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Abstract: Accurately mapping forest effective leaf area index (LAIe) at the landscape level is a crucial
step to better simulate various ecological and physiological processes such as photosynthesis,
respiration, transpiration, and precipitation interception. The LAIe products obtained from
two-dimensional (2-D) remotely sensed optical imageries are usually biased due to their inability
to identify the vertical forest structure and eliminate the effects of forest background (i.e., shrubs,
grass, snow, and bare earth). In this study, we first stratified the forest overstory and background
layers and generated a forest background mask layer based on the structural information implicitly
contained within the aerial laser scanning (ALS) data. We improved the retrieval accuracy of LAIe
by combining light detection and ranging (Lidar)-based three dimensional (3-D) structural and 2-D
spectral information. Then, we obtained the improved final LAIe estimation result by masking
the forest background pixels from the optical remotely sensed imageries. Our results showed that:
(1) Removing forest background information could effectively (R2 increase from 20% to 30%) improve
the estimation accuracy of optical-based forest LAIe depending on forest structure characteristics.
(2) The forest background in the forest stands with low canopy cover showed more apparent effects
on LAIe estimation compared with the forest stands with a high canopy cover. (3) The combination
of ALS and optical remotely sensed data could produce the best LAIe retrieval result effectively by
removing the forest background information.
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1. Introduction

Leaf area index (LAI), defined as one half of total green leaf surface area per unit horizontal ground
surface area [1], is a crucial biophysical structural parameter for global climate change research [2,3].
The accurate estimation of forest canopy LAI at the landscape level is the premise and basis for better
understanding the matter and energy cycles of terrestrial ecosystems and the spatiotemporal variations
in solar radiations within or under a forest canopy [4–7]. Effective LAI (LAIe) is different from LAI,
which considers the non-random distribution of foliage in the canopy. However, LAIe is usually used
as a proxy of LAI because it is easier to obtain from the field-based instruments and remotely sensed
data [8]. LAIe can be converted to LAI by the methods from previous studies [9–11]. The forest stand
can be divided into overstory and background layers in the vertical dimension [12]. Forest background
refers to all the materials below the forest canopy, including understory, leaf litter, grass, lichen, moss,
rock, soil, snow, or their mixtures [13].
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The conventional optical remotely sensed data receives mixed spectral signals from both forest
overstory and background. In the meantime, the field-based measurement usually focuses on the
forest overstory components for building statistical models and LAI product validation purposes [14].
This inconsistency leads to a significant error in the inversion results of a forest canopy LAI [15–17].
For example, one of the crucial reasons for the differences between the various global LAI products is
the ignorance of different structures between forest overstory and background [14,18]. The statistical
relationships between various vegetation indices (VIs) and field-based forest overstory LAI have
been used as the standard method to map forest LAI using optical remotely sensed data widely.
Some particular VIs, such as reduced simple ratio (RSR), soil adjusted vegetation index (SAVI),
or corrected normalized difference vegetation index (NDVIc), are proposed to mitigate the effects
of forest background on the reflectance of a forest canopy [19–21]. However, the VI-LAI empirical
relationship tends to be saturated in a high-density forest canopy [22,23]. Moreover, many of the
VIs that can mitigate background effects depend on the relative contributions of the background and
overstory layer components, which differ along with sensor and sun angles [24] and cannot effectively
separate the vertical structure information of tree-shrub-grass.

Multi-angle optical remotely sensed data combined with radiative transfer models have been
used to overcome the effects of forest background and improve the accuracy of LAI inversion [25] in
both North America and Northern Europe, respectively [13,26]. Moreover, Jiao et al. [27] used the
long-term accumulated multi-angle imaging radiometer (MISR) data to obtain the monthly forest
background reflectance of the global forest. Yang et al. [28] separated the overstory and understory
LAIs of coniferous and deciduous broadleaf forests by combining a moderate resolution imaging
system (MODIS) and MISR data at the global scale.

By obtaining the ratio of the forest background, the directional reflectance information obtained
from multi-angle and multispectral remotely sensed data can eliminate the effects of forest background
on forest LAI reversion. However, there still exist some problems and challenges as follows: (1) the
spatial resolution of multi-angle optical satellite imageries usually are low; (2) few on-orbit multi-angle
satellite data are available; (3) due to the increased travel path of solar radiation before reaching satellite
sensors, the quality of data is usually affected by the air condition, especially by the clouds; and (4) the
difficulties in taking into account topographic variations [13]. In addition, for the optical geometry
model, the spatial distribution of trees is assumed to obey the Neyman distribution [29], and the tree
crowns are approximated with simple geometric models such as cone, cylinder [30]. Therefore, the
complex individual tree structure and their various spatial distribution patterns introduce errors to the
estimation of four forest components (i.e., sunlit forest overstory, sunlit background, shaded forest
overstory, and shaded background) proportions and forest canopy LAI, which are the basic parameters
for the study of bidirectional reflectance distribution of a forest canopy. Optical remotely sensed data
could not accurately describe the 3-D forest structure. Therefore, it is necessary to improve the accuracy
of LAI estimation by a new method of accurately depicting the 3-D forest structure.

