurred,
which only reflects the overall distribution and many small cliffs were ignored. Figure 1d,e is simulated
LiDAR point clouds in flat and rough terrain, where Line 1 and Line 2 (Figure 1d), Line 3 and Line 4
(Figure 1e) are only partial overlapped. Their detailed information are reported in Table 1.
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Line 2 17,000 m* 60,000 m 2 m 120 m 7,418,831 

Figure 1. Datasets used in experiments. (a–c) are the simulated point clouds of SRTM 90, ASTER 30
and ALOS 12, respectively, which have different resolutions in the same region; (d,e) are simulated
LiDAR point clouds in flat and rough terrain, where Line 1 and Line 2 (d), Line 3 and Line 4 (e) are only
partial overlapped; (f) is the simulated light detection and ranging (LiDAR) point clouds from airborne
LiDAR point clouds and (g) are detail comparison of three datasets in DEM and contours, respectively.

Table 1. Information on simulated LiDAR point clouds.

Figure 1 Dataset Area Vertical
Resolution

Parallel
Resolution Points

(a) SRTM 90 58,281 m * 57,505 m 90 m 90 m 226,426
(b) ASTER 30 58,281 m * 57,505 m 30 m 30 m 2,037,003
(c) ALOS 12 58,281 m * 57,505 m 12 m 12 m 12,388,722

(d) Line 1 17,000 m * 60,000 m 2 m 120 m 7,418,831
Line 2 17,000 m * 60,000 m 2 m 120 m 7,418,831

(e) Line 3 17,000 m * 60,000 m 2 m 120 m 7,445,621
Line 4 17,000 m * 60,000 m 2 m 120 m 7,445,621

(f) IN-1 15,483 m * 24,341 m 1 m 1 m 150,274,036
IN-2 15,638 m * 25,353 m 1 m 1 m 158,146,927

* It is worth noting that although the resolutions of the above data are different, they were first downsampled to
120 m in the experiment to make them sparser.

https://portal.opentopography.org
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3. Methodology

As shown in Figure 2, similar to a majority of descriptor-based registration methods, the proposed
ridgeline-based terrain co-registration for satellite LiDAR point clouds is composed of several steps:
ridgeline-based keypoint extraction, stable LRF construction, voxel descriptor generation, MCMF-based
feature-matching, transformation matrix-based clustering and Rodriguez-LS-based registration, which
are respectively introduced below.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 23 

 

(e) 
Line 3 17,000 m* 60,000 m 2 m 120 m 7,445,621 
Line 4 17,000 m* 60,000 m 2 m 120 m 7,445,621 

(f) 
IN-1 15,483 m* 24,341 m 1 m 1 m 150,274,036 
IN-2 15,638 m* 25,353 m 1 m 1 m 158,146,927 

*It is worth noting that although the resolutions of the above data are different, they were first downsampled to 
120 m in the experiment to make them sparser. 

3. Methodology 

As shown in Figure 2, similar to a majority of descriptor-based registration methods, the 
proposed ridgeline-based terrain co-registration for satellite LiDAR point clouds is composed of 
several steps: ridgeline-based keypoint extraction, stable LRF construction, voxel descriptor 
generation, MCMF-based feature-matching, transformation matrix-based clustering and Rodriguez-
LS-based registration, which are respectively introduced below. 

 
Figure 2. Workflow of the proposed method. 

3.1. Ridgeline-Based Keypoint Extraction 

Satellite LiDAR point clouds are extensive, enormous and sparse and its feature varies slightly 
on a local surface. Ridgelines, as one of the important macroscopic topographic feature lines [41], are 
stable and distinctive when point clouds are sparse. Thus, this study designs a ridgeline-based 
keypoint extraction method. 

As shown in Figure 3, to reduce the number of points for subsequent processing, the original 
point clouds are downsampled and divided into grids first (the sampling distance and grid size are 
both set to 120 m in this study). Second, a mean filter with a window (size is set to 5*5) is conducted 
on the sampled data. By subtracting the averaged data from the sampled data, the outlined data are 
obtained. Then, to get ridgelines, outline point clouds are refined by an improved thinning method. 
By summarizing previous classical thinning algorithm [42], thinning rules for each iteration are 
defined as follows: (1) the deleted point must be the foreground point; (2) the deleted point must be 
the edge point; (3) the endpoint cannot be deleted; (4) the isolated point cannot be deleted; (5) the 
connectivity should be unchanged; (6) the edge should be deleted first. After refinement, a spatial 
clustering [43] is utilized to remove trivial points. Finally, intersections with ridgelines in at least 
three directions are extracted as keypoints. 

Figure 2. Workflow of the proposed method.

3.1. Ridgeline-Based Keypoint Extraction

Satellite LiDAR point clouds are extensive, enormous and sparse and its feature varies slightly
on a local surface. Ridgelines, as one of the important macroscopic topographic feature lines [41],
are stable and distinctive when point clouds are sparse. Thus, this study designs a ridgeline-based
keypoint extraction method.

