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Abstract: Spectral similarity measures can be regarded as potential metrics for kernel functions,
and can be used to generate spectral-similarity-based kernels. However, spectral-similarity-based
kernels have not received significant attention from researchers. In this paper, we propose
two novel spectral-similarity-based kernels based on spectral angle mapper (SAM) and spectral
information divergence (SID) combined with the radial basis function (RBF) kernel: Power spectral
angle mapper RBF (Power-SAM-RBF) and normalized spectral information divergence-based RBF
(Normalized-SID-RBF) kernels. First, we prove these spectral-similarity-based kernels to be Mercer’s
kernels. Second, we analyze their efficiency in terms of local and global kernels. Finally, we consider
three hyperspectral datasets to analyze the effectiveness of the proposed spectral-similarity-based
kernels. Experimental results demonstrate that the Power-SAM-RBF and SAM-RBF kernels can
obtain an impressive performance, particularly the Power-SAM-RBF kernel. For example, when the
ratio of the training set is 20%, the kappa coefficient of Power-SAM-RBF kernel (0.8561) is 1.61%,
1.32%, and 1.23% higher than that of the RBF kernel on the Indian Pines, University of Pavia,
and Salinas Valley datasets, respectively. We present three conclusions. First, the superiority of the
Power-SAM-RBF kernel compared to other kernels is evident. Second, the Power-SAM-RBF kernel
can provide an outstanding performance when the similarity between spectral signatures in the same
hyperspectral dataset is either extremely high or extremely low. Third, the Power-SAM-RBF kernel
provides even greater benefits compared to other commonly used kernels when the sizes of the
training sets increase. In future work, multiple kernels combining with the spectral-similarity-based
kernel are expected to be provide better hyperspectral classification.
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1. Introduction

Hyperspectral data, which span the visible to infrared spectrum and cover hundreds of bands,
can provide important spectral information regarding land cover. Hyperspectral sensors record the
collected information as a series of images; these images provide the spatial distribution of solar
radiation reflected from a point of observation [1]. Such a high-dimensional spectral feature space
is suitable for a wide range of applications, including land-cover classification [1], ground target
detection [2], anomaly detection [3], and spectral unmixing [4].

High-dimensionality data from hyperspectral imaging also represents a significant challenge
for image classification [5,6]. Classification performance is strongly affected by the dimensionality
of the feature space (e.g., the Hughes phenomenon [7]). This problem can typically be simplified by
employing a feature extraction to reduce the dimensionality of the hyperspectral images (HSIs) while
maintaining as much valuable data as possible. Next, conventional statistical approaches, such as
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k-nearest neighbors, a maximum likelihood (ML) or Bayes classification method [8,9], and random
forest [10], are used to perform HSI classification.

Two impressive methods for HSI classification are kernel-based methods and spectral similarity
measures. Neither are affected by the Hughes phenomenon. Kernel-based methods, such as a support
vector machines (SVMs) [11], kernel Fisher discriminant (KFD) analysis [12], support vector clustering
(SVC) [13], the regularized AdaBoost (Reg-AB) algorithm [14], and other kernel-based methods [15,16],
can achieve strong robustness in terms of the Hughes phenomenon, and provide elegant ways to
handle nonlinear problems [7]. Such methods have attracted significant attention because they provide
superior and stable performance for HSI classification. Among these methods, SVMs are the most well
suited for high-dimensional data classification when the training samples are limited [17,18].

The key to the SVM method lies with the kernel functions, which have been focused as its
ability to solve the non-linear problem, and determines the mapping between the input and feature
spaces with high dimensionality. Commonly used kernels include linear, polynomial, radial basis
function (RBF), and sigmoid kernels, although there are other single kernel functions used in specific
application. For example, a Fisher kernel [12,19] uses the gradient of the log-likelihood with respect to
the parameters of a generative model as a feature for discriminative classifiers [20]. Lodhi et al. [21]
proposed a string subsequence kernel for categorizing text documents. Additionally, Wahba et al. [22]
proposed an analysis of variance kernel that defines joint kernels from existing kernels. Other kernels
include the Matérn kernel [23], histogram intersection (HI) kernel [24], and Laplacian kernel [25].
In HSI classification, a discrete space model and SVM were combined for HSI classification [26].
Xia [27] proposed a rotation-based SVM for HSI classification.

However, some kernels are limited by the complexity of images. Therefore, a number of
multiple-kernel methods have been developed for disease prediction [28], electroglottograph signal
classification [29], anomaly detection [30], genomic data mining [31], and kinship verification [32].
Meanwhile, multiple-kernel-based SVMs have also been widely applied to HSI classification [33,34],
as there is a very limited selection of a single kernel, which is able to fit complex data structures [35].
For example, subspace multiple-kernel learning MKL [36] uses a subspace method to obtain the
weights of the base kernels in a linear combination. Nonlinear MKL learns an optimal combined
kernel from predefined linear kernels to achieve better inter-scale and inter-structural similarity among
extended morphological profiles [37]. Other MKL methods include sparse MKL [38], class-specific
MKL [39], and ensemble MKL [40].

Spectral similarity measures are used to measure the spectral similarity between target and
reference spectral signatures and to implement HSI classification. Such measures are also unaffected
by the Hughes phenomenon. Commonly used spectral similarity measures include the spectral
angle mapper (SAM) [41], spectral information divergence (SID) [42], spectral correlation mapper
(SCM) [43], spectral gradient angle (SGA) [44], Euclidean distance (ED) [45], and SID×tan(SAM) and
SID×sin(SAM) [46]. Wang et al. [47,48] proposed frequency-domain-based spectral similarity measures
for HSI classification. Such measures can be used for anomaly detection [49], crop monitoring [50–52],
and land cover classification [53].

Researchers have also used spectral similarity measures as kernel functions for SVMs for HSI
classification. Mercier and Lennon [54] proposed two mixture kernels based on spectral angle mapper
(SAM)-based RBF (SAM-RBF) and spectral information divergence (SID)-based RBF (SID-RBF) kernels.
Fauvel et al. [55] also used the SAM-RBF kernel for HSI classification. The results indicated that
the SAM-RBF kernel is inferior to the RBF kernel. However, we experimentally determined that
spectral-similarity-based kernels still have certain advantages for HSI classification. We also propose
two novel types of kernels for HSI classification based on spectral similarity measures.

In this study, we first prove that both the SAM-RBF and SID-RBF kernels fulfill Mercer’s conditions
and that the two newly proposed spectral-similarity-based kernels are also Mercer’s kernels. Second,
we compare the efficiencies of the spectral-similarity-based kernels in terms of local and global kernels.
Finally, we employ these kernels in SVM on three hyperspectral datasets in classification experiments,
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where the classification accuracies and effects of the similarity between the spectral signatures and
sizes of the training sets are analyzed in detail.

2. Support Vector Machines

In this section, the SVM model is briefly reviewed. A detailed description can be found in [11].
The SVM model attempts to classify samples by tracing a maximum separating hyperplane in the
kernel space. Given a nonlinear mapping function φ(x), the discriminant function associated with the
separating hyperplane is defined as follows:

f (x) = wTφ(x) + b, (1)

where w is the vector normal to the hyperplane, and b is the closest distance to the origin of the
coordinate system. Because maximizing the distance between samples and the hyperplane is equivalent
to minimizing the norm of w, an SVM aims to solve the following problem:

min
w,ξi ,b
{1

2
‖w‖2

2 + C ∑
i

ξi}

s.t. yi(wTφ(xi) + b) ≥ 1, i = 1, 2, 3, ..., m,
(2)

where C controls the generalization capabilities of the classifier, and ξi is a positive slack variable
allowing permitted errors to be considered.

