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Abstract: Traditional watershed modeling often overlooks the role of vegetation dynamics. There is
also little quantitative evidence to suggest that increased physical realism of vegetation dynamics
in process-based models improves hydrology and water quality predictions simultaneously. In this
study, we applied a modified Soil and Water Assessment Tool (SWAT) to quantify the extent of
improvements that the assimilation of remotely sensed Leaf Area Index (LAI) would convey to
streamflow, soil moisture, and nitrate load simulations across a 16,860 km2 agricultural watershed
in the midwestern United States. We modified the SWAT source code to automatically override the
model’s built-in semiempirical LAI with spatially distributed and temporally continuous estimates
from Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to a “basic” traditional
model with limited spatial information, our LAI assimilation model (i) significantly improved
daily streamflow simulations during medium-to-low flow conditions, (ii) provided realistic spatial
distributions of growing season soil moisture, and (iii) substantially reproduced the long-term
observed variability of daily nitrate loads. Further analysis revealed that the overestimation or
underestimation of LAI imparted a proportional cascading effect on how the model partitions
hydrologic fluxes and nutrient pools. As such, assimilation of MODIS LAI data corrected the model’s
LAI overestimation tendency, which led to a proportionally increased rootzone soil moisture and
decreased plant nitrogen uptake. With these new findings, our study fills the existing knowledge gap
regarding vegetation dynamics in watershed modeling and confirms that assimilation of MODIS LAI
data in watershed models can effectively improve both hydrology and water quality predictions.

Keywords: data assimilation; ecohydrology; hydrologic modeling; remote sensing; SWAT; LAI

1. Introduction

The big data evolution in recent years has paved the way for remote sensing-integrated watershed
modeling. To limit models’ perceived tendency to give the “right answers for wrong reasons” [1,2],
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and therefore ensure realistic watershed management alternatives [3–5], the hydrogeoscience
community is increasingly using remotely sensed big data. It is already evident that remotely
sensed estimates of vertical water fluxes, such as soil moisture and evapotranspiration, offer realistic
constraints to watershed models, leading to improved simulation of hydrologic processes [6–10].
However, such improved simulation is feasible despite misrepresented vegetation dynamics in the
model [7,8]. Because spatiotemporal vegetation dynamics (i.e., when, where, what, and how vegetation
grows on the land surface) is a primary driver of land-atmosphere interaction and hence the water-energy
exchanges across the watershed [11,12], achieving the so-called improved hydrologic simulation while
overlooking vegetation dynamics is not physically meaningful. Nonetheless, the implications of
misrepresented vegetation dynamics on water quality simulations (e.g., in-stream nutrient load [13])
remains underexplored.

With the advent of advanced earth observation algorithms, remotely sensed Leaf Area Index
(LAI; leaf surface area per unit land surface area) has emerged as an effective measure of global
vegetation dynamics [11,14]. Today’s state-of-the-science biophysical models simulating gross/net
primary productivity, surface wetness, crop yield, and CO2 storage often assimilate remotely sensed LAI
data as the proxy for real-life vegetation dynamics [12,15–20]. However, watershed models simulating
hydrology and water quality continue to rely on semiempirical LAI equations (e.g., leaf development
curve) and associated biotic/abiotic user inputs (e.g., vegetation types, available solar energy,
crop plantation, and harvest dates) [21–25]. This LAI parameterization approach lacks physical realism
in many widely used watershed models (e.g., Soil and Water Assessment Tool, Variable Infiltration
Capacity model) [21–25]. In some of these models, a vegetation/LAI development module does not exist
(e.g., Hydrologic Engineering Center-Hydrologic Modeling System) [26]. Therefore, remedial measures
such as modification of existing LAI equations and calibration of LAI parameters (see, e.g., [13,22,23])
are not always applicable. To address these limitations, assimilation of remotely sensed LAI data has
been recently introduced in traditional watershed modeling practices [24,25,27–30].

The few recent studies which have assimilated remotely sensed LAI data in traditional
watershed modeling practices invariably showed that better LAI representation improves model
predictability [24,25,27–30]. Whereas these results promote a widespread use of remotely sensed LAI data
in watershed modeling, we identified two major knowledge gaps that require targeted investigations:

(1) Previous studies were predominantly focused on hydrologic processes [24,25,27–29]. Although studies
involving water quality simulations evaluated the potential effect of improved LAI on sediment
yield [30], the extent of such effects on nutrient (e.g., nitrate) loads—the most critical issue in
agricultural watersheds from water quality management standpoint—is still unknown.