As shown in Figure 3, to reduce the number of points for subsequent processing, the original
point clouds are downsampled and divided into grids first (the sampling distance and grid size are
both set to 120 m in this study). Second, a mean filter with a window (size is set to 5 ∗ 5) is conducted
on the sampled data. By subtracting the averaged data from the sampled data, the outlined data are
obtained. Then, to get ridgelines, outline point clouds are refined by an improved thinning method.
By summarizing previous classical thinning algorithm [42], thinning rules for each iteration are defined
as follows: (1) the deleted point must be the foreground point; (2) the deleted point must be the edge
point; (3) the endpoint cannot be deleted; (4) the isolated point cannot be deleted; (5) the connectivity
should be unchanged; (6) the edge should be deleted first. After refinement, a spatial clustering [43] is
utilized to remove trivial points. Finally, intersections with ridgelines in at least three directions are
extracted as keypoints.
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3.2. Stable LRF Construction

A unique and stable LRF plays a significant role in both a descriptor’s robustness and
descriptiveness [44]. A descriptor’s invariance to rigid transformation can be achieved by its LRF.
The core of LRF construction is to determine two stable axes, which is traditionally determined
by a coordinate or normal vector covariance matrix. Usually, the maximum eigenvector is chosen
as the X-axis, while the minimum is the Z-axis [23,44,45]. However, the direction of these LRF
is ambiguous and through experiments (presented in Section 5.2), it is found that the minimum
eigenvector decomposed by 3D coordinate covariance matrix is relatively more stable and unique than
other two eigenvectors (Figure 4a), while the maximum eigenvector decomposed by normal vector
covariance matrix is the same (Figure 4b). Therefore, inspired by [46], the 3D coordinate covariance
and normal vector covariance are combined to construct a stable LRF.
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Figure 4. Local-reference frame (LRF) construction. (a,b) are, respectively the LRF constructed by
coordinate covariance matrix and normal vector covariance matrix, (c) is the proposed LRF combining
coordinate and normal vector covariance.

Once per keypoint pi is detected, neighbor points qj in the local surface Si = {qj, || qj − pi || < R}
are obtained by a radius R, where ||qj − pi|| is the distance between keypoint pi and neighbor points
qj. Moreover, their 3D coordinate cj (x, y, z) and normal vector nj (a, b, c) are, respectively used to
construct the 3D coordinate covariance (Equation (1)) and the normal vector covariance (Equation (2)).
Then, a PCA (Principal Component Analysis) decomposition is, respectively used for two covariances
to acquire their eigenvectors. Let the minimum eigenvector of the 3D coordinate covariance be Z3d
and the maximum eigenvector of the normal vector covariance be Xnormal. The LRF is defined as
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Equations (3)–(5), where ci, ni are the coordinate and normal vector of keypoint pi. To remove the
ambiguity of LRF, the Xnormal and Z3d axes are oriented towards the majority direction of vectors [47].

C =
1∑

q j∈Si

(R−
∣∣∣∣∣∣q j − pi

∣∣∣∣∣∣)
∑
q j∈Si

(R−
∣∣∣∣∣∣q j − pi

∣∣∣∣∣∣)(c j − ci)(c j − ci)
T (1)

C =
1∑

q j∈Si

(R−
∣∣∣∣∣∣q j − pi

∣∣∣∣∣∣)
∑
q j∈Si

(R−
∣∣∣∣∣∣q j − pi

∣∣∣∣∣∣)(n j − ni)(n j − ni)
T (2)

Z = Z3d (3)

X = Z×Xnormal (4)

Y = Z×X (5)

3.3. Descriptor Generation

Voxelization is an outstanding surface representation strategy with high efficiency in both
computation and storage [48]. It has been extensively utilized in robotics and computer vision field [23].
Considering point clouds of ridgelines with wide footprints and sparse density, 3D voxelization is of
high redundancy. Thus, a 2D rasterization is applied for feature description.

Once the LRF of each keypoint pi is established, the local surface Si is first transformed into a
new coordinate system according to its LRF to keep rotation and translation invariance. Considering
that the Z-axis of LRFs is more stable compared with its X and Y axes, the transformed local surface
Si’ is projected onto the XY plane of the LRF (Figure 5a). Then, the projected plane Sp is divided
into 2D rasters with the number of g ∗ g (Figure 5b). Further, a raster is coded according to whether
it contains points or not. As shown in Figure 5c, if the raster contains points, it is coded as ‘1’,
otherwise, it is ‘0’. Thus, far, after all rasters in the neighborhood are coded, the final descriptor of the
keypoint pi is generated by integrating all labels into a bit string with a length of g ∗ g (for example,
{000000010000......0000000100000}).
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Figure 5. Descriptor generation. (a), (b) and (c) are sketch map of transformed local surface, rasterization
and coding.

3.4. Max Flow Min Cost-Based Graph-Matching

Similar to our previous work [45], after the descriptor generation, we define the length of the
descriptor minus Hamming distance as the similarity score, where the Hamming distance is the
number of ‘1’ in x XOR y (x and y are binary descriptors). Following, a feature-matching strategy
is required. Traditional matching strategies, such as nearest neighbor (NN) or nearest neighbor
distance ratio (NNDR)-based strategies, tend to fall into a local optimum [49]. The global strategy, KM
(Kuhn_Munkres) algorithm adopted in our previous work [45], has a shortcoming that its matching
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matrix must be square. However, factually, the amount of keypoints in the target and source is not equal,
and matches with small similarities usually do not need to be considered. Thus, an efficient matching
strategy called the minimum cost–maximum flow (MCMF) [50] is introduced for the non-square
sparse matrix.