Light detection and ranging (Lidar) is an active remote sensing method that can directly capture
3-D forest structure information [31]. Many studies have applied Lidar to accurately obtain the 3-D
forest structural metrics such as tree height, stand volume, and canopy closure [32,33]. The aerial
laser scanning (ALS) data holds the capacity to penetrate through a forest canopy and great potential
to improve the retrieval accuracy of LAI at the landscape or regional level [34]. There are two
commonly used methods to retrieve forest LAI using ALS data. (1) Statistical-based method: One
usually uses the empirical statistical relationships between ALS-based forest canopy height or crown
volume and field-based LAI measurements for LAI inversion [35–37]. However, the fixed simple
mathematical models are only feasible for a specific homogeneous forested area with uniform tree
species [38]. (2) Beer’s law-based method: Various penetration indices based on the gap fraction
theory of Beer’s law have been developed to estimate forest LAI using ALS data [38–42]. The ability
to capture 3-D structure information allows overcoming the saturation problem resulting from the
non-linear spectral responses of optical remotely sensed data to increasing forest LAI [43]. However,
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the varied footprint sizes and point densities will introduce uncertainties to estimating the forest gap
fraction and LAI [34]. Most of the current studies usually set a specific height threshold to remove
the effects of forest background on LAI estimation using ALS data. For example, Richardson, Moskal,
and Kim [38] classified the points whose normalized heights were beyond 1.2 m as forest overstory.
The simple threshold method does not work for forest stands with complex vertical structures and
various tree species compositions. By fusing the ALS data capable of stratifying forest overstory from
the background and spectral imageries with the ability to identify the vegetation and non-vegetation of
forested area, one can effectively remove the effects of forest background on LAI retrieval. The usage
of appropriate quantitative fusion of different data sources can benefit from each other to improve the
final result of forest LAI. Some studies have successfully combined optical remotely sensed and ALS
data to retrieve vegetation parameters such as forest aboveground biomass, basal area, species mixture,
stem density, and volume [44–46]. However, most of the studies used a combination of different
variables obtained from optical remotely sensed and ALS data without distinguishing the effect of the
vertical forest structure of trees-shrub-grass on the parameter inversion.

Currently, few studies have quantitatively evaluated the effects of forest background on LAIe
inversion by combining aerial spectral and laser scanning data. The spectral information recorded by
single-angle optical remotely sensed data has limited ability to eliminate the effects of forest background
effectively for LAIe retrieval purposes due to the inability to obtain forest 3-D structural information.
Therefore, an effective method is needed to be developed to improve the retrieval accuracy of forest
overstory LAIe by combining the aerial spectral and laser scanning data. The specific goals of this
study were as follows:

(1) develop an algorithm to stratify the forest overstory and background using ALS data;
(2) investigate the effects of forest background of LAIe retrieval by combing the aerial spectral and

laser scanning measurements;
(3) compare and map the forest overstory LAIe at landscape level using different combinations of

optical and Lidar data and evaluate their accuracy.

2. Materials and Methods

2.1. Study Area

There are two study areas in this study. The first one is the Washington Park Arboretum (WPA)
(47.636◦N, 122.296◦W), covering an area of about 230 acres. It is located south of the University
of Washington campus, Seattle, USA (Figure 1). More than 4600 species of vegetation were found
from WPA, including trees, shrubs, and lianas. The Douglas fir (Pseudotsuga menziesii), Western
hemlock (Tsuga heterophylla), Western red cedar (Thuja plicata), Big-leaf maple (Acer macrophyllum),
Monkey puzzle (Araucaria araucana), Southern magnolia (Magnolia grandiflora), and New Mexican
locust (Robinia neomexicana) are the dominant tree species of this study site. WPA is a managed urban
forest with an elevation between 10 m and 48.47 m, and the terrain slope is less than 15◦.

The second study site is Panther Creek (PC) (45.281◦N, 123.368◦W), located southeast of Portland,
Oregon, USA. The total area of the PC is about 5580 acres (Figure 1). The dominant tree species include
Western red cedar (Thuja plicata), Douglas fir (Pseudotsuga menziesii), Big-leaf maple (Acer macrophyllum),
and Western hemlock (Tsuga heterophylla). PC is a natural forest with apparent topographic fluctuation.
The elevation ranges from 87.32 m to 703.14 m, and the maximum terrain slope is 51.26◦.
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Figure 1. The study area. The subfigures (a) and (b) show the aerial false-color images and effective 
leaf area index (LAIe) measurement locations of the digital hemispherical photo (DHP) and 
terrestrial laser scanning (TLS) in the Washington Park Arboretum (WPA) and Panther Creek (PC) 
sites. The subfigures (d) and (c) show a DHP and the corresponding aerial laser scanning (ALS) data 
(circular forest plot with a radius of 30m) from the PC site. The subfigures (f) and (e) show a DHP 
and the corresponding ALS data (circular forest plot with a radius of 30m) from the WPA site. The 
subfigures (g) and (h) are the ALS data of the WPA and PC sites. 

2.2. Datasets 

2.2.1. Aerial Laser Scanning Data 

The ALS data of WPA was obtained using the RIEGL LMS-Q560 laser scanner (Riegl, Co. Ltd. 
Horn, Austria) on August 7 2008. The pulse frequency of the laser scanner was 133,000 Hz. The 
average flight altitude was about 310 m, while the lowest and highest flight altitudes were 145 m and 
412 m, respectively. Multiple flight lines were designed to obtain point cloud data. The pulse 
emission density was about 10/m2, and the scan zenith angle ranged from −30° to 30° from the nadir. 
The point cloud data was projected in UTM 10N, using WGS-84 ellipsoid datum, with units in 
meters. The ALS data of PC was acquired by the Leica ALS80 laser scanner (Leica Geosystems AG, 
Heerbrugg, Switzerland) on June 18 2015, with a pulse frequency of 384,800 Hz. The average flight 

Figure 1. The study area. The subfigures (a,b) show the aerial false-color images and effective leaf area
index (LAIe) measurement locations of the digital hemispherical photo (DHP) and terrestrial laser
scanning (TLS) in the Washington Park Arboretum (WPA) and Panther Creek (PC) sites. The subfigures
(d,c) show a DHP and the corresponding aerial laser scanning (ALS) data (circular forest plot with a
radius of 30m) from the PC site. The subfigures (f,e) show a DHP and the corresponding ALS data
(circular forest plot with a radius of 30m) from the WPA site. The subfigures (g,h) are the ALS data of
the WPA and PC sites.

2.2. Datasets

2.2.1. Aerial Laser Scanning Data

The ALS data of WPA was obtained using the RIEGL LMS-Q560 laser scanner (Riegl, Co. Ltd.,
Horn, Austria) on 7 August 2008. The pulse frequency of the laser scanner was 133,000 Hz. The average
flight altitude was about 310 m, while the lowest and highest flight altitudes were 145 m and 412 m,
respectively. Multiple flight lines were designed to obtain point cloud data. The pulse emission density
was about 10/m2, and the scan zenith angle ranged from −30◦ to 30◦ from the nadir. The point cloud
data was projected in UTM 10N, using WGS-84 ellipsoid datum, with units in meters. The ALS data of
PC was acquired by the Leica ALS80 laser scanner (Leica Geosystems AG, Heerbrugg, Switzerland) on
18 June 2015, with a pulse frequency of 384,800 Hz. The average flight height was about 1400 m, and
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24 east-west flight lines covered the study area. The pulse emission density was higher than 8/m2, and
the scan zenith angle ranged from −15◦ to 15◦. The point cloud data was projected in Oregon Lambert,
using the NAD83 (2011) horizontal datum and the NAVD88 (Geoid 12A) vertical datum, with units in
international feet. The average point cloud densities of the WPA and PC study areas were 27 and 53
points/m2.