(2) Evaluations conducted in the previous hydrologic studies were mostly limited to vertical water
flux and storage simulations (e.g., evapotranspiration and soil moisture) [24,27–29], with very little
emphasis on the watersheds’ cumulative response to downstream waters (i.e., streamflow) [25,30].

In this study, we intended to fill these knowledge gaps by assimilating Moderate Resolution
Imaging Spectroradiometer LAI data (MODIS MCD15A3H) [31] into the Soil and Water Assessment
Tool (SWAT) [21]. The specific objective of this study was to quantify the extent of improvements
that the assimilation of MODIS LAI data would convey to streamflow, soil moisture, and nitrate load
simulations at a daily timescale. Another unique contribution of our study was a new, highly efficient
SWAT source code, which can perform multisource, multivariate assimilation of remotely sensed data
regardless of watershed sizes and geolocations.

2. Methodology

We developed two contrasting model configurations to evaluate the effect assimilating MODIS
LAI data on simulated streamflow, soil moisture, and nitrate load:
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(1) The basic model: LAI was simulated by the model based on input land use and associated
biophysical parameters—a common approach in watershed modeling. This was our baseline to
measure the degree of improvement in model results in the subsequent configuration.

(2) The LAI assimilation model: The same setup as in the basic model, except MODIS LAI was
directly inserted by replacing the simulated LAI values in each of the spatial units of the model
(e.g., hydrologic response units or subbasins).

Our model testbed, the 16,860-km2 Cedar River Watershed (CRW; Figure 1), drains a major portion
of eastern Iowa in the United States (Figure 1). This entire region has experienced increased flood
frequency in the last two decades [32] as a result of climate and land use changes [33,34]. Studies have
shown that this altered hydrologic dynamic is likely to continue in future years [35,36]. Furthermore,
with more than 70% of the land area used for agricultural purposes (Figure 1a), CRW has long been
noted as a water quality hotspot exporting large nitrate loads to the Mississippi River system [3,37].
Considering these challenges, CRW is frequently used as a testbed in watershed modeling and
management studies [3,35,37–39].
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Figure 1. The 16,860-km2 Cedar River Watershed (CRW) in Iowa, United States. (a) Land use map
showing the agriculture-dominated landscape in the CRW, and (b) U.S. Geological Survey (USGS)
gage stations across the watershed used for model calibration and verification. The corresponding
station IDs are as follows: C1 = 05464500, C2 = 05458900, C3 = 05462000, C4 = 05458000, C5 = 05459500,
V1 = 05464420. Streamflow and nitrate data can be accessed from https://waterdata.usgs.gov/nwis
using respective stations IDs.

Our modeling experiments were conducted using SWAT [21], which is a process-based,
semidistributed tool capable of simulating landscape water balances, floods and droughts, nonpoint
source water pollution, crop yield, and best management practices across different physiographic
settings (see, e.g., [5,36,40–43]). Correspondingly, many previous studies addressing the heterogeneous
water issues in Iowa watersheds applied SWAT as their primary research tool [3,35,37–39,44]. SWAT
has also been used as the simulation tool in many data assimilation experiments (e.g., [7,8]). Therefore,
our SWAT-based analyses to understand the effect of assimilating MODIS LAI data on hydrology
and water quality simulations will have immediate applications-both to CRW and other agricultural
watersheds worldwide.

https://waterdata.usgs.gov/nwis
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In the following subsections, we describe the data and method used to set up the two
contrasting model configurations (with and without MODIS LAI data assimilation) and the model
calibration-verification procedure.