Graph construction: as shown in Figure 6, the capacity cost graph G = (V, E, c, w) in MCMF
algorithm is constructed as follows: the graph G has N nodes which include one virtual source node
vs, one virtual sink node vt, one layer vi (1 ≤ i < m) corresponding to keypoints in the source and
one layer vj (m ≤ j < N) corresponding to keypoints in the target. For arcs e = (vs, vi) or e = (vj, vt)
connected to the source node vs or sink node vt, their capacity csi or cjt are set as 1 and their cost wsi

and wjt of unit flow is 0. For other arcs e = (vi, vj), their capacity cij is set as 1, while their cost of unit
flow wij is set as 1-sij (sij is the similarity between the keypoint vi and keypoint vj). Let f be a feasible
flow on capacity cost network G, the cost of the flow f is defined as w( f ) =

∑
(vi,v j)∈E wi j fi j, where fij is

the actual flow on each arc e = (vi, vj).
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Graph-matching: after the capacity cost graph G is constructed, a minimum cost–maximum flow
(MCMF) strategy is adopted to find a feasible maximum flow f = { f1, f2, f3, . . . , fk} with k matching
pairs (k is a given non-negative value) and total minimum cost w(f). In each iteration of the augmented
path searching, a weighted residual digraph (Figure 6a) is constructed according to the current cost
flow graph G. Each arc e = (vi, vj) in the capacity cost graph is decomposed into two mutually inverse
arcs vij (colored in black in Figure 6a) and vji (colored in orange in Figure 6a). The capacity and cost of
inverse arcs are defined as follows, where its capacity cji = 1 − cij and its cost wji = −wij. Through each
flow fij, the correspondence (vi, vj) can be obtained. The detailed steps are shown in the Appendix A,
Table A1.

3.5. Transformation Matrices-Based Clustering

After graph-matching, there are still a large number of mismatches (shown in Figure 7a). However,
in previous literature [15,23,24,26], RANSAC and 4PCS-based algorithms were frequently used to
deal with noise, which do not make full use of all correct matching pairs. Thus, considering that
the correct matches’ transformation matrix is of high consistency, while the wrong ones are diverse,
a transformation matrix-based clustering is applied to eliminate mismatches.

3.5.1. Transformation Matrix Computation

Theoretically, if only 3D coordinates of correspondences are used, at least three correspondences are
required to solve a transformation matrix between two 3D models. Raposo and Barreto [30] calculated
the transformation matrix by two correspondences and their normal vectors. It is noteworthy that,
if the LRF of keypoints has been established, only one correspondence is adequate [23]. Therefore,
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we use one correspondence and its LRF to calculate its transformation matrix. The equation is shown
as follows:

Ri = LT
i (L

S
i )
−1

(6)

Ti = qT
i −RipS

i (7)

where Ri is the rotation matrix, Ti is the translation matrix, pS
i and qT

i is a correspondence in the model
and scene. LS

i and LT
i are LRFs, respectively located at keypoints pS

i and qT
i .

3.5.2. Maximum Sample Set Chosen by Clustering

Traditional RANSAC-based methods are commonly applied to remove mismatches, which are
time-consuming and sensitive to high outlier ratios. Considering that correct matches are of high
consistency, while wrong ones are diverse, Yang et al. [51] proposed a consistency voting (CV) method,
however, an initial voting set should be predefined. Inspired by that, a transformation matrix-based
clustering is adopted to eliminate mismatches without a predefined initial voting set.

It is clearly shown in Figure 7a that transformation matrices of correct correspondences are always
consistent with each other (especially translation matrix), whereas incorrect correspondences are
rarely compatible with either correct or incorrect ones. Thus, two consistent requirements, translation
and rotation, are considered to judge whether two correspondences belong to the same cluster or
not. As reported in Equations (8) and (9), for two correspondences with rotation and translation
matrices (Ri, Ti), (Rj, Tj), if the deviation of rotation and translation matrix Ar, AT are, respectively less
than thresholds, they are considered as one cluster; otherwise, they belong to two different clusters.
In this study, the rotation threshold is set as 5◦, and the translation threshold is 5 mr (mesh resolution,
the average distance between points).

Ar =
180
π

arccos
trace(Ri•RT

j ) − 1

2
(8)

AT =

√
(Ti − Tj

)T
•(Ti − Tj

)
(9)

Details of the transformation matrix-based clustering algorithm are shown in the Appendix A,
Table A2. Once all pairs are labeled, pairs with the same label belong to one cluster. Finally, the cluster
with the maximum size is chosen as the maximum similar set, and other clusters are eliminated (as
shown in Figure 7b).
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3.6. Rodriguez and LS-Based Registration

Once the maximum similar set is obtained, the relationship between source and target can be
expressed as Equation (10) [52–54], where (XTi , YTi , ZTi )

T and (XSi , YSi , ZSi )
T are, respectively 3D
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coordinates of correspondences in the target and source, R is a rotation matrix and (T1, T2, T3)T is
a translation matrix. Because the number of observations is greater than the number of necessary
observations, a least square (LS) algorithm is widely applied to solve parameters. However, because
the rotation matrix R is nonlinear in Equation (10), a Gauss–Markov (GM) model is usually established
for iterative calculation [34], which is time-consuming. For simplification, a Rodriguez matrix [53,54] is
applied instead of the transformation matrix, where the iterative calculation can be effectively avoided.

XTi

YTi

ZTi

 = R


XSi

YSi

ZSi

+


T1

T2

T3

 (10)

As reported in Equation (11), a Rodriguez matrix S is a skew-symmetric matrix, which is directly
composed of three independent parameters (a, b, c). The Rodriguez matrix has an important character
Equation (12), which is greatly helpful when solving parameters. Relationships between the rotation
matrix R and the Rodriguez matrix S are reported in Equations (13) and (14). By transforming the
rotation matrix R into a Rodriguez matrix S, it can effectively transform the observation equation from
nonlinear into linear (Equation (15)). The process of the Rodriguez-LS-based method is shown in the
Appendix A, Table A3. This method does not involve a solution of trigonometric and anti-trigonometric
function in the calculation process, and the calculation accuracy is slightly higher than the traditional
seven-parameter estimation methods.