2.2.2. Optical Spectral Data

A HyMap Sensor (HyVista Corporation, New South Wales, Australia) was used to obtain the
aerial hyperspectral data of WPA on 15 August 2010. The hyperspectral imagery contained 128 bands,
with a spectral range of 400–2500 nm and a spectral resolution of 15–16 nm (visible and near-infrared
bands) and 15–20 nm (short-wave infrared bands). The spatial resolution of the aerial imagery was
2.9 m. The HyCorr software (HyVista Corporation, New South Wales, Australia) was used for radiative
correction, and the known field control points were used for geometric correction. The coordinate
system of the imagery was UTM 10N with the WGS84 datum. The hyperspectral data of the PC was
obtained using the CASI-1500 sensor (ITRES Corporation, Calgary, Canada) from 3 to 5 September 2014.
The imagery consisted of 96 bands with a spectral range of 380–1050 nm. The spectral resolution and
spatial resolution were 3.6 nm and 0.5 m, respectively. We pre-processed the imagery using the ITRES
(ITRES Corporation, Calgary, Canada) and ATCOR4 software (ReSe Applications LLC Corporation,
Wil, Switzerland) for radiative correction and Inertial Explorer software (NovAtel Corporation, Calgary,
Canada) for geometric correction. The coordinate system of the imagery was also set as the UTM 10N
with the WGS84 datum.

2.2.3. Field-Based LAIe Measurements

• Digital Hemispherical Photos (DHP):

We used a digital camera (Nikon CoolPix 4500, Nikon Inc, Melville, NY, USA) equipped with a
fisheye lens (Nikon Fisheye Converter FC-E8) to take hemispherical photos of 19 forest plots from
8 to 15 September 2008 in the WPA (Figure 1). At the same time, we used the Trimble GeoXT (Trimble
Navigation Ltd., Sunnyvale, CA, USA) to record the geographic coordinates of the center point for each
plot. The photos were processed by the Gap Light Analyzer (GLA Version 2.0) software [47]. GLA can
calculate the LAIe of each forest plot by obtaining the forest gap fraction and other parameters (Table 1).
We used the same instruments to obtain the LAIe values and center location coordinates of 17 forest
plots from 20 to 28 June 2015 in the PC study area (Table 1). To eliminate the influence of topography,
we used an LAI 4 ring value integrated from zenith angles of 0◦–60◦ to process the DHP from WPA
and PC sites. The mean LAI values were used as the representative values of the forest plots.

• Terrestrial Laser Scanning (TLS) data:

In September 2008 and July 2011, we used the Leica Scanstation II (Leica Geosystem AG, St. Gallen,
Switzerland) to obtain the single station TLS point cloud data of 5 WPA plots and 9 PC plots, respectively.
We scanned these plots using a hemispherical method (horizontal: 0◦ to 360◦; vertical: −45◦ to 90◦). Due
to the various vegetation densities of each study site, we applied the sampling spacings of 2 cm @ 30 m
and 1 cm @ 50 m to the plots of WPA and PC, respectively. Then, a radial hemisphere slice algorithm
(RHSA) proposed by Zheng et al. [48] was used to process the TLS point cloud data. This algorithm
projects a 3-D point cloud to a two-dimensional (2-D) hemispherical surface to simulate the way of
calculating the LAIe by DHP. Therefore, the RHSA-based LAIe showed good agreement with the
DHP-based ones [48]. In the projection of point cloud, we set the angular resolutions of the zenith and
azimuthal direction as 1–1.5 times that of the sampling spacing [49] and used the same field of view
angle and ring number as DHP to calculate the LAIe. The results of the TLS-based LAIe are shown in
Table 1.



Remote Sens. 2020, 12, 2126 6 of 22

Table 1. Forest plot characteristics in both the WPA and PC study areas.

Plot Tree Forest
Type

Mean
Height

(m)
LAIe Canopy

Cover Plot Tree Forest
Type

Mean
Height

(m)
LAIe Canopy

Cover

WPA-1 13 C 25.74 3.66 0.41 PC-1 70 C 17.17 3.76 0.85
WPA-2 13 C 28.81 2.79 0.52 PC-2 63 C 17.05 3.74 0.85
WPA-3 16 M 26.24 2.16 0.83 PC-3 72 C 26.82 5.15 0.96
WPA-4 14 M 22.50 2.13 0.59 PC-4 51 C 26.42 4.20 0.90
WPA-5 11 M 22.73 3.18 0.48 PC-5 77 C 26.55 4.83 0.96
WPA-6 14 M 28.82 2.18 0.71 PC-6 34 C 27.41 2.37 0.88
WPA-7 16 C 24.02 1.45 0.63 PC-7 33 C 25.23 3.28 0.83
WPA-8 18 M 21.18 2.06 0.54 PC-8 29 C 25.97 3.64 0.69
WPA-9 14 M 21.96 1.58 0.64 PC-9 47 C 23.24 3.24 0.89
WPA-10 14 B 26.16 1.47 0.73 PC-10 39 C 23.94 3.92 0.88
WPA-11 16 C 24.16 2.12 0.76 PC-11 25 C 37.66 3.95 0.81
WPA-12 17 M 23.77 2.67 0.76 PC-12 32 C 37.94 4.71 0.82
WPA-13 19 B 18.20 3.42 0.70 PC-13 33 C 39.64 4.66 0.83
WPA-14 21 C 23.78 2.56 0.78 PC-14 28 C 38.02 4.25 0.84
WPA-15 23 C 26.51 3.37 0.84 PC-15 36 C 41.16 3.45 0.96
WPA-16 7 C 26.64 0.96 0.47 PC-16 68 C 28.24 5.38 0.98
WPA-17 16 C 22.55 1.87 0.84 PC-17 52 C 33.06 4.26 0.98
WPA-18 26 M 22.59 3.58 0.92 PC-18 34 C 39.20 4.44 0.88
WPA-19 19 M 19.64 2.37 0.64 PC-19 35 C 40.52 4.97 0.78
WPA-V1 18 M 20.68 2.29 0.72 PC-20 80 C 20.52 5.34 0.98
WPA-V2 24 B 29.40 3.71 0.90 PC-V1 39 C 39.39 2.89 0.92
WPA-V3 27 M 32.12 4.11 0.94 PC-V2 35 C 47.93 3.53 0.95
WPA-V4 21 M 30.64 3.04 0.93 PC-V3 78 C 16.75 4.06 0.84
WPA-V5 17 B 26.53 3.66 0.87 PC-V4 41 C 25.12 4.25 0.89

