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Abstract: This article presents the methodology and results of pilot field illuminance measurements
using an unmanned aerial vehicle (UAV). The main goal of the study was to quantify the luminous
flux emitted in the upper hemisphere (toward the sky) based on obtained measurement data.
The luminous flux emitted toward the sky is the source of undesirable light pollution. For test
purposes, a height-adjustable mobile park lantern was constructed, at the top of which any type of
luminaire can be installed. In the pilot measurements, two real opal sphere-type luminaires were
considered. The lantern was situated in an open area located away from a large city agglomeration. To
determine the unusable luminous flux, illuminance was measured, placing the necessary measuring
equipment on board a UAV. The measurements were supplemented with the registration of illuminance
on the ground upon which the lantern was installed. Based on these data, the useful luminous
flux was calculated. The findings show that UAVs may be successfully used for the assessment of
the influence of lighting on the light pollution effect.

Keywords: lighting technique; unmanned aerial vehicle; illuminance distribution; luminaire; useless
luminous flux; light pollution

1. Introduction

The consequence of the progress of urbanization, evidenced, amongst others, by the intensive use
of light at night time, is the increase in the effect of light pollution. This phenomenon is indicated in
the literature as an environmental nuisance that impacts humans [1–8], flora and fauna [9–14] and
astronomy [15].

Various methods for assessing the impact of electric lighting on the effect of light pollution are
presented in the literature. As one of the effects of light pollution is the increase in night sky illuminance,
this illuminance can be evaluated by analyzing sky images captured with a digital camera and fisheye
lens [16]. Another less costly method is the measurement of night sky illuminance with a sky quality
meter (SQM) [17–19]. Besides SQM, illuminance meters have been used in some research [20] to
measure land illuminance. A popular evaluation method is the analysis of satellite images of the earth’s
surface at night [21,22]; however, a drawback of this method is that images, when the area is covered
with clouds, cannot be used. Based on satellite images, changes in light emissions can be globally
assessed. To locally analyze artificial lighting, which is a source of light pollution, some authors
assessed this phenomenon using the results obtained during night flight research [23]. Unfortunately,
airplane-based research is expensive, which limits their widespread use. To determine the impact of
a specific lighting installation on the effect of light pollution, a single lighting luminaire or a given
object (e.g., large-area light advertising), drones, and air balloons may be used. The characteristics
of the measuring apparatus used for monitoring light pollution from drones or air balloons were
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reported [24], as well as a wide review of optical sensors used to detect light emission in terms of
light pollution [25]. The concept of measuring the distribution of light emitted by a football field
using unnamed aerial vehicles (UAVs) was presented [26,27]. The studies showed that UAVs provide
the opportunity to measure light emitted towards the sky.

Lamp posts are one of the many sources of light pollution. The emission of luminous flux toward
the sky adds to the increase in night sky illuminance. However, the illuminance level is dependent
on many factors outside of the spectrum of illuminance, such as the degree of pollution, fog, or
the presence of clouds [28–30]. Due to the complexity of the problem, the studies were focused on
lamp posts as a source of light-generating light pollution.

When assessing the impact of a luminaire on the effect of light pollution, three essential elements
should be considered: method of light distribution by the luminaire [31], spectral characteristics
of the emitted radiation [32], and reflexive properties of the substrate [33,34] on which the light is
installed. To assess light pollution by a specific luminaire, a simulation [35,36] can be performed
using computer software that enhances the process projection of outdoor light. Calculations require
a file with the photometric data of a luminaire. Most files with photometric data of luminaires can be
downloaded from the website of the producer of a given fixture. Otherwise, laboratory measurements
can be performed on the basis of which a file with photometric data can be generated [37] and
subsequently implemented in software. The software permits fixing the reflexive properties with
the help of the total reflection coefficient. However, the calculation process (performed by the software
enhancing the projection process of outdoor light) does not consider the spectral radiation distribution
emitted by the luminaire together with the spectral substrate reflection coefficient (the characteristics
of spectral reflection coefficient are constant). The effect of the luminous flux reflection emitted by
the luminaire off the substrate (which shows reflection-selective features, e.g., grass) produces a change
in spectral radiation distribution. Each reflexive surface, which should be treated as secondary light
sources, has its own characteristics of luminous flux distribution. Therefore, mirroring real conditions
when using computer software is problematic. Considering the spectral radiation distribution emitted
by the luminaire and the reflexive properties of the substrate is essential when analyzing light pollution.
The preparation time to record the measurements and a testing pre-phase required slightly more than
one year.