S =


0 c

2 −
b
2

−
c
2 0 a

2
b
2 −

a
2 0

 (11)

(I − S)T = I + S, (I + S)T = I − S (12)

R
3×3

= ( I
3×3
− S

3×3
)( I

3×3
+ S

3×3
)−1 (13)

RT = R−1 = (I + S)T(I − S) (14)

1
2


0 −ZT ji −ZS ji YT ji + YS ji

ZT ji + ZS ji 0 −XT ji −XS ji

−YT ji −YS ji XT ji + XS ji 0




a
b
c

 =


XS ji −XT ji

YS ji −YT ji

ZS ji −ZT ji

 (15)

4. Criteria

To quantitatively evaluate the results of the proposed co-registration method, several criteria are
applied. The criteria for keypoint extraction, LRF construction, feature-matching and registration are,
respectively introduced from Section 4.1 to Section 4.4.

4.1. Criteria for Keypoints Extraction

Traditionally, there are two main traits to quantitatively evaluate extracted keypoints: repeatability
and distinctiveness. Repeatability is an ability to detect the same keypoints accurately under various
nuisances, such as noise corruption, density variation and partial occlusion, while distinctiveness is
an ability to be effectively described and matched under wrong correspondences, which is always
measured in combination with a specific descriptor [55]. Thus, in this section, only the repeatability is
adopted for keypoint evaluation.

The repeatability includes two aspects: absolute repeatability rabs and relative repeatability rrel.
As reported in Equation (16), a keypoint pi in the model is said to be repeatable if the distance from
its nearest neighbor qj in the scene is less than a threshold ε after true transformation (Rt, Tt). In this
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study, this threshold ε is set to 2 mr. If there are K keypoints extracted in the model, and meanwhile k
keypoints are repeatable, then the absolute and relative repeatability can be computed as Equation (17).∣∣∣∣∣∣∣∣Rtpm

i + Tt − qs
j

∣∣∣∣∣∣∣∣< ε (16)

rabs = k, rrel =
k
K

(17)

4.2. Criteria for LRF Construction

A stable LRF is of great significance to the distinctiveness and robustness of LRF-dependent
descriptors, as its invariance to rigid transformations is achieved by LRF. The direction consistency of
LRFs have a greater impact on the description encoding, as the contrary direction of LRFs will result in
a completely different coding sequence [44]. Thus, a criterion, direction consistency is defined to judge
the error of each coordinate axis.

Let Lp (Lpx , Lpy , Lpz ) and Lq (Lqx , Lqy , Lqz ) be two LRFs, respectively located on two keypoints pi
and qi on the source and target. If the distance between two keypoints is less than a threshold η (in this
study, it is set as 1 mr) after true transformation, then, the dot product of each axis is computed as
Equation (18). The X-axis is regarded as consistent if the dot product between two axes Lpx and Lqx is
larger than ‘0’, which is the same for Y-axis and Z-axis.

cosθx = Lpx ∗ Lqx , s.t.
∣∣∣∣∣∣p− q

∣∣∣∣∣∣< η (18)

cosθy = Lpy ∗ Lqy , s.t.
∣∣∣∣∣∣p− q

∣∣∣∣∣∣< η (19)

cosθz = Lpz ∗ Lqz , s.t.
∣∣∣∣∣∣p− q

∣∣∣∣∣∣< η (20)

4.3. Criteria for Feature-Matching

To quantitatively evaluate the performance of the proposed feature-matching method, the number
of correct matches Cp is adopted. When the distance ||qj − Tpi|| between the keypoint pi in the source and
the keypoint qj in the target is smaller than a threshold s (7.5 mr in this study), pi and qj are considered
as a corresponding keypoint pair (T is the true transformation matrix). A match is considered as correct
when the corresponding descriptors’ keypoints are corresponding keypoint pairs [44].

As one of the widely used measurements in the literature [23,45], the recall and precision are
calculated as follows: the precision Pr is calculated as the number of correct descriptor matches with
respect to the total number of descriptor matches (Equation (21)), while the recall Re is the number of
correct descriptor matches with respect to the number of corresponding keypoint pairs (Equation (22)).
“#” is the total number of samples from a given category.

Pr =
#Cp

#descriptor matches
(21)

Re =
#Cp

#corresponding keypoint pairs
(22)

4.4. Criteria for Registration

To quantitatively evaluate the performance of the proposed registration method, several criteria
are adopted in the experiments: accuracy of rotation matrix Ar (Equation (23)) and ranslation matrix AT

(Equation 24)). Additionally, to assess the performance of gross error elimination, the total positioning
error Dsum (Equation (25)) and error in X, Y and Z axes Dx, Dy, Dz of remained matches (Equation (26))
are calculated.

Ar =
180
π

arccos
trace(R1•RT

2 ) − 1

2
(23)
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AT =
√

(T1 − T2)
T
•(T1 − T2

)
(24)

Dsum =
1
n

n∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣pi − qi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (25)

Dx =
1
n

n∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣pxi − qxi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, Dy =

1
n

n∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣pyi − qyi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, Dz =

1
n

n∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣pzi − qzi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (26)

In above equations, R2 and T2 be the calculated rotation and translation matrix, while R1 and T1 are
the true rotation and translation matrix; n is the amount of remained correspondences; ||pi − qi|| is the
distance between the correspondence pi in the source and qi in the target after transformation (R2, T2);
(px, py, pz) and (qx, qy, qz) are, respectively the x, y and z coordinates of pi and qi.