Mean 17 - 24.95 2.60 0.71 PC-V5 60 C 25.93 5.14 0.93
PC-V6 52 C 31.79 5.16 0.82
Mean 48 - 28.11 4.18 0.88

(Note: C: Conifer; B: Broadleaf; M: Mixed).

2.3. Overall Workflow

The overall flowchart of the study is shown in Figure 2. We first segmented the raw ALS data
into individual trees and stratified forest overstory and background layers. Then, we masked the
corresponding pre-processed optical spectral imageries to obtain the forest overstory layer. Based on
the statistical relationship between the field-based LAIe and VIs of masked forest overstory, the final
forest LAIe products were produced after removing the forest background by combining the aerial
spectral and laser scanning data.

2.4. Tree Segmentation

We first used the CSF (Cloth Simulation Filter) algorithm [50] of the CloudCompare software
(EDF, R&D. Paris, France) [51] to filter the ground points, and generated the digital terrain model
(DTM) and normalized the forest heights using the FUSION software [52]. After grouping discrete
points into individual tree crowns using the tree crown segmentation algorithm proposed by
Li et al. [53], we obtained the tree height, crown size, and tree location information of each tree.
The tree crown segmentation algorithm and extraction of tree parameters were realized by the C++

programming language.
The tree crown segmentation algorithm is a top-to-bottom region growing approach based on the

raw 3-D point cloud data. The minimum distance threshold (DT) and searching sphere radius (SSR)
used to find the local maximum point are two key parameters. By comparing the segmentation results
of forest plots with the changes in the DT and SSR from 1 to 4 m at 0.5 m intervals, we determined the
DT and SSR as 3 m and 2 m for the WPA and PC sites, respectively.
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Figure 2. Flowchart of improving the forest overstory LAIe estimation by combining the aerial spectral
and laser scanning data.

To validate the tree crown segmentation results, we visually identified the treetop points and
measured the crown size of each tree using the FUSION software in the forest plots from the WPA and PC
sites. Based on the matching of automated treetop points and visual treetop points, we obtained the root
mean squared error (RMSE) of the crown radius to evaluate the accuracy of the segmentation algorithm.

2.5. Forest Stratification

2.5.1. Height Threshold Determination

The tree height threshold was determined to stratify the forest overstory and background using
the frequency histogram-based method (Figure 3). We first plotted the tree height frequency for the
segmented tree crowns and obtained the double-peak probability density curves of the tree height
distribution patterns in both the WPA and PC sites. By computing the first-order derivations of the tree
height frequency curves, we determined the height stratification threshold as half of the tree height
whose first-order derivative was zero and was the trough of the probability density curve (Figure 3).
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Figure 3. Determination of the height threshold for stratifying the forest overstory and background
using the ALS data in the WPA (a) and PC (b) study sites.

2.5.2. Overstory Spectral Imagery

To remove the effects of the forest background on estimating the forest overstory LAIe, we generated
a binary raster image based on the stratified ALS overstory points. The grid size was consistent with
the pixel size of optical imageries for comparison purposes. Moreover, we converted the datasets
into the same projections system (i.e., UTM 10 N). Then, based on the number of points in each grid,
we reclassified the optical spectral imageries into a binary image by setting a threshold (Tnum) for the
number of points. The value of Tnum was computed as (Equation (1)):

Tnum =
Re2D

4
(1)

where Tnum is related to average point cloud density (D) and image spatial resolution (Re). We took
Tnum as 1/4 of the average number of points in each pixel. If the number of points in the cell was
higher than Tnum, it was assigned to 1; otherwise, it was assigned to 0. According to the average point
cloud densities and the spatial resolutions of hyperspectral images in the study areas, we determined
that the Tnum of the WPA and PC study areas were 57 and 3, respectively. Finally, we obtained the
forest overstory spectral imageries by masking out the forest background pixels using the ALS-based
mask layer.

2.6. LAIe Mapping

2.6.1. Optical-Based LAIe

We selected 24 and 26 circular forest plots with a radius of 30 m in both the WPA and PC
sites in September 2008 and June 2015, respectively (Figure 1). Among these forest plots, we built
linear regression statistical models between the normalized difference vegetation index (NDVI) and
simple ratio (SR) and field-based LAIe values using 19 (i.e., forest plot WPA-1~WPA-19) and 20 (i.e.,
forest plot PC-1~PC-20) plots for the WPA and PC sites. The rest of the forest plots (i.e., forest plot
WPA-V1~WPA-V5 and PC-V1~PC-V6) were used for the validation purposes of the final LAIe product.
Finally, we applied the statistical relationships between NDVI and LAIe to map the optical-based LAIe
in both the WPA and PC sites.

2.6.2. ALS-Based LAIe

We obtained the ALS-based LAIe values of the forest plots (i.e., forest plot WPA-1~WPA-19 and
PC-1~PC-20) using a scan angle correction algorithm (SACA)-based approach [54]. To compare with
optical-based LAIe, we established linear regression statistical models between the ALS-based and
field-based LAIe values using these forest plots in the WPA and PC sites. By dividing the the ALS



Remote Sens. 2020, 12, 2126 9 of 22

overstory data of the WPA and PC sites into square grids with the side length of 10 m, we used the
SACA-based approach to calculate the LAIe of each grid and generated the ALS-based LAIe maps
with a spatial resolution of 10 m in both the WPA and PC sites finally. The choice of 10 m represents a
tradeoff between retaining the spatial details and suppressing the wrong LAIe values due to insufficient
scan angle information.