The above optimization problem above can be reformulated through a Lagrange function for
which the Lagrange multipliers can be found by means of dual optimization, leading to a quadratic
programming (QP) solution [11]. The solution can be identified by solving a Lagrangian dual problem
defined as follows:

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t.
m

∑
i=1

αiyi = 0,

αi ≥ 0, i = 1, 2, 3, ..., m,

(3)

where αi is a Lagrange multiplier. A kernel function K(xi, xj) is defined as follows:

K(xi, xj) = φ(xi)
Tφ(xj). (4)

Then, a nonlinear SVM can be defined when the kernel function K(xi, xj) satisfies Mercer’s
conditions. The popular kernels are defined as follows:

For the linear kernel,
K(xi, xj) = 〈xi, xj〉 (5)

For the polynomial kernel,
K(xi, xj) = (a〈xi, xj〉+ b)d (6)

For the radial basis function (RBF) kernel,

K(xi, xj) = e−
||xi−xj ||

2
2

2σ2 (7)
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3. Methods

3.1. Mercer’s Kernels

The flexibility of the SVM is mainly attributed to its formulation in terms of the kernel function.
A kernel function can be viewed as a similarity measure in the feature space corresponding to a
mapping of data into a high-dimensional space [56]. The kernel function decides the way of mapping
data into the high dimensional space, which leads to how high separability of data. Therefore,
exploring more efficient kernel is important to classification. A kernel function must satisfy Mercer’s
condition [57]. Mercer’s theorem presents the Mercer’s condition to justify if a kernel being the
Mercer’s kernel. Mercer’s theorem and the properties of Mercer’s kernels are as follows:

Mercer’s theorem: Let X be a Hilbert space. Suppose K : X ×X → IR is a continuous symmetric
function in L2(X 2). Then, there is a mapping Φ and an expansion

K(xi, xj) = ∑
n

Φ(xi)nΦ(xj)n (8)

if and only if, for any g(x) such that
∫

g(x)2dx is finite, we have∫
K(xi, xj)g(xi)g(xj)dxdy ≥ 0 (9)

where x1, x2, ..., xn ∈ X .
Mercer’s condition is an important requirement for obtaining a global solution for an SVM. It is

nontrivial to check Mercer’s condition, as indicated by Equation (9). However, it has been proven that
a positive definite kernel is equivalent to a dot product kernel [56]. In other words, any kernel that can
be expressed as

K(xi, xj) =
inf

∑
p=0

cp(xi, xj)
p, (10)

where cp are positive real coefficients and the series is uniformly convergent, satisfying Mercer’s
condition [58].

When proving or proposing a novel Mercer’s kernel, several properties of such kernel
are applicable.

Property 1: If K1, K2, K3... are Mercer’s kernels and K〈xi, xj〉 = limn→∞Kn〈xi, xj〉, then K is a valid
Mercer’s kernel.

Property 2: If K1, K2 are Mercer’s kernels, a1 ≥ 0, a2 ≥ 0 and K〈xi, xj〉 = a1K1〈xi, xj〉+ a2K2〈xi, xj〉,
then K is a valid Mercer’s kernel.

Property 3: If K1, K2 are Mercer’s kernels and K〈xi, xj〉 = K1〈xi, xj〉K2〈xi, xj〉, then K is a valid
Mercer’s kernel.

3.2. Spectral-Similarity-Based Kernels and Proofs

Kernel functions can be viewed as metrics or similarity measures in the feature space
corresponding to a mapping of data into a high-dimensional space [56]. Spectral similarity measures are
used in HSI analysis to weigh the similarity and discrimination between a target and reference spectral
signature. Therefore, a spectral similarity measure is a type of metric in the spectral feature space.
Given two spectral vectors A = (A1, A2, A3, · · · , An)T and B = (B1, B2, B3, · · · , Bn)T , the spectral
angle mapper (SAM) and spectral information divergence (SID) can be defined as follows:

SAM:

SAM = cos−1
(
〈A, B〉
||A|| · ||B||

)
, (11)

SID:
SID(A, B) = −(D(A||B) + D(B||A)), (12)
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where

D(A||B) =
n

∑
i=1

pi log
(

pi
qi

)
, (13)

D(B||A) =
n

∑
i=1

qi log
(

qi
pi

)
, (14)

and p = (p1, p2, p3, · · · , pn)T and q = (q1, q2, q3, · · · , qn)T are the probability vectors from A and B,
respectively. Additionally, pi and qi are defined as follows:

pi =
Ai

∑n
i=1 Ai

, (15)

qi =
Bi

∑n
i=1 Bi

. (16)

Mercier and Lennon [54], and Fauvel et al. [55] used the SAM and SID to obtain new kernel
functions. However, they did not present the details of their proofs. Here, we provide a proof to satisfy
Mercer’s condition.

Proposition 1. Given a pair of training samples xi, xj ∈ X , the SAM-RBF kernel function defined as

K(xi, xj) = exp

−cos−1
( 〈xi ,xj〉
||xi ||·||xj ||

)
2σ2

 (17)

is a Mercer’s kernel.

Proof. Here,
〈xi ,xj〉
||xi ||·||xj ||

is a normalized linear kernel, meaning it is also a Mercer’s kernel. Let Kn =

〈xi ,xj〉
||xi ||·||xj ||

, |Kn| < 1, and the Taylor expansion of cos−1(Kn) be expressed as follows:

cos−1(Kn) = π

(
Kn +

1
2

K3
n

3
+

1 · 3
2 · 4

K5
n

5
+ ...

)
|Kn| < 1. (18)

Then, according to Properties 2 and 3, cos−1(Kn) = cos−1
( 〈xi ,xj〉
||xi ||·||xj ||

)
is a Mercer’s kernel.

Let Karccos = cos−1
( 〈xi ,xj〉
||xi ||·||xj ||

)
. Similarly, exp

(
−Karccos

2σ2

)
can also be spread using Taylor’s formula

as follows:

exp
(
−Karccos

2σ2

)
= 1− Karccos

2σ2 +
K2

arccos
2!22σ2·2 +

Kn
arccos

n!2nσ2n . (19)

Therefore, based on Properties 2 and 3, it can be proven that the spectral angle mapper-based RBF
(SAM-RBF) kernel function is a Mercer’s kernel.

Proposition 2. Given a pair of training samples xi, xj ∈ X , the spectral information divergence-based RBF
(SID-RBF) kernel function defined as

K(xi, xj) = exp
(D(xi||xj) + D(xj||xi)

2σ2

)
(20)

is a Mercer’s kernel.

Proof. According to the Equation (14), K(xi, xj) in Equation (20) can be rewritten as
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K(xi, xj) = exp
(
−

Kj,j + Ki,i − Kj,i − Ki,j

2σ2

)
, (21)

where
Ki,i = 〈

xi
Si

, log(
xi
Si
)〉 (22)

Kj,j = 〈
xj

Sj
, log(

xj

Sj
)〉 (23)

Ki,j = 〈
xi
Si

, log(
xj

Sj
)〉 (24)

Kj,i = 〈
xj

Sj
, log(

xi
Si
)〉 (25)

where Si = ∑n xi(n) and Sj = ∑n xj(n).
Therefore, K(xi, xj) in Equation (21) can be divided into four power exponents of Ki,i, Ki,j, Kj,i,

and Kj,j. The first exponent Ki,i in Equation (22) can be rewritten as follows:

〈 xi
Si

, log(
xi
Si
)〉 = 1

Si
〈xi, log(xi)− log(Si))〉

=
1
Si
(〈xi, log(xi)〉 − 〈xi, log(Si)〉).