5. Results

To test the feasibility of the proposed co-registration method, a set of experiments were conducted
on three kinds of mimetic satellite LiDAR point clouds and experimental results of the above five
steps are, respectively analyzed in follows with the above criteria. Since the performance of the voxel
descriptor has been discussed in detail in previous literature [23,32,56], it is not discussed in this study.
It is worth noting that when adding noise in following experiments, we add Gaussian noise with a
standard deviation of 0.1 mr, 0.2 mr, 0.3 mr and 0.5 mr (mr denotes mesh resolution) to them.

5.1. Results of Keypoint Extraction

For extensive, enormous and sparse satellite LiDAR point clouds, a ridgeline-based keypoint
extraction is applied, where keypoints are defined as intersections of ridgelines. To reduce the amount of
point clouds for subsequent processing, the original point clouds is first, downsampled. Figure 8 shows
the results of ridgeline and keypoint extraction. It can be seen that extracted ridgelines can well reflect
the topographic characteristics and extracted keypoints, which are colored in blue, are concentrated in
the rough area and sparse in the flat area.
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To get the change in the number of points during this step, the number and efficiency of three point
clouds with different resolutions in the same area are recorded as Table 2, where the sampling distance
is set as 120 m. It can be seen from table that the number of points of extracted ridgelines is greatly
reduced compared with the original point clouds or sampled point clouds. Thus, taking ridgelines as
neighborhood information for feature description instead of all point clouds can effectively accelerate
the subsequent processing speed. The computational time of ALOS 12 is much higher than others.
This is because that a large amount of time is taken to sample. Except for sampling, the time of keypoint
extraction of the three data are about 0.3 s.
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Table 2. Number and efficiency of keypoint extraction.

Dataset Original Sampling Ridgelines Keypoints Efficiency (s)

ALOS 12 12,388,722 122738 24,791 2430 2.138
ASTER 30 2,037,003 122650 23,140 2291 0.901
SRTM 90 226,426 122233 24,723 2533 0.651

In addition, the absolute and relative repeatability rabs, rrel of keypoints with different Gaussian
noise affected are presented as Table 3. It can be seen that, with noise increasing, the relative repeatability
of extracted keypoints declines on all three datasets. However, the absolute repeatability of the SRTM
90 decreases first and then increases, while that of ALOS 12 and ASTER 30 decreases all the time. This is
because that the point distance of SRTM 90 is much larger than ALOS 12 and ASTER 30. Therefore, the
added noise is relatively larger and has a great influence on the local surface, resulting in more points
extracted as keypoints.

Table 3. Repeatability of keypoints with different levels of noise.

Data
0 mr 0.1 mr 0.2 mr 0.3 mr 0.5 mr

rabs rrel (%) rabs rrel (%) rabs rrel (%) rabs rrel (%) rabs rrel (%)

ALOS 12 2430 100 2322 95.55 2314 93.87 2286 92.88 2156 87.18
ASTER 30 2291 100 2178 86.05 2205 84.48 2041 78.31 1999 73.11
SRTM 90 2533 100 1693 51.08 2068 43.76 2352 39.53 2507 37.14

5.2. Results of LRF Construction

The direction of LRF has a more important impact on feature coding than angle deviation.
To evaluate the direction consistency of the constructed LRF, experiments are conducted on the above
three datasets with varying noise, where the sources have noise interference, and the targets have no
noise interference. For a fair comparison, the direction consistency of LRF decomposed by coordinate
covariance and normal vector covariance are both calculated with the same parameters.

Table 4 lists the results of the above three LRF construction methods on three datasets with
different levels of noise. It is clear that, from ALOS 0.1 mr to ASTER 0.3 mr, the LRF constructed by
coordinate outperforms the LRF constructed by the normal vector. However, with noise continuously
increasing, results are on the contrary from SRTM 0.1 mr to SRTM 0.3 mr. It shows that when the noise
is large, the LRF constructed by the normal vector is more robust. Additionally, it is clear that the
direction of the Z-axis decomposed by coordinate is relatively more stable than the other two axes
(Y-axis is determined by X-axis and Z-axis), while the X-axis decomposed by the normal vector is
relatively steadier than the other two axes. Thus, by combining two matrices, the proposed method
makes full use of the above two methods and the X and Z axes constructed by the proposed method
are much more directionally consistent than either.

Table 4. Direction consistency of three LRF construction methods.

Dataset
Coordinate Normal Vector Proposed Method

X Y Z X Y Z X Y Z

ALOS 0.1 mr 2001 1997 2097 2019 1867 1915 2026 2034 2097
ALOS 0.2 mr 1925 1922 2049 2014 1874 1890 2013 2016 2049
ALOS 0.3 mr 1905 1898 2018 1982 1868 1897 1980 1985 2018
ASTER 0.1 mr 1726 1721 1873 1802 1568 1608 1807 1812 1873
ASTER 0.2 mr 1414 1405 1548 1516 1448 1479 1522 1531 1548
ASTER 0.3 mr 1350 1347 1479 1430 1227 1263 1422 1431 1479
SRTM 0.1 mr 528 526 601 577 539 565 584 592 605
SRTM 0.2 mr 169 165 212 200 183 191 200 204 212
SRTM 0.3 mr 113 111 156 153 136 141 148 154 156
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5.3. Results of Feature-Matching

To evaluate the proposed MCMF-matching method, a set of experiments are conducted on three
simulated satellite LiDAR point clouds with different resolutions in the same area. The results are
reported in Table 4. For comparison, experiments are also conducted on the previous KM-matching
algorithm, which has shown that it performs better than NN and NNDR-based strategies in previous
studies [45]. In Table 5, Ks is the number of keypoints on the source and Kt is the amount of keypoints
on the target, while Mp is the amount of matching pairs, Cp is the amount of correct matches, Pr is the
precision and Re is the recall.