The SACA-based approach employed the Beer’s law to obtain the LAIe by calculating the gap
fraction and the extinction coefficient. Voxel size is a crucial factor in estimating the gap fraction of a
point cloud. According to the voxel size sensitivity analysis method [54], we chose 0.5 and 1.2 m as the
voxel size of the WPA and PC sites.

2.6.3. Stratified Forest Overstory LAIe

We used the same forest plots (i.e., forest plot WPA-1~WPA-19 and PC-1~PC-20), as described
in Section 2.6.1, to establish the linear regression statistical models between the VIs (i.e., NDVI and
SR) from stratified overstory spectral imageries and the field-based LAIe values in the WPA and PC
sites. Moreover, we still used the forest plots WPA-V1~WPA-V5 and PC-V1~PC-V6 as the verification
plots. Finally, we applied the statistical relationships between NDVI and LAIe to map the stratified
forest overstory LAIe in both the WPA and PC sites to assess the effects of the forest background on the
LAIe estimation.

3. Results

3.1. Tree Segmentation Results and Validation

We obtained the tree segmentation results for six circular test plots with different densities (high,
medium, and low) and forest types (coniferous forest and mixed forest) with a radius of 30 m from the
WPA and PC sites, including the WPA-LC (Figure 4a,b), WPA-MC (Figure 4c,d), WPA-HC (Figure 4e,f),
WPA-MM (Figure 4g,h), PC-MC (Figure 4i,j), and PC-HC (Figure 4k,l), respectively. Table 2 is the tree
segmentation verification results of these forest plots, where TP (true positive), FN (false negative),
and FP (false positive) represent perfect segmentation, under-segmentation, and over-segmentation,
respectively. The result shown that the tree crown segmentation algorithm detected 138 trees from the
151 trees of the six test plots, and the overall crown radius RMSE was 1.63 m. With the increase in
forest plots densities, the number of falsely segmented (i.e., over-segmented and under-segmented)
trees and crown radius RMSEs increased in both the WPA and PC sites. The crown radius RMSEs
increased from 0.45 to 1.37 m, and the number of falsely segmented trees increased from 1 to 4 in the
three low-, medium-, and high-density coniferous forest plots of the WPA sites. The crown radius
RMSEs increased from 1.16 to 2.15 m, and the number of falsely segmented trees increased from 4 to
8 in the two medium- and high-density coniferous forest plots of the PC sites. Moreover, the crown
radius RMSE of a mixed forest plot (i.e., WPA-MM) was higher than the RMSE of a coniferous forest
plot (i.e., WPA-MC) with the same density.

Table 2. Accuracy evaluation of tree segmentation for the forest plots in both the WPA and PC sites.

Plot Density Tree # Forest
Type

Segmented
Tree # TP FP FN Crown Radius

RMSE (m)

WPA-LC Low 10 C 11 10 1 0 0.45
WPA-MC Medium 17 C 18 17 2 0 0.94
WPA-HC High 24 C 26 23 3 1 1.37
WPA-MM Medium 18 M 19 16 3 3 1.82

PC-MC Medium 30 C 29 28 2 2 1.16
PC-HC High 52 C 45 44 1 7 2.15
Overall - 151 - 148 138 10 13 1.63

Note: C: conifer; M: mixed; TP: perfect segmentation; FP: over-segmentation; FN: under-segmentation.
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Figure 4. Height-normalized ALS data (insets a,c,e,g,i,k) and corresponding tree segmentation results
(insets b,d,f,h,j,l) of six circular forest plots with a radius of 30 m, including the WPA-LC, WPA-MC,
WPA-HC, WPA-MM, PC-MC, and PC-HC. In the tree segmentation results, different colors represent
individual trees.

3.2. Forest Stratification Result and Validation

The stratified height thresholds of the WPA and PC sites obtained by the frequency histogram-based
method were 7 m and 9 m, respectively (Figure 3). We visualized the results of the forest overstory
points (Figure 5a,d), understory points (Figure 5b,e), and binary images (Figure 5c,f) in both the
WPA and PC sites. To show the details, we obtained the forest stratification results for four east-west
line transects with a length of 60m from the WPA and PC sites, including the WPA-L1 (Figure 5g,h),
WPA-L2 (Figure 5i,j), PC-L1 (Figure 5k,l), and PC-L2 (Figure 5m,n), respectively. The results show
that the stratification method could effectively separate the vegetation below the gap between the
crowns in the middle- and low-density forest. However, in the high-density forest, this ability was
weakened due to the occlusion of tree crowns. Moreover, we obtained the canopy cover by calculating
the proportion of the overstory area to the total area of a forest plot from the ALS data of six test forest
plots (Table 3). The overstory proportions of a forest plot (P) was computed as the ratio of the number
of overstory pixels over the total number of pixels in a stratified forest plot image. The result showed
that the differences (D) between the P and canopy cover were both less than 5% in the four forest plots
with different densities and forest types from the WPA site. For the two medium- and high-density
forest plots from the PC site, the D values were both −1%.

Table 3. The verification of the forest stratification results.

Plot Canopy Cover P D (%) P(0) D(0) (%)

WPA-LC 0.20 0.19 −1 0.35 15
WPA-MC 0.53 0.54 1 0.70 17
WPA-HC 0.65 0.70 5 0.87 22
WPA-MM 0.54 0.51 −3 0.83 29

PC-MC 0.43 0.42 −1 0.47 4
PC-HC 0.83 0.82 −1 0.87 4
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Figure 5. Forest stratification results in both the WPA and PC sites. (a) Point cloud of overstory layer
in the WPA site. (b) Point cloud of understory layer in the WPA site. (c) Binary image in the WPA
site where the forest overstory and background are represented by green and red. (d) Point cloud of
the overstory layer in the PC site. (e) Point cloud of the understory layer in the PC site. (f) Binary
image in the PC site where the forest overstory and background are represented by green and red.
Height-normalized ALS data (insets g,i,k,m) and corresponding stratification results (insets h,j,l,n) of
four east-west line transects with a length of 60 m, including WPA-L1, WPA-L2, PC-L1, and PC-L2.
In the stratification results of the line transects, the forest overstory and understory are represented by
green and red.