(26)

One can see that Ki,i is a Mercer’s kernel according to Property 2. Similarly, Ki,j, Kj,i, and Kj,j
can also be considered as Mercer’s kernels. Therefore, K(xi, xj) is a Mercer’s kernel according to
Property 2.

3.3. Proposed Kernels

Spectral similarity measures are used to weigh the similarity between a target and reference
spectral signature. Therefore, it can be considered as a metric and kernel function for SVM. Meanwhile,
since spectral similarity measures are commonly used into hyperspectral image classification,
they will have high optiential to improve hyperspectral image classification as kernel functions.
Here, we propose two modified spectral similarity-based kernels based on the SAM-RBF and
SID-RBF kernels.

Proposition 3. A modified kernel, called the Power-SAM-RBF kernel defined as

K(xi, xj) = exp

−cos−1
( 〈xi ,xj〉
||xi ||·||xj ||

)t

2σ2

 t > 0, t ∈ IR (27)

is a Mercer’s kernel.

Proof. According to Proof 1, we must prove that
( 〈xi ,xj〉
||xi ||·||xj ||

)t
, where t ∈ IR is a Mercer’s kernel.

In Equation (10), p is an integral real coefficient. Because
〈xi ,xj〉
||xi ||·||xj ||

is a Mercer’s kernel, we should

prove that K(xi, xj)
t, where t ∈ IR is also a Mercer’s kernel. This expression can be rewritten as follows:

K(xi, xj)
t = K(xi, xj)

a · 1
K(xi, xj)b , (28)

where t ∈ IR, a, b = 1, 2, 3, ..., N. Additionally, the Taylor expansion of 1
K(xi ,xj)

can be expressed as
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1
K(xi, xj)

= −1− (K(xi, xj) + 1) + (K(xi, xj) + 1)2 − ... (29)

Then, Equation (29) can be rewritten as

1
K(xi, xj)

= r0 + r1K(xi, xj) + r2K(xi, xj)
2 + ..., (30)

where ri ∈ Z.
According to Properties 2 and 3, 1

K(xi ,xj)
is a Mercer’s kernel. Additionally, K(xi, xj)

a · 1
K(xi ,xj)

is

also a Mercer’s kernel. Finally, the function in Proposition 3 can be used as a Mercer’s kernel for
an SVM.

Compared to the SAM-RBF kernel, this modified kernel has one additional parameter and must
be optimized, which will give it the potential to outperform the SAM-RBF kernel.

Proposition 4. A modified kernel, called the Normalized-SID-RBF kernel, is defined as follows:

K(xi, xj) = exp(−
K′j,j − K′j,i + K′i,i − K′i,j

2σ2 ), (31)

where

K′j,j =
〈 xj

Sj
, log(

xj
Sj
)〉

|| xj
Sj
|| · ||log(

xj
Sj
)||

, (32)

K′j,i =
〈 xj

Sj
, log( xi

Si
)〉

|| xj
Sj
|| · ||log( xi

Si
)||

, (33)

K′i,i =
〈 xi

Si
, log( xi

Si
)〉

|| xi
Si
|| · ||log( xi

Si
)||

, (34)

K′i,j =
〈 xi

Si
, log(

xj
Sj
)〉

|| xi
Si
|| · ||log(

xj
Sj
)||

, (35)

represnet a Mercer’s kernel.

Proof. According to Equation (32), K′j,j is the normalized function of 〈 xj
Sj

, log(
xj
Sj
)〉, which is a Mercer’s

kernel. Therefore, K′j,j is also Mercer’s kernel. Similarly, K′j,i, K′i,i, and K′i,j are Mercer’s kernels.
Next, we can infer that the Normalized-SID-RBF kernel K(xi, xj) in Equation (31) is a Mercer’s kernel,
according to Proof 2.

3.4. Kernel Efficiency

A kernel function is essential for determining the efficiency of an SVM model in its application.
Smits and Jordaan [59] divided kernels into two classes: Local and global kernels. Local kernels,
having an effect on the data in the neighborhood of the center point of kernel, have a better interpolation
ability than global kernels but fail to achieve longer-range extrapolation, whereas global kernels,
allowing every data point far away from others to have an influence on the kernel values as well,
perform better than local kernels in terms of their extrapolation. Given a two-dimensional vector
x = (x1, x2)

T , test input point (2, 2), and kernel range x ∈ [0, 10], y ∈ [0, 10], the polynomial, RBF,
SAM-RBF, SID-RBF, and proposed Power-SAM-RBF and Normalized-SID-RBF kernels are presented
for the analysis of kernel efficiency.
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First, Figure 1 presents the polynomial and RBF kernels within the neighborhood of the test
input point. As a clarification of Reference [59], one can see that polynomial (global) kernels have an
advantage for extrapolation and that RBF (local) kernels have an advantage for interpolation.

(a) d = 2 (b) d = 3 (c) d = 5

(d) σ = 0.2 (e) σ = 0.6 (f) σ = 1.0

Figure 1. Polynomial and radial basis function (RBF) kernel representations. Polynomial kernels of
degree (a) 2, (b) 3, and (c) 5; RBF kernels with the parameter σ of (d) 0.2, (e) 0.6, and (f) 1.0.

Second, spectral-similarity-based kernels, namely SAM-RBF and SID-RBF, are illustrated in
Figure 2, which reveals that they combine the characteristics of both local and global kernels.
The SAM-RBF kernel response on the whole increases as x1 and x2 increase overall. In this regard, it is
similar to a global kernel. However, local kernels have distinct characteristics along the direction of
x1 or x2. It should be noted that the properties of the local kernels are sensitive to the parameter of σ.
When σ increases from 0.2 to 1.0, as shown in Figure 2a–c, the shape of the SAM-RBF kernel exhibits a
significant change in the gradient of the “watershed.”

As shown in Figure 2d–f, there is a distinct appearance in the form of a peak response for the
SID-RBF kernel. Therefore, it also possesses the characteristics of a local kernel, which is weaker than
the SAM-RBF kernel.

Third, the Power-SAM-RBF kernel requires two parameters, σ(σ > 0) and t(t ∈ IR), for controlling
its performance. It is similar to the global kernel that the response of Power-SAM-RBF kernel increases
with x1 and x2 increasing; meanwhile, it has the characteristic of local kernel, because the response
along the vector of [x1, x2] is higher than others. Therefore, there is a good blance between the capbility
of interpolation and extrapolation. According to this, we can conclude the following:

1. The characteristics of the global kernel become weaker and the characteristics of the local kernel
become stronger when the power parameter of t increases. For example, when comparing
Figure 3a,d, the saddle-backing along the watershed tends to shrink as t increases.

2. With an increasing parameter of σ, the Power-SAM-RBF kernel exhibits more characteristics of a
global kernel and fewer characteristics of a local kernel. As shown in Figure 3a–c, the response of
the kernel becomes less pronounced as σ increases.

As shown in Figure 4, one can see the Normalized-SID-RBF kernel also has the characteristics of the
global kernel, because its response increases with x1 and x2 increasing. In the mean time, there is also
the characteristics of the local kernel with the response along some direction being higher than others.
The Normalized-SID-RBF kernel has more distinct characteristics of global kernels than the SID-RBF kernel.
Debnath and Takahashi [60] claimed that the normalized kernel achieves better performance than the
original kernel. However, regarding the characteristics of a local kernel, the direction of its ridge trends
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toward one of its dimensions such that data in other dimensions are ignored. This indicates that some
features in the original data may not be fully operational during model training.