Table 5. Results of descriptor-matching.

Dataset Ks Kt
KM Algorithm MCMF Algorithm

Mp Time (s) Cp Pr (%) Re (%) Mp Time (s) Cp Pr (%) Re (%)

ASTER & ALOS 2291 2430 2430 5.890 647 26.6 37.7 937 0.088 528 56.4 30.8
ASTER & SRTM 2291 2533 2533 7.087 419 16.5 27.1 527 0.026 319 60.5 20.6
SRTM & ALOS 2533 2430 2533 3.632 557 22.0 34.9 589 0.039 433 73.5 27.1

It can be seen that the efficiency of the MCMF algorithm is much higher than that of the KM
algorithm on above three datasets. This is because the KM algorithm is suitable for square matrices,
while MCMF can handle sparse non-square matrices. On one hand, in KM algorithm, when the number
of keypoints on the source and target is not equal, keypoints with less amount is expanded by adding
some vertices or edges of 0 to make the matching matrix be square, adding much redundant data
(for example, (2430–2291) ∗ 2430 in the first data); on the other hand, correspondences of similarity
less than a threshold (0.4 in the study), usually do not need to be considered, as it would rarely be a
correct match. In this case, a large proportion of matches with small similarity are skipped in MCMF
algotirhm, which greatly improve the efficiency. However, some correct correspondences with their
similarities less than the threshold are also ignored, resulting in the number of correct matches in the
MCMF algorithm is a bit lower than the KM algorithm.

5.4. Results of Registration

Random sample-based registration methods (such as RANSAC or 4PCS) are usually used to
deal with mismatches. However, these methods are of high randomness, as only three or four
correspondences are utilized to determine the final transformation matrix, resulting in many correct
matches not participating in it. Therefore, this paper proposes a clustering and Rodriguez-LS-based
registration method. To test its applicability, two sets of experiments are carried out: (1) registration
with different resolutions in the same area; (2) registration with the same resolution of small overlap.

Figure 9 shows the registered results of the proposed method, where Figure 9a–c is the result
of point clouds with different resolutions in the same region and Figure 9d–e is the result of point
clouds of small overlap with the same resolution. As can be seen from Figure 9a–c—although details of
ridgelines are different due to resolutions (12 m > 30 m > 90 m)—the distribution of extracted ridgelines
is basically consistent and all point clouds are well coincided with all mismatches removed. It is
obvious from Figure 9d–e that—when the point clouds only partially overlaps—most of the keypoint
pairs in the overlapping area are correctly matched and although there is a lack of matches in the right
overlapping region in Line 1 & Line 2, both point clouds are well registered no matter on the flat area
or rough area.
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Table 6 reports the evaluations of above registration results of the proposed method compared with
the BSC [44]+KM+RANSAC algorithm, where BSC is a feature descriptor, KM is a feature-matching
strategy, and RANSAC is used for registration. It is found that, the rotation and translation deviations
of the proposed method are much smaller than the BSC [44]+KM+RANSAC method. There are two
reasons: (1) the keypoints we adopted are the intersection of the ridgelines, which is of high uniqueness;
the keypoints adopted in the BSC are not specially designed for terrain point clouds and are not
distinctive; (2) for the proposed method, after removing mismatches, the remained correspondences of
above three datasets are widely distributed in the overlapping area and made full use of for LS-based
registration and then the transformation parameters are solved by minimizing the square sum of
correspondences’ positioning errors; however, the RANSAC algorithm estimates the transformation
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matrix by randomly and iteratively selecting three correspondences, which are sparsely distributed in
the overlapping area. Positioning errors of correspondences, especially the correspondences of the last
iteration, will directly affect the registration accuracy.

Table 6. Evaluations of above registration results *.

Data
The Proposed Method BSC [44]+KM+RANSAC

1O 2O 3O 4O 5O 6O 1O 2O 3O 4O 5O 6O

Ar 0 0 0 0.2 0 0 9.3 36.2 13.1 238.0 974.9 0
AT 47.1 18.3 33.1 9.9 0 22.2 165.1 295.9 164.2 2857.2 19,196.7 0

Dsum 66.1 80.7 66.8 56.0 1.4 15.3 87.0 234.7 126.6 511.6 556.3 1.3
Dx 51.9 67.4 39.5 6.1 0 18.1 117.3 87.9 129.5 292.9 387.8 0
Dy 59.6 75.1 62.4 3.0 0 14.7 79.2 192.6 120.4 478.4 517.9 0
Dz 20.3 22.9 17.0 54.9 0 1.5 24.1 107.6 29.7 104.6 118.3 0
Tre 8.55 7.19 8.56 8.40 12.0 2.83 602.4 469.0 490.1 628.1 626.3 183.2

* The unit of Ar is the degree, while the units of Dsum, Dx, Dy, Dz,and AT are meter. Tre is the computational time
of registration, whose unit is second. For simplicity, we use 1O– 6O to represent ASTER & ALOS, ASTER & SRTM,
SRTM & ALOS, Line 1 & Line 2, Line 3 & Line 4 and IN-1 & IN-2, respectively.

It is worth noting that, for Line 1 & Line 2 and Line 3 & Line 4, the registration of BSC [44] + KM +

RANSAC method fails because of the small overlapping areas. When the overlapping area is large,
such as IN-1 & IN-2, both methods achieve are successful registration results. In terms of efficiency, the
proposed method of the above six datasets are much faster than the BSC [44]+KM+RANSAC method.
This is because this proposed method only extracts ridgelines as neighborhood feature information,
which greatly reduces the number of points processed.