3.3. LAIe Mapping Results and Validation

3.3.1. Optical-Based LAIe

We built linear regression statistical models between the NDVI and SR and field-based LAIe values
(i.e., NDVI-LAIe and SR-LAIe) using optical imageries in the WPA (Figure 6a,c) and PC (Figure 6e,g)
sites. We found that the R2 values of NDVI-LAIe were lower than the corresponding R2 values of
SR-LAIe in both the WPA and PC sites. To compare the LAIe products from different data, we generated
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optical-based LAIe maps and increased their spatial resolution to 10 m in the WPA (Figure 7b) and PC
(Figure 7f) sites. The verification results (Table 4) showed that the RMSEs of the optical-based LAIe
maps were 0.92 and 0.58 in both the WPA and PC sites.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 23 
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Figure 6. The linear regression statistical models of vegetation index and field-based LAIe in both the
WPA and PC sites. (a) Normalized difference vegetation index (NDVI)-LAIe from the optical image in
the WPA site. (b) NDVI-LAIe from the stratified forest overstory image in the WPA site. (c) SR-LAIe
from the optical image in the WPA site. (d) Simple ratio (SR)-LAIe from the stratified forest overstory
image in the WPA site. (e) NDVI-LAIe from the optical image in the PC site. (f) NDVI-LAIe from
the stratified forest overstory image in the PC site. (g) SR-LAIe from the optical image in the PC site.
(h) SR-LAIe from the stratified forest overstory image in the PC site.
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Figure 7. LAIe mapping results in both the WPA and PC sites. (a) The optical image in the true color of
the WPA site. (b) Optical-based LAIe map of the WPA site. (c) ALS-based LAIe map of the WPA site.
(d) Stratified forest overstory LAIe map of the WPA site. (e) The optical image in the true color of the
PC site. (f) Optical-based LAIe map of the PC site. (g) ALS-based LAIe map of the PC site. (h) Stratified
forest overstory LAIe map of the PC site.
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Table 4. Validation of the LAIe maps in both the WPA and PC sites.

Study
Area Plot Field-Based

LAIe
Optical-Based

LAIe
ALS-Based

LAIe
Stratified Forest
Overstory LAIe

WPA

WPA-V1 2.29 2.67 2.28 2.61
WPA-V2 3.71 2.76 2.75 2.95
WPA-V3 4.11 2.80 3.63 3.05
WPA-V4 3.04 2.71 2.61 2.81
WPA-V5 3.66 2.51 2.14 2.64

RMSE - 0.92 0.85 0.76

PC

PC-V1 2.89 3.87 2.43 3.23
PC-V2 3.53 4.29 2.12 4.15
PC-V3 4.06 4.25 2.79 4.09
PC-V4 4.25 3.99 2.98 3.52
PC-V5 5.14 4.78 3.54 5.21
PC-V6 5.16 4.68 4.06 5.04
RMSE - 0.58 1.24 0.42

3.3.2. ALS-Based LAIe

The R2 values of the statistical regression models between the ALS-based and field-based LAIe
values were 0.35 and 0.55 in the WPA and PC sites, respectively (Figure 8). In addition, most ALS-based
LAIe values were lower than the corresponding field-based LAIe values in the PC site (Figure 8b).
We obtained ALS-based LAIe maps of WPA and PC (Figure 7c,g) and verified them (Table 4). In the
WPA site, the RMSE of the ALS-based LAIe map was lower than the RMSE of the optical-based LAIe
map. However, the RMSE of the ALS-based LAIe map was higher than the RMSE of the optical-based
LAIe map in the PC site. We also found that most ALS-based LAIe values were lower than the
field-based LAIe values in the verification plots for the PC site. The canopy cover and tree height of
the PC site were generally higher than those of the WPA site (Table 1), while the sampling interval of
the ALS data of PC was lower than those of WPA. Because of the occlusion effect of tall tree crowns
and the limited penetration of laser beams, the description of the forest structure by point cloud will be
incomplete, especially the structural information of the basal canopy. This may be the main reason for
the underestimation of the ALS-based LAIe of the PC sites.
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3.3.3. Stratified Forest Overstory LAIe

Based on the stratified overstory spectral imageries, we built NDVI-LAIe and SR-LAIe in both the
WPA (Figure 6b,d) and PC (Figure 6f,h) sites. For comparison, we summarized the R2 values of all the
statistical regression models derived from the optical imageries, ALS data, and stratified overstory
imageries and performed a leave-one-out cross-validation method [55] to evaluate the quality of these
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regression models (Table 5). RMSEP is the root mean square error of prediction. Compared with the R2

values of NDVI-LAIe from optical imageries, the R2 values of NDVI-LAIe from the stratified overstory
imageries increased by 0.33 and 0.26 in the WPA and PC sites, respectively. The improvements of
SR-LAIe were smaller than those of NDVI-LAIe. The R2 values of SR-LAIe increased by 0.14 and
0.02 in the WPA and PC sites, respectively. The R2 values from the ALS data were higher than the
R2 values from the optical imageries and lower than the R2 values of the NDVI-LAIe from stratified
overstory imageries. Combining the quality evaluation results of the regression models, we found that
the models from the stratified overstory imageries were the best, the models from the ALS data were
the second, and the models from the optical imageries were the worst in both the WPA and PC sites.
Moreover, in both the WPA and PC sites, NDVI was more accurate than SR for building regression
models in stratified overstory imageries. This is the reason why we used NDVI-LAIe for mapping
the LAIe.

We obtained the stratified forest overstory LAIe maps with a spatial resolution of 10 m in the WPA
(Figure 7d) and PC (Figure 7h) sites. By verifying the LAIe maps (Table 4), we found that the RMSEs of
the stratified overstory LAIe maps were the lowest among the three types of LAIe products in both the
WPA and PC sites. Removing the forest background could overcome the underestimation of high LAIe
values using the optical-based method effectively in a forest canopy.