(a) σ = 0.2 (b) σ = 0.6 (c) σ = 1.0

(d) σ = 0.05 (e) σ = 0.2 (f) σ = 0.9

Figure 2. Spectral angle mapper (SAM)-RBF kernel and spectral information divergence (SID)-RBF
kernel representation. SAM-RBF kernel with parameter σ values of (a) 0.2, (b) 0.6, and (c) 1.0. SID-RBF
kernel with parameter σ values of (d) 0.05, (e) 0.2, and (f) 0.9.

(a) t = 0.2; σ = 0.2 (b) t = 0.2; σ = 0.6 (c) t = 0.2; σ = 1.0

(d) t = 2.2; σ = 0.2 (e) t = 2.2; σ = 0.6 (f) t = 2.2; σ = 1.0

Figure 3. Power-SAM-RBF kernel characteristics with different parameters of t and σ.

(a) σ = 0.05 (b) σ = 0.2 (c) σ = 0.9

Figure 4. Normalized-SID-RBF kernel representation with parameter σ values of (a) 0.05, (b) 0.2,
and (c) 0.9.
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4. Experimental Results

4.1. Dataset Description

4.1.1. Indian Pines

This dataset, which was acquired by an AVIRIS sensor, represents agricultural information from
the Indian Pines test site in Northwestern Indiana, USA. After 20 water absorption bands are discarded,
the image has a size of 145× 145× 220. The spatial resolution is 20 m per pixel, and the spectral
coverage ranges from 0.2 to 2.4 µm. It contains 16 reference classes of crops (e.g., corn, soybean,
and wheat). However, only nine classes were selected for our experiments because the number of
samples in these nine classes (Table 1) is greater than that in the other classes for model training.
Figure 5a,b present color composites of the Indian Pines image and corresponding ground truth
data, respectively.

Table 1. Ground truth classes for the Indian Pines dataset and their corresponding numbers of samples.

Label Indian Pines University of Pavia Salinas Valley

C1 Corn-notill Asphalt Brocoli green weeds 1
C2 Corn-mintill Meadows Brocoli green weeds 2
C3 Grass-pasture Gravel Fallow
C4 Grass-trees Trees Fallow rough plow
C5 Hay-windrowed Painted metal sheets Fallow smooth
C6 Soybean-notill Bare Soil Stubble
C7 Soybean-mintill Bitumen Celery
C8 Soybean-clean Self-Blocking Bricks Grapes untrained
C9 Woods Shadows Soil vinyard develop
C10 - - Corn senesced green weeds
C11 - - Lettuce romaine 4wk
C12 - - Lettuce romaine 5wk
C13 - - Lettuce romaine 6wk
C14 - - Lettuce romaine 7wk
C15 - - Vinyard untrained
C16 - - Vinyard vertical trellis

(a) (b)

Figure 5. (a) False color hyperspectral remote sensing image over the Indian Pines test site
(using bands 50, 27, and 17). (b) Ground truth of the labeled area with nine classes of land cover:
Corn-notill, Corn-mintill, Grass-pasture, Grass-trees, Hay-windrowed, Soybean-notill, Soybean-mintill,
Soybean-clean, and Woods.

4.1.2. University of Pavia

This dataset was acquired by the ROSIS instrument over the University of Pavia, Pavia, Italy
in 2001. The image has a pixel resolution of 610 × 340, spectral coverage ranging from 0.43 to
0.86 µm, and spatial resolution of 1.3 m per pixel. After discarding noisy and water absorption
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bands, 103 spectral bands are retained. Figure 6a,b present a false color composite of the University of
Pavia images and the corresponding ground-truth data, including nine classes of interest (Table 1) .

(a) (b)

Figure 6. (a) False color hyperspectral data over the University of Pavia (using bands 105, 63, and 29).
(b) Ground truth of the labeled area with nine classes of land cover: Asphalt, meadows, gravel, trees,
painted metal sheets, bare soil, bitumen, self-blocking bricks, and shadows.

4.1.3. Salinas Valley

These images were collected by an AVIRIS sensor with a spatial resolution of 3.7 m per pixel over
Salinas Valley, California, USA. The image size is 512× 217 pixels with 224 spectral bands. In our
experiment, only 204 spectral bands were used after discarding noisy and water absorption bands.
A total of 16 ground truth classes (Table 1) were considered. The false color compositions of bands 50,
30, and 20, and the ground truth map are presented in Figure 7a,b.

(a) (b)

Figure 7. (a) False color hyperspectral image (HSI) over Salinas Valley (using bands 68, 30, and 18);
(b) Ground truth of the labeled area with 16 classes of land cover: Broccoli green weeds 1, Broccoli green
weeds 2, Fallow, Fallow rough plow, Fallow smooth, Stubble, Celery, Grapes untrained, Soil vineyard
develop, Corn senesced green weeds, Lettuce romaine 4 wk, Lettuce romaine 5 wk, Lettuce romaine
6 wk, Lettuce romaine 7 wk, Vineyard untrained, and Vineyard vertical trellis.
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4.2. Experimental Setup

We evaluated the spectral-similarity-based kernels used for HSI classification using the following
experimental settings:

• Training sample selection: 5%, 10%, 15%, and 20% of samples randomly selected from the ground
truth data as training samples.

• Classification accuracies: Five iteration classification experiments were conducted and the mean
and variance of the overall accuracy (OA), average accuracy (AA), and Kappa coefficient were
used for the evaluation. Additionally, the product accuracy (PA) for the experiments using the
Indian Pines dataset was used for analysis. If pi is the number of correctly classified samples of
the ith class, ti is the number of samples of the ith class in the ground-truth data, and N is the
number of classes, then the OA, AA, and kappa coefficient can be defined as

OA =
∑ pi

∑ ti
, (36)

AA =
∑ pi

ti

N
, (37)

Kappa =
OA− ∑ pi×ti

n

1− ∑ pi×ti
n

. (38)

• Methods: Six kernels for the SVM method, namely Linear-SVM, RBF-SVM, SAM-RBF,
Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF, were employed for classification
experiments. The range of the parameters coef0 and γ of the kernels was [0.01, 2000], and the
range of the parameter of power t was [0.01, 5].

• Parameter optimization: Parameter optimization: We applied the PSO method to optimize the
parameters of the SVM. The parameter settings for the PSO method, including the acceleration
constants, maximum number of generations, and warm scale, are listed in Table 2.

Table 2. Parameter settings for the PSO method.

Label Class Samples

Acceleration constants c1 and c2 1.5 and 1.7
maximal number of generations MaxGen 5
Swarm scale SizePop 10
Inertia weight wV 1
Constriction factor k 1

4.3. Results for the Indian Pines Dataset

Table 3 presents a comparison of all kernels on the Indian Pines dataset in terms of OA, AA,
and kappa coefficients with different ratios (5%, 10%, 15%, and 20%) of training set.

The Power-SAM-RBF kernel generally performs better than the other kernels, particularly in terms
of OA and kappa coefficient. When the percentage of training is high, it obtains the highest AAs among
all kernels. The SAM-RBF kernel can be regarded as the second-best among all kernels considered.
The only time the RBF kernel performs best is in terms of AA with a small proportion of training
samples. Regardless, RBF is the third-best kernel overall. The SID-RBF and Normalized-SID-RBF
kernels perform worse than the other four kernels for all proportions of training data.

Regarding the spectral-similarity-based kernels, the Power-SAM-RBF and SAM-RBF kernels yield
impressive performance for all proportions of training set, but particularly for the high proportions
of training data (15% or 20%). For all proportions of the training set, these two kernels outperform
the other kernels in terms of OA and kappa coefficient. When the proportion of the training set is
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greater than 10%, the AAs of these two kernels rapidly exceed those of the RBF kernel. However,
the performances of the SID-RBF and Normalized-SID-RBF kernels are less promising on the Indian
Pines dataset for all proportions of training sample.