2.1. The Basic Model

The basic model configuration was based on the CRW model originally developed by
Golden et al. [3]. The geospatial inputs, primarily weather, topography, land use, soil properties,
and agricultural management data, required to setup the CRW model are summarized in Table 1.
In short, a topographic analysis of flow direction and flow accumulation divided the CRW into 95
subbasins, with an average drainage area of ~176 km2. The original CRW model by Golden et al. [3]
discretized the subbasins into 1860 Hydrologic Response Units (HRUs). However, to reflect the
common modeling issues of limited data availability, model infidelity, and computational liability
(e.g., [5,7,45]), we spatially discretized the CRW model at the subbasin level, meaning that subbasins
were the smallest units of process simulation in our modeling experiments. As a result, each of the
95 subbasins functioned like a single HRU (hence, total 95 HRUs). This approach aggregated land
use input data and spatially explicit information on crop types to the subbasin level, and therefore
allowed us to assess the full potential of MODIS LAI data for minimizing these deficiencies in the LAI
assimilation model.

Table 1. Datasets used in the Cedar River Watershed (CRW) model.

Item Description

Topography 30-m National Elevation Dataset [46]

Land use 30-m 2011 Cropland Data Layer [47]

Soil texture 1:250,000 State Soil Geographic (STATSGO) dataset [48]

Slope Five slope classes: 0–2%, 2–4%, 4–6%, 6–8%, >8% [3,39]

Subsurface drainage Tile drains were assigned on low slope (<2%) with row crops and poorly drained soils (hydrologic soil
group D) [3,37,38]

Agricultural management
operations

(a) Timing of plantation and harvest; (b) timing, type, rate, and place of fertilizer applications; (c)
corn–soybean annual rotation [3,37]

Precipitation Total daily precipitation from 1-km gridded DAYMET product [49]

Energy-related weather
forcing

Minimum and maximum daily temperature from 1-km gridded DAYMET product [49]; solar radiation,
wind speed and relative humidity from the historical weather generator within the SWAT source-code
[21]; potential evapotranspiration (PET) estimated with built-in Penman-Monteith equation [21]

Streamflow and nitrate
data

Six U.S. Geological Survey (USGS) gage stations; five for model calibration and one for model
verification (Figure 1b)

Rootzone (100 cm) soil
moisture data

Soil Moisture Active Passive (SMAP) mission 3-hourly L4 global 9-km rootzone soil moisture; used for
model verification [50]

LAI data MODIS MCD15A3H LAI/FPAR four-day L4 global 500 m v006 [31]; assimilated in the model replacing
the model’s default LAI values

Representation of landscape vegetation dynamics in our basic model configuration was based on
a commonly followed semiempirical leaf development approach (e.g., [21–23]). Specifically, in our
approach, the temporal variation of LAI was determined by plant/crop-specific biophysical parameters
primarily related to heat units, radiation use efficiency, vapor pressure deficit, maximum canopy height,
and input plantation and harvest schedules (for row crops) [21–25]. The spatial variation of these
parameters, hence the spatial variability of LAI, was directly linked with the level of specificity in
model’s land use representation [7]. Therefore, the best possible spatial representation of LAI in the
basic model configuration was at the subbasin level.

2.2. The LAI-Assimilation Model

The LAI-assimilation model was the same as the basic model configuration, except with the
integration of MODIS LAI data across the watershed. Following a well-accepted approach of earth
data processing for watershed-scale modeling and analyses [7–9], we constructed representative LAI
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time series from the original gridded MODIS product. Briefly, we applied a recently developed
semiautomatic web-based tool [51] to account for the heterogeneity in size, shape, and locations
of any number of subbasins. The ~500-m-gridded four-day total LAI data (Table 1) [31] were first
georeferenced and then assigned to respective subbasin(s) by taking an area-weighted average value
from encompassing and/or intersecting MODIS grid(s). In the subsequent step, we performed a linear
temporal interpolation (by averaging) [28] to transform the subbasin-level four-day total LAI values into
a continuous daily LAI time series. We assimilated this spatially distributed and temporally continuous
LAI data into our basic model configuration using a new SWAT source code. In each instance of
simulation (days), our new source code applied the direct insertion approach (e.g., [24,25,30,52]) to
replace the simulated LAI (Section 2.1) across all subbasins and all simulation time steps with the
corresponding MODIS LAI data.

The new SWAT source code is an advanced version of the source code developed by
Rajib et al. [7], which was initially equipped with the capacity to assimilate remotely sensed potential
evapotranspiration (PET) data. In this study, we added additional features to this source code so that it
was capable of assimilating both PET and LAI data simultaneously, thus allowing a holistic approach
for improving SWAT’s process representations. To the best of authors’ knowledge, this is the first
SWAT source-code with such functionalities.