Table 5. R2 values and root mean square error of prediction (RMSEP) values of the statistical regression
models from the optical imageries, stratified forest overstory imageries, and ALS data in both the WPA
and PC sites.

Study Area Data Type Regression Model R2 RMSEP

WPA

Optical imagery NDVI-LAIe 0.17 0.79
SR-LAIe 0.26 0.73

Stratified forest NDVI-LAIe 0.50 0.59
overstory imagery SR-LAIe 0.40 0.63

ALS data 0.35 0.64

PC

Optical imagery NDVI-LAIe 0.36 0.88
SR-LAIe 0.51 0.58

Stratified forest NDVI-LAIe 0.62 0.51
overstory imagery SR-LAIe 0.53 0.56

ALS data 0.55 0.57

4. Discussions

4.1. Tree Segmentation Accuracy Analysis

The parameters (i.e., DT and SSR) of tree crown segmentation algorithms are the key factors
affecting the tree segmentation accuracy.The higher parameters can result in under-segmentations,
whereas smaller parameters can result in over-segmentation [53]. We obtained the segmentation
results of the study area by tuning the parameters using the forest plots. However, for the forest plots
with different densities and different forest types in the study area, it is impossible to find the generic
optimal segmentation parameters. Therefore, an improved method based on Li’s crown segmentation
algorithm [56] may improve the segmentation results in landscape or region scales.

Forest density and type also affect the accuracy of tree crown segmentation. The segmentation
results of medium- or low-density forest stands are better than those of high-density forest stands of
the same forest type (Table 2). High-density forest stands have substantial overlapping between tree
crowns, which increases the difficulty of identifying individual tree crown boundaries. Moreover,
understory trees are not easy to be detected from high-density forest stands [53]. The segmentation
accuracy of mixed forest stands is lower than single type forest stands with the same density (Table 2).
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The shape and size of the tree crowns vary significantly in the forest with abundant vegetation types,
which increases the difficulty of tree segmentation. The crown segmentation algorithm in this paper
has a strong ability to segment coniferous trees, while over-segmentation is easy to occur when some
trees with long branches and broad-leaved trees with large crowns are segmented [57]. Recently, some
advanced algorithms [58,59] for detecting different tree types and understory trees can be used in tree
crown segmentation to improve the segmentation accuracy further.

In addition, the completeness of the forest point cloud is an essential factor affecting the
segmentation accuracy. For example, tall trees might prevent the penetration of laser beams, which
makes some point cloud of understory vegetation incomplete. This problem can be improved by
increasing the laser pulse density or by using ALS data from multiple overlapping flight paths [54].

4.2. Effects of Removing Forest Background

Tnum is a crucial factor affecting the accuracy of removing the forest background from an optical
image. To study the effect of Tnum, we generated stratified overstory imageries of the WPA and PC
sites without using Tnum (i.e., Tnum = 0). Then, we calculated the proportions (P(0)) of the overstory
pixel numbers to the total pixel numbers of the six test forest plots (i.e., WPA-LC, WPA-MC, WPA-HC,
WPA-MM, PC-MC, and PC-HC) from these imageries. By comparing P(0) and the canopy cover
(Table 3), we found that the differences (D(0)) between the P(0) and the canopy cover were 15%–29%
in the forest plots of WPA, and the D(0) values were both 4 % in the forest plots of PC. It indicates
that ignoring Tnum will overestimate the number of forest overstory pixels in the stratified overstory
imageries. When the overstory point cloud is transformed into a binary image based on the number of
points, some grids with few overstory points tend to have a high proportion of the forest background.
Without the Tnum, these grids will be classified as overstory pixels, resulting in a high proportion of
forest overstory in stratified overstory imageries.

The registration accuracy between the aerial imageries and ALS data also affects the accuracy
of removing the forest background. To evaluate the registration accuracy of the WPA and PC sites,
we respectively selected the landmarks (such as road intersection, house edge) using a visual method
from the ALS-based intensity imageries and aerial imageries. We calculated the deviation in the 2-D
horizontal direction (i.e., 2-D distance) of the aerial image coordinates and intensity image coordinates
in each landmark (Table 6) as in Equation (2):

2−D distance =
√

∆x2 + ∆y2, (2)

where ∆x and ∆y represent the deviations of the aerial image and ALS data in the x-axis and y-axis
direction, respectively. It was shown that the average deviations of landmarks were 3.27 and 3.23 m in
the WPA and PC sites. For the WPA aerial imagery with a spatial resolution of 2.9 m, the registration
error between the aerial imageries and ALS data is about one pixel. The registration error is about six
pixels in the PC aerial imagery with a spatial resolution of 0.5 m.

4.3. Effects of VI-LAIe

Removing the forest background of optical imageries can effectively improve the VI-LAIe, and the
degree of improvement is closely related to the canopy cover. To study the effects of the canopy cover
on the VI-LAIe, we obtained the canopy cover of the forest plots for building VI-LAIe models (i.e.,
forest plot WPA-1~WPA-19 and PC-1~PC-20) by calculating the proportion of the overstory area to the
total area of the plot (Table 1). According to the canopy cover, we divided these forest plots into three
groups (i.e., the canopy cover ranges were 0.4–0.64, 0.65–0.84, and 0.85–1) to establish the NDVI-LAIe
using toptical imageriehe s and stratified forest overstory imageries, respectively. By comparing the R2

changes after removing the forest background (Table 7), we found that the improvement of VI-LAIe
decreased with the increase in canopy cover. The R2 of the NDVI-LAIe increased by 0.46 and 0.23
using forest plots with a canopy cover of 0.4–0.64 and 0.65–0.84 in the WPA site. In the PC site, the
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R2 of the NDVI-LAIe increased by 0.9 using forest plots with a canopy cover of 0.65–0.84, while the
R2 of the NDVI-LAIe did not improve using forest plots with a canopy cover of 0.85–1. In a forest
stand with a low canopy cover, forest background accounts for a large proportion. However, the
optical remotely sensed data could not adequately distinguish the mixed signals of the forest overstory
and background, which introduces obvious errors in building the VI-LAIe. Therefore, the VI-LAIe
improved significantly by removing the forest background. In a forest stand with a high canopy
cover, because of the occlusion effect of tree crowns the optical remotely sensed data obtains less forest
background information, and the point cloud of understory vegetation is difficult to remove. Thus, the
removal of forest background had less impact on the VI-LAIe.