Figure 8 plots the curves of OA, AA, and kappa coefficient of the classification results of all kernels
with proportions of training data ranging from 5% to 20%. The superiority of the Power-SAM-RBF
and SAM-RBF kernels becomes more obvious as the proportion of training data increases.

Considering the Power-SAM-RBF kernel as an example, regarding the kappa coefficient, when the
proportion of training data is 5%, the value of the Power-SAM-RBF (0.7389) kernel is 0.8% higher
than that of the RBF kernel (0.7309). When the proportion of training data is 20%, the value of the
Power-SAM-RBF kernel (0.8561) is 1.61% higher than that of the RBF kernel (0.8400). The improvement
in terms of OA is 0.85% (Power-SAM-RBF kernel 78.05%, RBF kernel 77.20%) for a proportion of 5%,
and (Power-SAM-RBF 87.80%, RBF kerenel 86.42%) 1.38% when the proportion is 20%.
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Figure 8. Curves of the (a) OA, (b) AA, and (c) kappa coefficient for the Linear, RBF, SAM-RBF,
Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels with proportions of training data of 5%,
10%, 15%, and 20% for the Indian Pines dataset.
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Table 3. Overall accuracies (OA), average accuracies (AA), kappa coefficients of Linear, RBF, SAM-RBF, Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels
on the Indian Pines dataset.

Training Sample Accuracies Linear Kernel RBF Kernel SAM-RBF Kernel Power-SAM-RBF Kernel SID-RBF Kernel Normalized-SID-RBF Kernel

5%
OA 75.33 ± 1.25 77.20 ± 1.33 77.50 ± 0.72 78.05 ± 0.76 72.90 ± 3.69 73.28 ± 1.99
AA 75.55 ± 1.23 78.07 ± 1.26 76.03 ± 0.97 76.65 ± 0.96 72.17 ± 3.52 71.61 ± 3.01
Kappa 0.7079 ± 0.0142 0.7309 ± 0.0152 0.7317 ± 0.0090 0.7389 ± 0.0092 0.6803 ± 0.0420 0.6830 ± 0.0245

10%
OA 80.58 ± 0.54 82.64 ± 0.45 83.09 ± 0.42 83.49 ± 0.76 77.10 ± 1.87 73.19 ± 4.47
AA 80.95 ± 0.75 83.23 ± 0.81 82.58 ± 0.67 83.10 ± 1.11 77.23 ± 2.12 72.73 ± 4.30
Kappa 0.7783 ± 0.0193 0.8020 ± 0.0188 0.8042 ± 0.0068 0.8091 ± 0.0053 0.7408 ± 0.0384 0.6912 ± 0.0619

15%
OA 82.16 ± 0.52 84.37 ± 0.60 85.42 ± 0.27 85.73 ± 0.36 77.15 ± 1.01 75.13 ± 1.94
AA 82.88 ± 0.39 85.34 ± 0.64 85.66 ± 0.19 86.11 ± 0.43 76.91 ± 0.80 74.27 ± 1.90
Kappa 0.7892 ± 0.0060 0.8154 ± 0.0073 0.8276 ± 0.0031 0.8314 ± 0.0043 0.7311 ± 0.0112 0.7068 ± 0.0226

20%
OA 83.72 ± 0.50 86.42 ± 0.40 87.44 ± 0.57 87.80 ± 0.48 79.13 ± 0.86 77.46 ± 2.45
AA 84.68 ± 0.90 87.74 ± 0.57 87.83 ± 0.44 88.24 ± 0.33 79.04 ± 0.70 76.30 ± 3.02
Kappa 0.8079 ± 0.0064 0.8400 ± 0.0050 0.8518 ± 0.0067 0.8561 ± 0.0056 0.7548 ± 0.0100 0.7341 ± 0.0289
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4.4. Results from the University of Pavia Dataset

Table 4 reveals that the Power-SAM-RBF kernel also yields the best performance among all kernels
for the University of Pavia dataset, Pavia, Italy. It achieves the highest OAs, AAs, and kappa coefficients
for all proportions of training data. The Normalized-SID-RBF kernel yields the worst performance.

Regarding the performance of the spectral-similarity-based kernels, both the Power-SAM-RBF
and SAM-RBF kernel achieve promising performance. The SID-RBF kernel performs worse than the
Linear and RBF kernels when the proportion of training data is small. As the proportion increases,
the accuracy of the SID-RBF improves significantly. For example, when the proportion of training data
is 20%, its OA (92.31%), AA (90.35%), and kappa coefficient (0.8977) are distinctly higher than those of
the Linear kernel (OA: 91.28%; AA: 87.40%; and kappa coefficient: 0.8832), and close to those of the
RBF kernel, although its AA is significantly higher than that of the RBF kernel (89.71%). While the
Normalized-SID-RBF kernel still underperforms, its performance on the University of Pavia dataset is
better than that on the Indian Pines dataset.

Figure 9 presents the curves of OA, AA, and kappa coefficient for all kernels and all proportions of
training data on the University of Pavia dataset. The results reveal similar trends to those of the Indian
Pines dataset. Overall, higher accuracies are achieved as the proportion of training data increases.
Additionally, the Power-SAM-RBF and SAM-RBF kernels consistently provide the best performance.

The final comparison in Figure 9 is between the Linear and RBF kernels. Here, the superiority of
the Power-SAM-RBF and SAM-RBF kernels also tends to increase with the proportion of training data.
When the proportion of training data is 5%, the OA, AA, and kappa coefficient of the Power-SAM-RBF
kernel are only 0.43%, 1.49%, and 0.58%, respectively. When the proportion of training data is 20%,
the improvements of the Power-SAM-RBF kernel compared to the RBF kernel in terms of OA, AA,
and the kappa coefficient are 0.97%, 1.79%, and 1.33%, respectively.
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Figure 9. Curves of the (a)OA, (b)AA, and(c) kappa coefficient for the Linear, RBF, SAM-RBF,
Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels for proportions of training data of 5%,
10%, 15%, and 20% for the University of Pavia dataset.
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Table 4. OAs, AAs, kappa coefficients of the Linear, RBF, SAM-RBF, Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels on the University of Pavia dataset.

Training Sample Accuracies Linear Kernel RBF Kernel SAM-RBF Kernel Power-SAM-RBF Kernel SID-RBF Kernel Normalized-SID-RBF Kernel

5%
OA 89.95 ± 0.16 90.97 ± 1.97 90.77 ± 0.32 91.40 ± 0.23 88.88 ± 0.57 83.96 ± 1.68
AA 85.31 ± 0.58 86.65 ± 5.23 87.09 ± 0.50 88.14 ± 0.45 86.74 ± 0.62 82.91 ± 1.18
Kappa 0.8651 ± 0.0022 0.8791 ± 0.0275 0.8761 ± 0.0045 0.8849 ± 0.0033 0.8520 ± 0.0076 0.7864 ± 0.0215

10%
OA 90.88 ± 0.12 92.01 ± 1.39 92.43 ± 0.30 92.75 ± 0.17 91.12 ± 0.54 83.23 ± 0.64
AA 87.12 ± 0.35 87.95 ± 3.60 89.56 ± 0.41 90.08 ± 0.28 89.16 ± 0.71 83.60 ± 1.22
Kappa 0.8780 ± 0.0016 0.8929 ± 0.0194 0.8989 ± 0.0040 0.9032 ± 0.0024 0.8819 ± 0.0071 0.7773 ± 0.0089