2.3. Model Calibration

We followed an identical calibration protocol for both model configurations (basic and LAI-
assimilation). The calibration length was four years (2009–2012), with a prior two-year initialization
of model state (2007–2008). Both configurations were calibrated at daily time step, first using
streamflow data at five gage stations throughout the watershed and then using nitrate load data at
the watershed outlet (Figure 1b; Table 1). It was feasible to conduct our water quality calibration
at daily time step because of the abundant in-situ nutrient concentration data in CRW [53,54].
To ensure compatibility with model simulations, we converted nitrate concentrations (mg/L) into
nitrate loads (kg/day) using the corresponding daily average streamflow data (m3/s) as a multiplier
(i.e., load = concentration × streamflow × 3600 × 24/1000) [3].

Both basic and LAI assimilation models used an identical set of 42 calibration parameters.
We selected these calibration parameters from our previous CRW study [3]. These parameters represent
hydrology and water quality (Tables A1 and A2, respectively) while being indirectly related to
vegetation dynamics. Although SWAT is relatively well equipped with many biophysical parameters
and process conceptualizations that directly influence vegetation dynamics (e.g., maximum root depth,
radiation use efficiency, stomatal conductance, day/nighttime thresholds of vapor pressure deficit) [7,55],
other advanced watershed models are not [23,24,56]. Therefore, we excluded such parameters from
our calibration [unlike previous studies, (e.g., [8,13]) to isolate the effects of MODIS LAI assimilation
into the model and to maintain focus on our study’s hypothesis that assimilated LAI data can serve as
a proxy for vegetation dynamics when limited (or completely absent) vegetation-related parameters
and processes are available in watershed models.

We used Sequential Uncertainty Fitting version 2 (SUFI-2), which is a semiautomated calibration
algorithm available inside SWAT-CUP calibration platform [57]. A weighted Kling-Gupta Efficiency
(KGE) [8,58] was the objective function to measure the association between daily simulated and
measured data at the stream gages. KGE decomposes Nash-Sutcliffe Efficiency and Mean Squared
Error into a three-dimensional criteria space and finds out a Pareto front in terms of the shortest
Euclidean distance [8,9]. KGE ranges from −∞ to 1. Model accuracy increases as KGE value moves
closer to 1. To find the best parameter combination and hence the most optimal model state, SUFI-2
seeks the highest possible KGE value across all calibration locations.
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2.4. Model Verification

We performed a series of tasks to assess the relative improvement of simulation accuracy between
the two model configurations (with and without MODIS LAI data assimilation). These verification
tasks include the following:

(1) Assessments of hydrologic simulation:

i. We assessed the accuracy of daily streamflow simulation for a five-year period (2013–2017)
and at a separate gage station not included in the calibration process (for model verification)
(Figure 1b).

ii. We then compared simulated LAI with MODIS data to identify how the calibrated
models differ in their respective spatiotemporal representation of vegetation dynamics.
For evaluating the spatial accuracy in LAI simulation, we considered specific day(s) in the
2016 crop growing season (June–August). We focused on crop growing season because
this is the most active period in terms of vegetation growth and associated water-energy
exchanges. We selected 2016 for temporal evaluation because this was a year with average
precipitation, hence representative of the watershed’s general hydrologic response.

iii. To further assess improvements in hydrologic simulation, we compared the spatial
consistency of soil moisture between model simulations and Soil Moisture Active Passive
(SMAP) mission level 4 estimates (Table 1). SMAP mission provides 9-km gridded
estimates of rootzone soil moisture, which is a model-assimilated product of remotely
sensed surface moisture observations [50]. Briefly, we produced subbasin-level aggregated
SMAP data using the same web-based tool and areal averaging procedure described in
Section 2.2, took the daily average of rootzone volumetric moisture content over the 2016
crop growing season (June–August), and subsequently generated a watershed soil moisture
distribution map to enable spatial comparison with model outputs. We considered the
same period for assessment of LAI and soil moisture as it would produce a consistent
comparison across two mutually dependent processes. Furthermore, selecting summer
months ensured that SMAP data used in our model assessments were not affected by
snow cover and frozen soil—the common sources of inaccuracies in remotely sensed soil
moisture [59].