To consider actual conditions when assessing the impact of park-type luminaires on light pollution,
in this study, the first pilot measurements in Poland were recorded with the use of a UAV, which is
commonly called a drone. In scientific areas, drones have been mainly used for capturing images to
assess environmental conditions [38], analyze changes in climate impact [39], detect fire [40], quantify
natural stock [41], evaluate air quality, [42] and monitor hazardous areas [43]. However, the number
of works reporting the results of photometric measurements is limited. The results of experimental
studies in relation to road luminaires were described [44], where a small helicopter equipped with
a visual luminance meter was applied. These studies were conducted in Italy and were supported by
the Agenzia Nazionale per le Nuove Tecnologie (ENEA). In turn, the authors of the paper [45] have
proposed a concept of light pollution measurement using unmanned aerial vehicles. Based on a series
of photos taken above the highway, city square, and tennis court, luminance was determined using
image processing tools for each pixel. To the author’s knowledge, no measurements have been carried
out for individual decorative park luminaires that emit light in both the upper and lower half-spaces.
In order to determine the value of the luminous flux emitted towards the sky by a real park luminaire,
taking into account real conditions, the author attempted to carry out field measurements using UVA.

2. Materials and Methods

A vast assortment of manufactured and used luminaires is available. Luminaire producers of
outdoor light offer a wide variety of ideas with new designs of high esthetic value. When browsing
the choice of electric lighting installation solutions used for green areas (squares, parks, etc.), a popular
type of luminaire is the opal sphere type. These can be observed along roads with low traffic volume,
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car parks, sidewalks, and bicycle paths [46]. One characteristic feature of this type of luminaire is
a large emission of radiation with upper hemispherical luminous flux (in the direction of the sky),
which significantly influences the increase in the light pollution effect.

The literature on light pollution often recommends covering the luminaires to limit the luminous
flux emitted directly toward the sky. This suggestion was answered by the producers of luminaires
covering the upper surface of the lampshade. The popularity of this type of luminaire is mainly due to
the low price and their applicability to almost any type of light source. This is why the opal sphere
type was selected in the pilot measurement.

Laboratory measurements were recorded for two opal sphere luminaires for which a photometric
solid was determined. The obtained measurement results are graphically visualized in Figure 1.
The photometric body includes the basic set of information on the photometric properties of
the luminaire [47,48], fully representing the photometric properties. For an opal-sphere-type
luminaire, photometric solids symmetrically and rotationally represent the forms (Figure 1a). In this
context, a photometric solid may be represented as a profiled curve in the flat system (Figure 1b).
Flat-pollution-wise, a commonly used luminaire criterion is linked to the division of luminous flux
of the luminaire into the upper and lower hemispheres. A measure limiting the light emission into
the upper hemisphere is the upward light output ratio (ULOR) ULOR that describes the percentage
of the total luminous flux produced by a light source (or sources, if there are more than one in
a luminaire) emitted into the higher hemisphere [49]. For lower light pollution, the ULOR should be
as low as possible (preferably 0). Usually, manufacturers provide information on the ULOR value
in the luminaire specifications. However, this indicator does not always provide information on
the percentage of luminous flux emitted in the upper half of the space. The indicator that provides
information on the percentage of luminous flux emitted above the horizon line by the luminaire is
the upward light ratio (ULR), also known as upper flux fraction (UFF). Thus, ULOR and ULR are two
different indicators. However, the ULOR value may be equal to that of the ULR. This situation occurs,
e.g., in the case where the luminaires do not emit any light at all above the horizon (in this case, ULOR
= ULR = 0%).

In external conditions, due to the need to illuminate horizontal surfaces (ground) and
the increasingly urgent need to protect the environment against light pollution, luminaires that
emit luminous flux toward the ground should be used. The parameters describing the percentage of
luminous flux emitted in the lower half-space are downward light output ratio (DLOR) and downward
flux fraction (DFF). The former is the quotient of the luminous flux of the luminaire sent to the lower
half-space to the total luminous flux of the light source; the latter provides information on the percentage
of the total luminous flux emitted by the luminaire emitted below the horizon. From the viewpoint
of energy efficiency, an important parameter describing luminaire efficiency is the light output ratio
(LOR). This parameter indicates what percentage of the luminous flux generated by the light source
leaves the luminaire.