6. Discussion

From the above experimental results, it can be seen that registration results are affected by many
factors, for example, resolution, noise and topography. The effect of resolution has been shown above
through registration results of different resolutions in the same area. In this section, attention will be
focused on the influence of different overlap, topography and noise on registration results. As shown
in Figure 10, Line 5 & Line 6 and Line 7 & Line 8, Line 9 & Line 10 and Line 11 & Line 12 have the same
overlapping areas, but the areas of Line 5 & Line 6, Line 9 & Line 10 are twice that of Line 7 & Line 8
and Line 11 & Line 12.
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6.1. Different Overlap

To discuss the influence of different overlap rates on registration results, a set of experiments were
conducted. For quantitative assessment, criteria for feature-matching and registration are utilized.
Their registration errors are reported in Table 7 compared with the BSC [44]+KM+RANSAC method.

From Table 7, we can see that, for the proposed method, since the above four point clouds could
achieve satisfactory registration results through this method, results of larger overlap outperform
the smaller ones, especially the Line 7 & Line 8. This is because when the overlap rate is small in
Line 5 & Line 6, the proportion of keypoints in the overlapping area to the whole extracted keypoints
becomes smaller. Therefore, when feature-matching, keypoints in the overlapping area have more
choices and are of higher probability to select mismatches, especially when the features in the
overlapping area are not obvious (such as Line 5 & Line 6 and Line 7 & Line 8). When the overlapping
rate is large (Line 7 & Line 8), keypoints in the overlapping areas account for more, and their
choices are less, resulting in less probability to select mismatches. Thus, the point clouds of large
overlap outperforms the small ones. It is worth noting that, if there are more correct pairs in
overlap areas participated in the calculation of the rotation matrix, the registration accuracy is
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higher, such as Line 7 & Line 8. Due to the almost identical correct matches in Line 9 & Line 10
and Line 11 & Line 12, the registration errors of both two point clouds are actually quite similar.
However, for the BSC [44]+KM+RANSAC method, for flat areas (Line 5 & Line 6, Line 7 & Line 8),
registration failed regardless of the overlap rates; for rough area and, registrations with high overlap
rates (Line 11 & Line 12) are more likely to success compared to samll overlap rates (Line 9 & Line 10).

Table 7. Registration errors of four datasets.

The Proposed Method BSC [44]+KM+RANSAC

Line 5 &
Line 6

Line 7 &
Line 8

Line 9 &
Line 10

Line 11 &
Line 12

Line 5 &
Line 6

Line 7 &
Line 8

Line 9 &
Line 10

Line 11 &
Line 12

Mp 2377 1247 546 403 359 238 388 230
Cp 159 464 195 204 5 9 13 25

Ar (◦) 0.14 0 0 0 944.2 842.6 357.6 338.6
AT (m) 52.1 0.4 3.0 6.1 34,956.4 15,269.6 10,918.4 1271.4

Dsum (m) 158.8 2.6 29.0 34.9 728.9 845.6 795.6 362.8
Dx (m) 142.2 2.2 62.8 61.5 429.6 508.8 462.7 361.6
Dy (m) 91.5 1.1 17.2 22.4 552.2 794.6 753.5 141.5
Dz (m) 114.3 0.7 15.2 15.3 398.2 169.0 243.6 307.3

6.2. Different Topography

The effect of topography on registration results can be mainly divided into two aspects, one is the
keypoint extraction, the other is feature-matching, which are both finally reflected in the number of
correct correspondences.

As shown in Table 7, for the proposed method, when the overlapping changes, the number of
correct matches in Line 5 & Line 6 and Line 7 & Line 8 varies greatly, while that of Line 9 & Line 10
and Line 11 & Line 12 stay stable. This is because of the different topography. The overlapping area
of Line 5 & Line 6 and Line 7 & Line 8 is flat (Figure 10a,b), while Line 9 & Line 10 and Line 11 &
Line 12 are rough (Figure 10c,d). When the overlap rate is small (Line 5 & Line 6), there are many
keypoints extracted. However, becuase their local surface is of low distinctiveness and there are more
choices to match, most of keypoints are mismatched (159 correct matches in 2377 matches). When
the overlap rate is large (Line 7 & Line 8), the amount of extracted keypoints reduces sharply (from
2377 to 1247). Therefore, keypoints in the overlap area have fewer choices for matching, resulting
in more correct matches (from 159 to 464). For Line 9 & Line 10 and Line 11 & Line 12, the change
of correct matches is not obvious with the overlap rate varying (from 195 to 204). This is because
when the overlap rate varies, although the amount of extracted keypoints changes, the number of
matches with similarity greater than the threshold just slightly changes (from 546 to 403) because of
their distinct features. However, for the BSC [44]+KM+RANSAC method, registration is often failed
when the overlapping area is flat (as Line 5 & Line 6, Line 7 & Line 8), but registration was successful
when the terrain is rough.

In short, for the proposed method, when the topography is rough in the overlapping area, the
variation of the correct matches is small with the overlap rate changing; when the topography is flat,
the number of correct matches fluctuates greatly.

6.3. Different Noise

To discuss the impact of noise on registration accuracy, experiments were conducted on
Line 11 & Line 12 compared with the BSC [44]+KM+RANSAC method, where Gaussian noise with a
standard deviation of 0.1 mr, 0.2 mr and 0.3 mr (mr denotes mesh resolution) is added to the Line 12.
To quantitatively assess registration results with varying Gaussian noise, criteria for feature-matching
and registration mentioned above are calculated and reported in Table 8.
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Table 8. Registration errors of point clouds with different noise.