(2) Assessment of water quality simulation:

We assessed the accuracy of daily nitrate load simulation for the same five-year period and at the
same location used for streamflow verification (Figure 1b). To the best of our knowledge, this is
the first study to verify the effect of LAI data assimilation on water quality simulations and that
using long-term daily observations as the reference.

3. Results

3.1. Effect of LAI Data Assimilation on Hydrologic Simulation Accuracy

The basic model configuration simulated daily streamflow reasonably well (Figure 2a),
with KGE = 0.8 at the watershed outlet and KGE ≥ 0.5 across all other locations (Table A2). However,
such accuracy in streamflow simulation was obtained despite a poor representation of landscape
vegetation dynamics. For example, simulated LAI in the basic model on a given day of the crop
growing season showed little spatial variability across the watershed, differing substantially from
the spatial variability of MODIS LAI data (Figure 2b). In addition to an overestimation tendency
throughout the late spring and summer crop growing seasons, the temporal variability of MODIS
LAI data was largely inconsistent with the basic model (time series comparison in Figure 2b; note the
~30-day lag between the respective occurrences of maximum LAI).
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The LAI assimilation model increased streamflow simulation accuracy, with higher KGE values
compared to the basic model at all locations (Table 2). We demonstrate this relative improvement in
Figure 3 using the combined exceedance probability of streamflow at two outlet/near-outlet locations
(i.e., based on a combined streamflow time series from the outlet calibration location, 2009–2012,
and the near-outlet verification location, 2013–2017). Streamflow simulated by the LAI assimilation
model was closer to gage data throughout the nine-year calibration-verification period (Figure 3a),
with significantly improved accuracy across medium-to-low flow conditions (p < 0.05; Figure 3b).
Whereas the LAI assimilation model produced improved streamflow in medium-to-high flow conditions
as well, such improvements were not significant (p ≥ 0.05; Figure 3c).
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Figure 2. The basic model gave right answers for wrong reasons: (a) Reasonably good daily streamflow
simulation despite (b) a large bias in LAI. The spatial maps correspond to a specific date when MODIS
LAI peaked during the 2016 growing season (day 192). To focus on model’s temporal inconsistency,
the time series correspond to a specific subbasin where simulated LAI and MODIS LAI showed
minimum difference between their respective peak values relative to all other subbasins.

Table 2. Evaluation of model performance in daily streamflow simulation. KGE = 1 means 100%
agreement between simulated and reference data.

Location a Basic Model LAI-Assimilation Model

Calibration

C1b 0.80 0.86
C2 0.84 0.85
C3 0.87 0.87
C4 0.50 0.51
C5 0.55 0.64

Verification V1 0.65 0.72
a Figure 1b maps these locations across CRW’s stream network. b C1 is at the watershed outlet.
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Figure 3. (a) Streamflow exceedance probability during 2009–2017 (Y flow being exceeded X percent
of all days in the flow record) suggests improved streamflow simulation in the LAI assimilation model,
as compared to gage data. (b,c) Statistical significance of changes in medium-to-low (streamflow exceedance
50–100%) and medium-to-high flow conditions (streamflow exceedance 0–50%), respectively, based on
model bias.

The spatial pattern of rootzone soil moisture (Figure 4) afforded additional insights into how
MODIS LAI data altered the model’s overall water balance. For example, despite the basic model’s
reasonable accuracy in streamflow simulations, the spatial pattern of rootzone soil moisture in the model
was largely inconsistent with SMAP data (comparing Figure 4a with Figure 4c). Compared to SMAP,
this indicated an unrealistically “dry” condition across the watershed. However, after assimilating
MODIS LAI data, the basic model showed increased spatial consistency with SMAP data, hence an
overall improved water balance (comparing Figure 4b with Figure 4c).
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Figure 4. Comparison of daily average rootzone soil moisture across the 2016 crop growing season
(June–August): (a) Basic model, (b) LAI assimilation model, and (c) SMAP data. The values represent
wetness (m3/m3) in the top 100 cm of the soil profile.
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3.2. Effect of LAI Data Assimilation on Water Quality Simulation Accuracy