15%
OA 90.95 ± 0.13 93.01 ± 1.25 93.13 ± 0.07 93.56 ± 0.07 91.84 ± 0.27 84.53 ± 0.90
AA 87.11 ± 0.31 90.00 ± 2.58 90.32 ± 0.19 91.00 ± 0.14 89.98 ± 0.36 84.29 ± 0.76
Kappa 0.8790 ± 0.0017 0.9065 ± 0.0171 0.9083 ± 0.0010 0.9142 ± 0.0010 0.8916 ± 0.0036 0.7946 ± 0.0119

20%
OA 91.28 ± 0.13 92.89 ± 0.89 93.46 ± 0.19 93.86 ± 0.08 92.31 ± 0.45 84.61 ± 0.63
AA 87.40 ± 0.33 89.71 ± 1.76 90.84 ± 0.44 91.50 ±0.06 90.35 ± 0.45 84.99 ± 0.74
Kappa 0.8832 ± 0.0018 0.9049 ± 0.0124 0.9128 ± 0.0025 0.9182 ± 0.0010 0.8977 ± 0.0059 0.7958 ± 0.0086
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4.5. Results for the Salinas Valley Dataset

As shown in Table 5, the Power-SAM-RBF kernel generally obtains the best performance on the
Salinas HSI. For small proportions of training samples, the Power-SAM-RBF kernel performs better
than the other kernels in terms of OA and kappa coefficient, but not in terms of AA, for which the
Linear kernel exhibits the best performance. The SAM-RBF kernel achieves good classification results
but not better than those of the Power-SAM-RBF kernel. The SID-RBF and Normalized-SID-RBF
kernels exhibit the worst performance among all kernels for all proportions of training data.

Regarding the spectral-similarity-based kernels, the Power-SAM-RBF and SAM-RBF kernels
achieve impressive performance, particularly for high proportions of training data. When the
proportion of training data reaches 20%, the AA of the Power-SAM-RBF kernel (96.96%) is greater those
of the Linear (96.83%) and RBF kernels (96.38%). The OA and kappa coefficient of the Power-SAM-RBF
kernel are 1.09% and 1.23% higher, respectively, than those of the commonly used RBF kernel. The OA
and kappa coefficient of the SAM-RBF kernel are also higher than those of the Linear and RBF kernels.
The performance of the SID-RBF and Normalized-SID-RBF kernels on the Salinas Valley dataset is still
poor for all proportions of training data.

Similar to the experiment on the Indian Pines dataset, the Power-SAM-RBF kernel does not
perform the best when the percentage of the proportion of training data is small. However, as shown
in Figure 10, the superiority of the Power-SAM-RBF compared to the other kernels increases as the
proportion of training data increases. When the proportion of training data is 5%, the OA, AA,
and kappa coefficient of the Power-SAM-RBF kernel are lower than those of the RBF kernel. However,
when the proportion of training data is 20%, the Power-SAM-RBF kernel outperforms the RBF-kernel
in terms of OA, AA, and kappa coefficient by 1.09%, 0.58%, and 1.23%, respectively.
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Figure 10. Curves of (a)OA, (b)AA, and(c) kappa coefficient for the Linear, RBF, SAM-RBF, Power-
SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels with proportions of training data of 5%, 10%,
15%, and 20% for the Salinas Valley dataset.
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Table 5. OAs, AAs, and kappa coefficients of the Linear, RBF, SAM-RBF, Power-SAM-RBF, SID-RBF, and Normalized-SID-RBF kernels on the Salinas Valley dataset.

Training Sample Accuracies Linear Kernel RBF Kernel SAM-RBF Kernel Power-SAM-RBF Kernel SID-RBF Kernel Normalized-SID-RBF Kernel

5%
OA 92.10 ± 0.28 91.39 ± 0.27 91.15 ± 0.24 91.84 ± 0.15 88.96 ± 0.50 58.42 ± 4.83
AA 95.65 ± 0.23 95.01 ± 0.26 94.73 ± 0.19 95.35 ± 0.31 93.36 ± 0.68 60.00 ± 3.68
Kappa 0.9118 ± 0.0031 0.9039 ± 0.0030 0.9012 ± 0.0027 0.9090 ± 0.0017 0.8768 ± 0.0057 0.5410 ± 0.0506

10%
OA 92.73 ± 0.13 92.46 ± 0.68 92.55 ± 0.26 93.19 ± 0.28 90.13 ± 0.16 58.30 ± 5.58
AA 96.47 ± 0.11 95.98 ± 0.46 95.88 ± 0.27 96.35 ± 0.25 94.25 ± 0.21 60.57 ± 3.96
Kappa 0.9189 ± 0.0014 0.9159 ± 0.0077 0.9169 ± 0.0030 0.9241 ± 0.0031 0.8899 ± 0.0017 0.5398 ± 0.0600

15%
OA 93.05 ± 0.08 92.65 ± 0.55 93.32 ± 0.39 93.72 ± 0.14 89.62 ± 1.34 58.02 ± 6.51
AA 96.70 ± 0.13 96.16 ± 0.29 96.41 ± 0.19 96.68 ± 0.10 94.74 ± 0.70 59.43 ± 4.32
Kappa 0.9224 ± 0.0009 0.9180 ± 0.0062 0.9255 ± 0.0044 0.9300 ± 0.0015 0.8844 ± 0.0149 0.5366 ± 0.0692

20%
OA 93.09 ± 0.07 92.95 ± 0.37 93.53 ± 0.36 94.04 ± 0.12 89.67 ± 0.69 63.06 ± 8.99
AA 96.83 ± 0.07 96.38 ± 0.13 96.60 ± 0.30 96.96 ± 0.15 95.18 ± 0.27 61.17 ± 5.31
Kappa 0.9229 ± 0.0008 0.9213 ± 0.0042 0.9278 ± 0.0041 0.9336 ± 0.0014 0.8850 ± 0.0076 0.5896 ± 0.0969
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4.6. Effects of Similarity in Spectral Signatures

We noted that the improvement in terms of AA of the Power-SAM-RBF and SAM-RBF kernels
compared to that of the Linear and RBF kernels is extremely different from that in terms of
OA for different datasets. In the experiment on the Indian Pines and Salinas Valley datasets,
the Power-SAM-RBF kernel exhibited stronger superiority over the RBF-kernel in terms of OA than in
terms of AA. For example, when the proportion of training data is 20%, the OA of the Power-SAM-RBF
kernel is 1.38% higher than that of the RBF kernel, whereas the AA of the Power-SAM-RBF kernel is
only 0.50% higher than that of the RBF kernel. However, the superiority of the Power-SAM-RBF kernel
over the RBF-kernel in terms of OA is less than that in terms of AA on the University of Pavia dataset.
When the proportion of training data is 20%, the OA of the Power-SAM-RBF kernel is 0.97% higher
than that of the RBF kernel, while its AA is 1.71% higher.

This indicates that the differences in kernel performance between the Indian Pines/Salinas Valley
datasets and the University of Pavia dataset are relative to the original spectral signatures of these
datasets. Figure 11 illustrates the average spectral signatures of each class from all labeled pixels in
the ground-truth data. The differences between each spectral signature in the Indian Pines/Salinas
Valley data can be clearly observed, as shown in Figure 11a,c, as well as for the University of Pavia
data, as shown in Figure 11b. The higher spectral similarity of the Indian Pines/Salinas Valley datasets
compared to that of the University of Pavia dataset indicates that the Power-SAM-RBF and SAM-RBF
kernels are well suited to HSIs with low spectral similarity between each class. As a result, we can
conclude that the superiority of the Power-SAM-RBF and SAM-RBF kernels compared with the
RBF kernel is generally more pronounced when the discrimination between each spectral signature
is increases.
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Figure 11. Average spectral signature of each class for all labeled pixels in the ground-truth data for
the (a) Indian Pines, (b) University of Pavia, and (c) Salinas Valley datasets.