The Proposed Method BSC [44]+KM+RANSAC

0 mr 0.1 mr 0.2 mr 0.3 mr 0 mr 0.1 mr 0.2 mr 0.3 mr

Mp 403 1371 1688 1763 230 247 247 242
Cp 204 192 156 112 25 11 11 7

Ar (◦) 0 0 0 0 338.6 154.6 191.2 812.6
AT (m) 6.1 5.3 8.0 31.7 1271.4 3023.9 2988.9 12,249.5

Dsum (m) 34.9 69.3 93.1 122.8 362.8 567.2 207.3 603.7
Dx (m) 61.5 60.0 81.1 68.0 361.6 422.1 362.4 420.5
Dy (m) 22.4 64.4 86.9 117.6 141.5 556.4 362.5 539.3
Dz (m) 15.3 18.7 26.1 21.9 307.3 97.1 22.6 222.6

It can be seen that with noise increasing, for the proposed method, the number of matching pairs
increases from 403 to 1763, while that of BSC [44]+KM+RANSAC method is almost no change at
all. This is because noise makes ridgelines trivial and many points without apparent features are
extracted as keypoints in the proposed method, while the BSC [44]+KM+RANSAC method used a ISS
(intrinsic shape signature) keypoint extraction, which is not greatly affected by noise. Additionally,
for the proposed method, the amount of correct matches gradually reduces from 204 to 112, which is
because increasing noise destroyed the original characteristics of ridgelines. Meanwhile, due to the
noise disturbed, the position error of correct pairs increases, resulting in the deviations (Dsum, Dx, Dy,
Dz) of correct correspondences raise after registration. However, the error of the transformation matrix,
especially the rotation matrix, is essentially consistent, which mainly owes to (1) almost all wrong
matches are eliminated by the transformation matrix-based clustering; (2) the optimal transformation
matrix is calculated by the Rodriguez-LS algorithm making use of all correct matches. However, for
the BSC [44]+KM+RANSAC method, as the noise increases, the registration error becomes larger, and
when the noise reached to 0.3 mr, the registration fails. It is worth noting that, due to the large footprint
of satellite LiDAR point clouds, the small error of the rotation matrix still has a great impact on the
matching deviation, especially on the edge.

7. Conclusions

A ridgeline-based terrain co-registration method is proposed to handle extensive, enormous and
sparse satellite LiDAR point clouds in rough areas. The presented method showed several merits
in experiments: (1) the number of points greatly reduced and keypoints was of high repeatability
and distinctiveness; (2) the proposed LRF is of high direction consistency; (3) the MCMF algorithm
could efficiently achieve a maximum similarity sum in a sparse-matching graph; (4) the transformtion
matrices based clustering makes full use of correct correspondences and can effectively eliminate
mismatches. However, there are many aspects that require improvement in future work in order to
overcome the limitations of ridgeline-based co-registration. In our cases, the experimental data are
simulated from worldwide DEMs and airborne LiDAR point clouds instead of the real satellite LiDAR
point clouds, which ignore the impact of platform jitter and atmospheric transmission. Additionally,
this method is proposed for rough areas, however, for the flat areas where has no or not enough
ridgelines, it will not perform well. Due to the limited research that is reported for registration of
satellite LiDAR point clouds, our work may inspire more researchers to work in this field and to
achieve better results.
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Appendix A

Table A1. Algorithm 1 minimum cost–maximum flow-Based Graph-Matching.

Input: Similarity Matrix
Output: Maximum Flow With Minimum Cost

(1) initialize the capacity cost graph G = (V, E, c, w); initialize the maximum flow as 0;
(2) construct weighted residual digraph;

(3) search an augmented path p from vs to vt in the residual digraph. If it is found, return to step 4; otherwise, return to step 6.
(4) search for a path with the minimum cost and maximum flow fij in augmented paths;

(5) update the cost and capacity of related arcs in current residual digraph and return to step 3;
(6) get a feasible maximum flow f = { f1, f2, f3, . . . , fk} with minimum cost, exit.

Table A2. Algorithm 2 Maximum Sample Set Chosen by Clustering.

Input: Initial Correspondences with Their Transformation Matrices, i = 0
Output: Cluster with The Maximum Size

(1) if the current stack T is empty, select any unmarked matching pair as a seed and put the seed in the stack with a label i;
(2) pop up the top pair of the stack and look for all unmarked pairs. If the differences between both translation and rotation are

less than thresholds, put it into the stack with a label i;
(3) repeat step (2) until the stack is empty;

(1) i++; repeat steps (1)–(3) until all pairs are marked.

Table A3. Algorithm 3 Rodriguez-LS-based Registration.

Input: Remained Correspondences
Output: Optimal Transformation Matrix

(1) list the observation equation: B
3(n−1)×3

X̂
3×1

= L
3(n−1)×1

(2) list the error equation: V
3(n−1)×1

= B
3(n−1)×3

X̂
3×1
− L

3(n−1)×1

(3) calculate X̂ according to the principle of least squares: X̂
3×1

= ( BT
3×3(n−1)

B
3(n−1)×3

)
−1 BT

3×3(n−1)
L

3(n−1)×1

(4) calculate the rotation matrix R according to Equation (11); R
3×3

= ( I
3×3
− S

3×3
)( I

3×3
+ S

3×3
)−1

(5) calculate the translation of all points in the maximum similar set:

[ Tx Ty Tz ]
T
=

1
n

n∑
i=1

([ XS
i YS

i ZS
i ]

T
−R[ XT

i YT
i ZT

i ]
T
)
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