The assimilation of LAI data produced considerable improvements in the model’s simulated
nitrate loads (Figure 5). First, the LAI assimilation model could better reproduce the temporal
variability of observed daily nitrate loads than the basic model (Figure 5a). This was also confirmed
by increased KGE values (e.g., 0.20 versus 0. 74 and 0.10 versus 0.41, respectively, during calibration
and verification). Second, daily nitrate loads simulated by the basic model showed noticeably
large departures from gage nitrate data (1:1 line in Figure 5b). In comparison, the LAI assimilation
model exhibited closer adherence to the 1:1 line, suggesting reduced bias in nitrate load simulations.
Specifically, the basic model underestimated overall nitrate loads that the watershed conveyed to
downstream waters. With improved LAI representation, the model reduced this bias by 47% and 17%,
respectively, during the calibration (2009–2012) and verification (2013–2017) periods (Figure 5b).
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4. Discussion

Our results suggest that traditional watershed modeling practices overlooking the physical realism
of vegetation dynamics inadequately represent landscape water balance and nutrient loads at the daily
timescale. Whereas the assimilation of remotely sensed LAI data can considerably improve hydrology
and water quality simulations, three key questions remain: (1) What is the link between improved LAI
data and improved model predictions? (2) Which LAI datasets are appropriate for watershed-scale
modeling? and (3) What modeling factors are important to make LAI data assimilation efficient?
We address these questions below.

4.1. What Is the Link between Improved LAI Data and Improved Model Predictions?

Although calibration results may indicate a high-performing model, misrepresentation of LAI
drove the model state to a direction where the simulated water balance was not physically meaningful.
Figure 6 explains this “pulling of model-state” [8,60] between the basic and LAI assimilation model
configurations. Clearly, compared to the LAI assimilation model, higher LAI values in the basic model
resulted into proportionally higher ET and lower soil moisture. The overestimation of ET was logical
because higher LAI values mean lower canopy resistance (see Penman-Monteith equation in [21]),
which subsequently improves the efficiency of aerodynamic processes by lowering the threshold for
vapor and momentum transfers. Higher ET further indicates more water being depleted from the
rootzone storage (Figure 6c), hence an unrealistic dry condition across the watershed (e.g., Figure 4).
A dry rootzone explains why the basic model showed a significantly underestimated baseflow in the
rivers (Figure 3a,b).
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Figure 6. Bias in LAI (a) proportionally influenced the models’ partitioning of hydrologic fluxes
(as suggested by evapotranspiration (ET) and soil moisture (SM) (b,c) and nutrient loads (as suggested
by plant nitrogen uptake (d). The corresponding values (i.e., difference = basic model—LAI assimilation
model) were normalized in a uniform scale (0–1) to show the proportional effect of LAI across different
processes. To facilitate a focused assessment, only the growing season watershed average values were
included for visualization.

Higher LAI values in the basic model also led to higher plant nitrogen uptake, although nutrient
input (i.e., fertilization; Table 1) was identical across the two model configurations. High nitrogen
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consumption by the vegetation resulted in smaller volumes of mineral nitrogen on the land surface,
which caused the basic model to substantially (and inaccurately) underestimate nitrate loads in the
rivers. The LAI assimilation model, despite being calibrated with the same reference datasets as
the basic model, pulled the model state toward improved accuracy by decreasing ET, increasing soil
moisture, and decreasing plant nitrogen uptake.

4.2. Which LAI Datasets Are Appropriate for Watershed-Scale Modeling?

Various multisource “fusion” LAI datasets have emerged in recent years, primarily combining the
Advanced Very High-Resolution Radiometer (AVHRR) products with machine learning algorithms
(e.g., AVH15C1, LAI3g, and GLASS) [61–64]. Some of these relatively new LAI datasets are available
in daily timescale with short latency from present time (e.g., AVH15C1). Despite the potential high
temporal resolution, almost all these datasets are available at coarse spatial resolutions (e.g., ~5 km for
AVH15C1, LAI3g, and GLASS). Furthermore, studies that have assessed the quality of these relatively
new datasets are still very limited. Whereas these emergent big data offer new opportunities for
improved hydrology and water quality modeling at continental/global scales [28], the use of MODIS
MCD15A3H LAI data [31] seems suitable for watershed-scale modeling given the reasonably high
spatiotemporal resolution (~500 m; four-day total), continuous algorithm improvisations [14,65],
and more importantly, well-documented quality assessments [14,66–68].