To further validate the relationship between spectral similarity and classification accuracy,
we consider the Indian Pines experimental results with proportions of training data of 5% and 20% as
an example to compare the performances of the Power-SAM-RBF kernel and the commonly used RBF
kernel. The sums of the five experimental results in the confusion matrices for the Indian Pines dataset
with proportions of training data of 5% and 20% are listed in Tables 6 and 7, respectively.
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Table 6. Summation of five experimental results in the confusion matrix for the Indian Pines dataset
with a proportion of training data of 5%.

Predicted Class
C1 C2 C3 C4 C5 C6 C7 C8 C9

Ground truth class

RBF kernel

C1 4608 287 15 15 4 583 1219 54 0
C2 253 2376 3 5 0 58 984 261 0
C3 15 11 1980 88 27 21 12 35 106
C4 6 0 71 3323 0 11 32 1 21
C5 2 0 9 0 2259 0 0 0 0
C6 401 65 21 4 2 3103 989 30 0
C7 960 749 46 55 6 629 8949 265 1
C8 255 224 9 11 0 236 597 1483 0
C9 0 0 179 55 0 0 1 1 5774

Power-SAM-RBF kernel

C1 4529 126 6 18 5 453 1522 126 0
C2 329 2095 1 3 0 32 1155 325 0
C3 8 5 1794 128 57 9 19 40 235
C4 4 0 53 3348 12 1 16 9 22
C5 2 0 7 4 2256 0 1 0 0
C6 336 23 16 5 8 3171 1008 48 0
C7 738 288 35 58 25 482 9907 127 0
C8 468 233 4 5 0 98 767 1240 0
C9 0 0 43 78 0 0 0 0 5889

Table 7. Summation of five experimental results in the confusion matrix for the Indian Pines dataset
with a proportion of training data of 20%.

Predicted Class
C1 C2 C3 C4 C5 C6 C7 C8 C9

Ground truth class

RBF kernel

C1 4754 106 4 11 0 245 569 21 0
C2 241 2392 0 2 0 12 583 90 0
C3 7 3 1807 20 2 18 28 24 21
C4 5 0 9 2874 0 2 22 0 8
C5 2 0 4 0 1901 0 3 0 0
C6 216 30 17 9 0 2903 714 1 0
C7 632 272 32 31 2 427 8282 142 0
C8 58 89 11 8 0 30 149 2025 0
C9 0 0 46 32 0 0 6 0 4976

Power-SAM-RBF kernel

C1 4682 72 3 13 0 278 591 71 0
C2 178 2494 0 2 0 10 510 126 0
C3 5 2 1775 44 5 10 28 23 38
C4 1 0 29 2864 0 4 6 0 16
C5 0 0 3 6 1900 1 0 0 0
C6 250 13 11 11 0 3107 486 12 0
C7 426 144 32 42 3 360 8710 103 0
C8 137 85 7 5 0 29 201 1906 0
C9 0 0 20 55 0 0 0 0 4985

We define the similarity between the spectral signatures of a pair of classes using the one-norm
as follows:

SSpair = ||Smean_i − Smean_j||1, (39)

where Smean_i and Smean_j are the average spectral signatures of the ith and jth classes, respectively.
The similarities between the spectral signatures of each pair of classes are listed in Table 8.
According to the similarity of such spectral signatures, we divided the signatures into three groups,
namely high (SSpair < 2× 103), medium (2× 103 < SSpair < 10× 103), and low (SSpair > 10× 103)
similarity groups.

Given a confusion matrix T, the number of misclassified samples Ti,jb represents the number
of samples in Ci misclassified as class Cj. Based on the confusion matrix T of the Power-SAM-RBF
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and RBF kernel, we propose a definition of RatioPSR_RBF(i, j) to describe the improvement of the
Power-SAM-RBF kernel compared to the RBF kernel as follows:

RatioPSR_RBF(i, j) =
PSRi,j

RBFi,j
(40)

where PSRi,j is the number of misclassified samples between classes i and j using the Power-SAM-RBF
kernel, and RBFi,j is the number of misclassified samples between classes i and j using the RBF kernel.
When RatioPSR_RBF(i, j) is lower than 1.0, this indicates that the Power-SAM-RBF kernel outperforms
the RBF kernel. Otherwise, it indicates that the RBF kernel outperforms the Power-SAM-RBF kernel.

Table 8. Similarity (×103) between the spectral signatures of each pair of classes. Note that the
high-similarity group is shown in green, the medium-similarity group is shown in yellow, and the
low-similarity group is shown in red.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 - 1.7 11.4 7.9 5.0 2.6 1.7 2.5 13.2
C2 - - 11.0 7.4 4.8 1.0 0.6 0.9 12.7
C3 - - - 4.1 6.8 11.5 11.4 11.1 2.1
C4 - - - - 4.6 7.9 7.9 7.5 5.6
C5 - - - - - 5.4 5.2 4.9 8.6
C6 - - - - - - 1.1 0.6 13.3
C7 - - - - - - - 1.1 13.3
C8 - - - - - - - - 12.8
C9 - - - - - - - - -

The calculated RatioPSR_RBF(i, j) results are plotted in Figure 12. Because the number of
misclassified samples is zero for some pairs of classes, the results may be not a number (NaN)
or infinity (Inf). (Figure 12 does not present these calculation results). There are seven and nine points
missing in Figure 12a,b, respectively. Regardless, one can see that most of the class pairs (17 for the
5% training set and 18 for the 20% training set) have values less than or equal to 1.0. This indicates
that the Power-SAM-RBF kernel is generally superior to the RBF kernel. Further details regarding this
analysis are provided below.

As shown in Figure 12a,b, most of the RatioPSR_RBF(i, j) results are less than 1.0 when the SSpair is
less than 2 × 103 or greater than 10 × 103. Specifically, all RatioPSR_RBF(i, j) resultsfor which the
similarity of the corresponding class pair is greater than 10 × 103, are less than or equal to 1.0.
This indicates that the Power-SAM-RBF kernel outperforms the RBF kernel when the similarity
of class pairs is high or low. When the similarity of class pairs is moderate, the Power-SAM-RBF kernel
is inferior to the RBF kernel. The quadratic fitting curves also validate this phenomenon.
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Figure 12. Curves of RatioPSR_RBF(i, j) when the training set being (a) 5% and (b) 20%.
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Overall, the Power-SAM-RBF kernel is superior to the RBF kernel with either extremely high or
low similarities between the spectral signatures of class pairs, whereas with moderate similarities of
class pairs, it is inferior to the RBF kernel.

4.7. Effects of the Sizes of the Training Set

The experimental results for the three hyperspectral datasets discussed above support the theory
that the superiority of the Power-SAM-RBF and SAM-RBF kernels compared to the Linear and RBF
kernels becomes more evident as the size of the training set increases. In this section, we analyze the
experimental results for the Indian Pines dataset again by comparing the Power-SAM-RBF and RBF
kernels with different proportions of training samples. The numbers of samples for each class is listed
in Table 9.