Table 6. Registration error between the aerial imageries and ALS data in both the WPA and PC sites.

WPA Site PC Site
Point ∆x(m) ∆y(m) 2-D Distance (m) Point ∆x(m) ∆y(m) 2-D Distance (m)

1 4.95 1.88 5.29 1 −6.35 0.48 6.37
2 −0.95 0.74 1.21 2 0.4 1.85 1.9
3 1.98 −1.32 2.38 3 0.21 0.53 0.57
4 −0.4 −0.79 0.89 4 0.53 −3.44 3.48
5 1.91 1.48 2.41 5 −3.31 3.31 4.68
6 5.64 0.13 5.64 6 5.08 −1.06 5.19
7 6.08 1.06 6.18 7 −0.16 1.11 1.12
8 1.19 0.05 1.19 8 −2.86 2.43 3.75
9 2.64 −6.28 6.82 9 8.47 −0.79 8.5
10 0.99 −1.65 1.93 10 3.97 −1.59 4.27
11 3.18 −3.7 4.88 11 1.98 1.19 2.31
12 −0.64 −1.43 1.56 12 0.79 0.4 0.89
13 4.23 −0.63 4.28 13 4.63 0.33 4.64
14 3.7 0.79 3.79 14 1.43 −2.06 2.51
15 0.53 −0.21 0.57 15 2.25 0.53 2.31

Mean 3.27 16 −0.95 1.75 1.99
17 1.48 0.95 1.76
18 4.5 0.08 4.5
19 1.45 −1.06 1.8
20 0.12 0.79 0.8
21 −2.86 3.33 4.39

Mean 3.23

Table 7. Comparison of R2 values of the NDVI-LAIe using the optical imageries and stratified forest
overstory imageries in different canopy cover ranges.

Study Area Canopy
Cover Range Plot Optical

Imagery
Stratified Forest

Overstory Imagery Improvement

WPA
0.4–0.64 9 0.01 0.47 0.46

0.65–0.84 9 0.48 0.71 0.23
0.85–1 1 - - -

PC
0.4–0.64 0 - - -

0.65–0.84 7 0.37 0.46 0.09
0.85–1 13 0.73 0.73 0

After removing the forest background, the degrees of improvement of VI-LAIe were different in
the WPA and PC study areas. In addition to the 3-D forest structure, tree species, topography, and
other factors, the use of different hyperspectral sensors is an important factor for this difference. In the
HyMap data, we selected two bands with a central wavelength of 678 and 822 nm and a bandwidth
of 15–16 nm to calculate the VIs. In the CASI data, we selected two bands with a central wavelength
of 651 and 785 nm and a bandwidth of 3.6 nm to calculate the VIs. As shown in Figure 6, we found
that the difference between the NDVI range of the WPA plots (i.e., 0.75–0.95) and the NDVI range of
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the PC plots (i.e., 0.55–0.85) was small. Meanwhile, the difference between the SR range of the WPA
plots (i.e., 5–35) and the SR range of the PC plots (i.e., 5–8.5) was large. Because of the difference in the
center wavelengths and bandwidths, the VI of the same type is different, which finally leads to the
difference in the VI-LAIe. In the future, we can use the same spectral sensor to obtain optical imageries
in different regions, which is conducive to a joint and comparative analysis of different regions.

4.4. Potential and Limitations of LAIe Mapping

In this article, the synthetic utilization of aerial spectral and laser scanning data could effectively
improve the accuracy of mapping the forest canopy LAIe at the landscape or regional level, which
can provide more reliable reference data for the validation of a coarse-resolution LAIe map or global
LAI products. The unique feature of this study is to use the forest vertical stratification information
from Lidar data to map the forest canopy LAIe. In the monitoring of multi-temporal LAI change, our
method can be used to remove the disturbance of forest background to obtain the LAI change of the
forest canopy. Moreover, the forest stratified method of Lidar not only contributes to the inversion
of the overstory layer parameters, but also is conducive to obtaining the parameters of understory
vegetation structure, which has the potential to be applied to forest management, carbon cycle, and
ecological research [60–62]. At present, some studies have used the understory vegetation parameters
derived from Lidar in fire behavior models, forest inventory, and wildlife habitat suitability [63–65].

It must be noted that there are some limitations to this study. In terms of data, our method needs
Lidar data and optical imageries at the same time, which limits its application in wider areas. In the
future, with the improvement of the global ALS database, point clouds in different regions will be
connected with large-scale satellite images, which is conducive to the promotion of this method to
larger regions. In terms of methods, we only used a linear regression model to estimate the canopy
LAI; more models [2], such as polynomial, exponential, and logarithmic, should be considered and
compared. In the selection of VI, we compared the effects of the forest background on the two types
of VI (i.e., NDVI and SR), without making full use of the spectral information. In further research,
we need to compare more VIs, especially the VIs that can mitigate background effects, to determine
whether removing the forest background can improve most VIs. At present, some hyperspectral data
and hyperspectral indices have been widely used in LAI estimation [66,67]. Therefore, we can also
study the effect of removing the forest background on the hyperspectral indices. Moreover, our method
has been tested in local areas, but it still needs to be verified in different forest types. Currently, there
are many open-source point cloud data such as GlobALS [68] supporting this kind of verification,
which means our method has the potential to be promoted in global products.

5. Conclusions

In this study, we developed a method of improving the estimation accuracy of forest overstory
LAIe by combining aerial spectral imagery and ALS data. In addition, we compared and evaluated the
accuracy of forest overstory LAIe maps from different combinations of optical and ALS data. Based on
the results, we concluded that: (1) Removing forest background can effectively improve the estimation
accuracy of optical-based forest LAIe. The improvement of NDVI-LAIe is more prominent; the R2

increased by 0.33 and 0.26 in the WPA and PC sites, respectively. (2) The effect of forest background
on forest stands with a low canopy cover is more evident than it is with forest stands with a high
canopy cover. (3) The combination of ALS and optical remotely sensed data could obtain the best LAIe
retrieval result effectively by removing the forest background information.
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