4.3. What Modeling Factors Are Important to Make LAI Data Assimilation Efficient?

The efficiency of any remote sensing-integrated watershed modeling approach largely depends
on the interoperability between the model and remotely sensed data [69]. This interoperability is
essentially a “big data problem” [7], defined in terms of the degree of automation in two fundamental
tasks: (i) Processing a dataset such that it is fully compatible with a model’s geodatabase architecture,
and (ii) seamlessly assimilating the processed dataset in spatiotemporal simulations. Previous studies
which have showed the potential of assimilating remotely sensed LAI data in watershed models
(e.g., [29,30]) did not exclusively address how these two tasks can be conducted in an interoperable
(hence, efficient) way. We addressed this problem by developing a new model source code to perform
task (ii) and by supplementing the source code with an open access companion tool [51] to perform
task (i) (see Section 2.2). Thus, we implemented an interoperable MODIS-SWAT linkage, which made
our approach highly efficient and reproducible regardless of watershed sizes and geolocations. Using
our approach, SWAT modelers can efficiently assimilate MODIS LAI data without going through the
learning curve of big data processing and model source code programming.

5. Summary

We applied a remote sensing-integrated watershed modeling approach assimilating MODIS LAI
data across the 16,800-km2 Cedar River Watershed in Iowa, United States. We compared the two models,
i.e., LAI assimilation configuration (with MODIS data) and basic configuration (with the model’s
default semiempirical LAI representation), over a nine-year period and concluded the following:

1. The basic model gave right answers for wrong reasons, with reasonably good daily streamflow
simulation despite a large bias in LAI. The accuracy of daily streamflow simulation improved
throughout the nine-year period. However, this improvement was significant during
medium-to-low flow conditions.

2. The LAI assimilation model adopted a physically realistic water balance by increasing rootzone
soil moisture storage, therefore improving the model’s spatial consistency with reference estimates
(from the SMAP satellite mission).

3. Assimilation of LAI data into our watershed model substantially improved nitrate load simulations,
reproducing long-term in-situ observations at a daily timescale. Our study is the first to show
such an effect.
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We also addressed conceptual and technical challenges associated with LAI assimilation in
hydrology and water quality modeling. Conceptually, we disentangled how overestimation or
underestimation of LAI cascades through watershed processes and how the model responds to it
by partitioning hydrologic fluxes and nutrient pools. From a technical standpoint, we highlighted
that high-quality remotely sensed global LAI datasets are becoming increasingly available. However,
widespread community adoption of these emerging data resources will not be feasible without
minimizing the lack of interoperability between remotely sensed big data and complex watershed
models. By making SWAT model interoperable with a semiautomatic earth data processing tool,
our study demonstrated how assimilation of LAI data in watershed models can be done efficiently
regardless of watershed size and location. Our next step is to apply this efficient big data-driven
modeling approach for watershed management decisions in various geophysical settings.
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Appendix A

Table A1. Parameters included in the streamflow calibration of the Cedar River Watershed model.
See supplementary information for the most optimal parameter values.

No. Parameter a Definition b Spatial Scale Initial Range c

1 ALPHA_BF Baseflow recession constant (days) HRU 0.001–1
2 CH_K2 Channel hydraulic conductivity (mm/h) Subbasin 5–100
3 CH_N1 Tributary channel Manning’s n Subbasin 0.001–0.15
4 CH_N2 Main channel Manning’s n Subbasin 0.001–0.15
5 OV_N Overland Manning’s n HRU 0.12 d

6 CN2 Curve number (moisture condition II) HRU −0.08–0.08
7 SURLAG Surface runoff lag coefficient (days) Basin 0.05–10
8 EPCO Plant uptake compensation factor HRU 0.01–1
9 ESCO Soil evaporation compensation factor HRU 0.01–1