Table 10 lists the average PAs of each class for the RBF and Power-SAM-RBF kernels with
proportions of training data of 5% and 20%. When the proportion of training data is 5%, the PAs of
the classes of C4, C6, C7, and C9 for the Power-SAM-RBF kernel are higher than those for the RBF
kernel. When the PAs of the RBF kernel are compared to those of the Power-SAM-RBF kernel with
a 20% proportion of training data, the PAs of C2, C6, C7, and C9 for the Power-SAM-RBF kernel are
higher than those for the RBF kernel. This indicates that the number of classes does not increase with
an increase in the number of training samples. However, one can see that the PAs of C1, C3, C4, C5,
and C8 for the Power-SAM-RBF kernel are close to those for the RBF kernel.

Table 9. Ground truth classes for the Indian Pines dataset and their corresponding numbers of samples.

Class Samples

C1 Corn-notill 1428
C2 Corn-mintill 830
C3 Grass-pasture 483
C4 Grass-trees 730
C5 Hay-windrowed 478
C6 Soybean-notill 972
C7 Soybean-mintill 2455
C8 Soybean-clean 593
C9 Woods 1265

Table 10. Average product accuracy (PA) for each class with the RBF and Power-SAM-RBF kernels
with 5% and 20% proportions of training data.

Class
RBF Kernel Power-SAM-RBF Kernel

5% 20% 5% 20%

C1 67.91 83.26 66.75 82.00
C2 60.30 72.05 53.17 75.12
C3 86.27 93.63 78.17 92.00
C4 95.90 98.42 96.62 98.08
C5 99.52 99.53 99.38 99.48
C6 67.24 74.63 68.71 79.87
C7 76.75 84.34 84.97 88.70
C8 52.68 85.44 44.05 80.42
C9 96.07 98.34 97.99 98.52

To demonstrate the superiority of the Power-SAM-RBF kernel to the RBF kernel with an increasing
number of training samples, we define two indexes. Given that ACCK,n is the accuracy with a kernel
of K with n% training samples for one class, the index PK,K′ represents the ratio of the accuracy
improvement with a kernel k compared to that with another kernel k′ when the number of training
samples increases. Another index SK,K′ is used to represent the D-value of the superiority of a kernel k
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to another kernel k′ when the number of training samples increases. Therefore, PK,K′ and SK,K′ can be
defined as follows:

PK,K′ =
ACCK,n − ACCK,n′

ACCK′ ,n − ACCK′ ,n′
, (41)

SK,K′ = (ACCK,n − ACCK′ ,n)− (ACCK,n′ − ACCK′ ,n′). (42)

If PK,K′ > 1, this indicates that the accuracy improvement with the kernel K is greater than that
with the kernel K′ when the number of training samples increases or decreases from n′ to n. If SK,K′ > 0,
this indicates that the accuracy improvement with the kernel k compared to that with the kernel K′

with n% of training samples is greater than that with n′% of training samples. In Figure 13, we have
plotted the curves of PK,K′ and SK,K′ for the Power-SAM-RBF and RBF kernels when the proportion of
training samples increases from 5% to 20%, according to Table 8 and Equations (34) and (35).

Figure 13 indicates that when there are few original samples, the superiority of the
Power-SAM-RBF kernel to the RBF kernel is more pronounced. The PK,K′ values of the Power-SAM-RBF
kernel versus the RBF kernel for the classes of C2, C3, C5, C6, and C8 are all above 1.0. Additionally,
the SK,K′ values of the Power-SAM-RBF kernel versus the RBF kernel for the class of C2, C3, C5,
C6, and C8 are all above zero. Therefore, both PK,K′ and SK,K′ indicate the superiority of the
Power-SAM-RBF kernel to the RBF kernel for the classes of C2, C3, C5, C6, and C8. As shown
in Table 9, the sample numbers of C1, C7, and C9 are all above 1,000 and are the highest values among
the nine classes. Therefore, the superiority of the Power-SAM-RBF kernel compared to the RBF kernel
is proven to respond to increases in the number of training samples when the number of original
samples is small.
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Figure 13. Curves of (a) PK,K′ (the ratio of the accuracy improvement with the kernel k to that with
another kernel k′) and (b)SK,K′ (the D-value of the superiority of the kernel k over another kernel k′) for
the Power-SAM-RBF kernel versus the RBF kernel for the Indian Pines dataset.

5. Conclusions

In this study, we proposed two novel spectral-similarity-based kernels (Power-SAM-RBF and
Normalized-SID-RBF kernels). Additionally, we demonstrated that four spectral-similarity-based
kernels, namely the two proposed kernels, SAM-RBF kernel, and SID-RBF kernel, satisfy Mercer’s
condition. Furthermore, a comparative analysis of these spectral-similarity-based kernels indicated that
they have the characteristics of both local and global kernels. The SID-RBF and Normalized-SID-RBF
kernels are non-isotropic. Therefore, the direction of the ridge trends toward one of the dimensions
such that data with other dimensions are ignored. The Power-SAM-RBF and SAM-RBF kernels,
which are isotropic, provide higher efficiency than the SID-RBF and Normalized-SID-RBF kernels.

HSIs of the Indian Pines, Pavia University, and Salinas Valley were used as experimental
datasets. The results of using different proportions of the data for training revealed that the
Power-SAM-RBF and SAM-RBF kernels achieve enhanced performance compared to the Linear,
RBF, SID-RBF, and Normalized-SID-RBF kernels. The superiority of these two kernels, particularly the
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Power-SAM-RBF kernel, becomes more pronounced as the proportion of training data increases.
For Indian Pines, when the percentage of training data is 20%, the OA, AA, kappa coefficient
of Power-SAM-RBF kernel get the highest values of 87.80%, 88.24%, and 0.8561, respectively.
For University of Pavia, when the percentage of training data is 20%, the OA, AA, kappa coefficient of
Power-SAM-RBF kernel get the highest values of 93.86%, 91.50%, and 0.9182, respectively. For Salinas
Valley, when the percentage of training data is 20%, the OA, AA, kappa coefficient of Power-SAM-RBF
kernel get the highest values of 94.04%, 96.96%, and 0.9336, respectively.

Furthermore, we presented deep comparative analysis of the efficiency of the Power-SAM-RBF
kernel in terms of the similarity of spectral signatures and size of the training set. First, according to
the differences in the characteristics of the spectral signatures among the three hyperspectral datasets,
we found that the superiority of the Power-SAM-RBF and SAM-RBF kernels over other kernels becomes
more pronounced when a dataset has either extremely high or extremely low similarity among the
spectral features of each class. Confusion matrices for the Power-SAM-RBF and RBF kernels in the
Indian Pines experiment also confirmed this rule based on the analysis of three groups with different
similarities of spectral signatures. Second, the PAs in the experimental results for the Indian Pines
dataset with different numbers of training samples revealed that the increase in performance of the
Power-SAM-RBF kernel versus the RBF kernel becomes more pronounced as the proportion of training
samples increases.

In summary, there are three main conclusions to be drawn from this study. First, the spectral-
similarity-based kernels discussed in this paper can satisfy Mercer’s condition. Additionally,
the Power-SAM-RBF and SAM-RBF kernels for the SVM method can achieve significantly enhanced
performance in terms of HSI classification, particularly the Power-SAM-RBF kernel. Second, either
extremely high or extremely low similarities between the spectral signatures of different classes may
yield better performance for the Power-SAM-RBF kernel compared to the other kernels. Finally,
the Power-SAM-RBF kernel achieves even greater classification superiority with a larger training set
compared to other kernels. The classification performance by using the proposed kernels for SVM is
also not too distinct. Therefore, in a future study, we will employ spectral-similarity-based kernels in
multiple-kernel methods to validate their efficiency in terms of HSI classification. Meanwhile, we will
make efforts to explore more effective novel kernels for HSI classification.
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