10 GW_DELAY Groundwater delay (days) HRU −10–10
11 GW_REVAP Groundwater “revap” coefficient HRU 0.01–0.2
12 GWQMN Threshold depth for return flow (mm H2O) HRU 0.01–5000
13 REVAPMN Re-evaporation threshold (mm H2O) HRU 0.01–500
14 RCHRG_DP Deep aquifer percolation fraction HRU 0–1
15 SOL_AWC Available soil water capacity (mm/mm) HRU −0.15–0.15
16 SOL_K Soil hydraulic conductivity (mm/h) HRU −0.15–0.15
17 TIMP Snow pack temperature lag factor Basin 0–1
18 SFTMP Snowfall temperature (◦C) Basin 0–5
19 SMFMN Min snowmelt factor (mm H2O/◦C-day) Basin 0–10
20 SMFMX Max snowmelt factor (mm H2O/◦C-day) Basin 0–10
21 SMTMP Snowmelt base temperature (◦C) Basin −2–5

a Each parameter, except CN2, SOL_AWC, SOL_K and GW_DELAY, was iterated such that the original value was
replaced by a value from respective initial ranges. During every iteration, a value from GW_DELAY’s initial range
was added to its original value; original value of CN2, SOL_AWC and SOL_K was multiplied by an adjustment factor
(1 + a value from the initial range). b See Neitsch et al. [21] for detail description of these parameters. c Selection
of parameters and their initial ranges were based on our previous study [3]. d Based on the calibration results of
Hutchinson and Christiansen [37]; the value was assigned directly in the model without further iteration.
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Table A2. Parameters included in the nitrate calibration of the Cedar River Watershed model.
See supplementary information for the most optimal parameter values a.

No. Parameter a Definition b Spatial Scale Initial Range c

1 SPCON Linear sediment routing factor Basin 0.0081 d

2 SPEXP Exponent sediment routing factor Basin 1 d

4 CH_COV1 Channel erodibility factor Subbasin 0.22 d

3 CH_COV2 Channel cover factor Subbasin 0.1 d

5 PHOSKD Phosphorus soil partitioning coefficient Basin 167 d

6 PPERCO Phosphorus percolation coefficient Basin 11.2 d

7 SOL_ORGP Initial organic P conc. in soil layer (mg P/kg) HRU 10 d

8 SOL_ORGN Initial organic N conc. in soil layer (mg N/kg) HRU 1–50
9 SOL_NO3 Initial NO3 concentration in soil layer (mg N/kg) HRU 1–50

10 SOL_CBN Organic carbon content in soil layer (% weight) HRU 0.05–10
11 BIOMIX Biological mixing efficiency HRU 0.001–1
12 CDN Denitrification exponential rate Basin 0.001–3
13 CMN Mineralization rate of active N and P Basin 0.001–0.003
14 HLIFE_NGW Half-life of nitrogen in ground water (days) Basin 0–500
15 NPERCO Nitrate percolation coefficient Basin 0.001–1
16 SDNCO Denitrification threshold water content Basin 0.001–1.1
17 ANION_EXCL Fraction of porosity to exclude anions Basin 0.01–1
18 BC1 Biological oxidation rate (NH3) (day−1) Basin 0.1–1
19 BC2 Biological oxidation rate (NO2-NO3) (day−1) Basin 0.2–2
20 BC3 Biological oxidation rate (organic N-NH3) (day−1) Basin 0.02–0.4
21 RS4 Organic N settling rate in the channel (day−1) Subbasin 0.001–0.1
a Calibration of nitrate load was conducted separately, following the hydrology calibration. The gage stations
(Figure 1b) provide in-situ estimates of nitrate plus nitrite as nitrogen (NO3-N + NO2-N). These estimates mainly
represented NO3 in the stream because NO2 was not the dominant N species. See Golden et al. [3]. b Each parameter
was iterated such that the original value was replaced by a value from respective initial ranges. See Neitsch et al. [21]
for detail description of these parameters. c Selection of parameters and their initial ranges were based on our
previous study [3]. d These parameters are related to sediment and phosphorus. Calibration of these parameters
was not possible because of the unavailability of observed/estimated datasets. The values listed above were obtained
from the calibration results of Hutchinson and Christiansen [37] and Wu and Liu [38] for a much larger watershed
which included our study area. These values were therefore assigned directly in our Cedar River Watershed model
without further iteration.
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