A more precise classification of the luminaire on the basis of percentage share of the luminous flux
in particular angle zones is the backlight, uplight, glare (BUG) classification. This system was devised
by the Illuminating Engineering Society (IES) [50] and is promoted by The International Dark-Sky
Association (IDA). Generally, the BUG system divides the photometric solids of the luminaire into
three zones. The bottom left-hand quarter of the photometric solid (zone 1, Figure 1) is marked with
the letter B (backlight). The upper part of the photometric solid (zone 2, Figure 1), radiation emitted in
the upper hemisphere, is responsible for sky glow and is marked with the letter U (uplight). The bottom
right-hand quarter (zone 3) is marked with the letter G (glare); however, the marking of zone 3 starts
with the letter F (front). Each of the above-mentioned zones is further divided into sub-zones. Zones 1
and 3 include sub-zones marked as low (L), mid (M), high (H), and very high (VH). Zone 2 includes
sub-zones low (L) and high (H).
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TM-15-11 [50]. 

Table 1 provides results of the calculations of the parameters and indicators based on the 
measurements recorded for opal-sphere-type luminaires equipped with a light source of 7700 lm. 

  

Figure 1. A graphic illustration of the opal-sphere-type luminaire with the method of light distribution:
(a,b) a photometric solid, and (c,d) a luminosity graph with marked angle zones classified per
the Backlight, Uplight, and Glare (BUG) classification system for outdoor luminaires.

Based on the method of light distribution by the luminaire, determining the value of the luminous
flux emitted in the direction of the sky is impossible. Factors such as the location of the luminaire
(presence of buildings, trees, etc.) are very important for this issue.

The BUG classification considers the total luminous flux (in lumens) in particular angle zones. For
each of B, U, and G, the classification system provides scores in the range of 0 to 5. The more the total
luminous flux is emitted from a given area, the larger the number. The boundary values of luminous
flux in particular sub-zones on the basis of which BUG classification is set are shown in TM-15-11 [50].

Table 1 provides results of the calculations of the parameters and indicators based on
the measurements recorded for opal-sphere-type luminaires equipped with a light source of 7700 lm.
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Table 1. Zonal lumen summary for opal-sphere-type luminaires.

Luminaire No. 1 No. 2

Parameters/indexes % %
Total luminous flux 100 100

Downward Flux Fraction (DFF) 43.6 71.6
Upward Light Ratio (ULR); Upper Flux Fraction (UFF) 56.4 28.4

Upward Light Output Ratio (ULOR) 45.5 8.6
Downward Light Output Ratio (DLOR) 35.1 21.5

Light Output Ratio (LOR) 80.6 30.1
Absorbed in luminaire 19.4 69.6

Zone 1 (back light)/Zone 3 (forward light)
BVH/FVH (80◦–90◦)

Back light very high/forward light very high 4.6 5.3

BH/FH (60◦–80◦)
Back light high/forward light high 7.9 11.5

BM/FM (30◦–60◦)
Back light mid/forward light mid 7.3 14.1

BL/FL (0◦–30◦)
Back light low/forward light low 2.0 4.9

Zone 2 (Uplight)
UH (100◦–180◦)

Uplight high 46.9 9.0

UL (90◦–100◦)
Uplight low 9.5 19.4

BUG rating B1 U5 G3 B1 U3 G2

As exhibited in Table 1, covering the opal shade with black paint (luminaire No. 2) decreases
the luminous flux emission into the upper hemisphere FL. In the case of zone 2 (uplight), the result
is a decrease in the luminaire class from U5 to U3, which is beneficial for decreasing light pollution.
Unfortunately, covering the upper hemisphere of the luminaire shade also considerably limits the total
luminous flux of the luminaire. In other words, with this solution (luminaire No. 2), some of
the luminous flux produced by the light source is lost (absorbed by the shade), which consequently
lowers the luminaire efficiency by 50.5% (from 80.6% to 30.1%).

The material of the luminaire lampshade provides diffusion properties. Covering the upper half
of the lampshade with black paint does not eliminate the emission of luminous flux to the upper
half-space (above the horizon). Thus, the lower half of the lens participates in the emission of light
above the horizon, as confirmed by the curve of light presented in Figure 1d. The situation is similar to
the case of the upper part of the lampshade, which also participates in the emission of light in the lower
half-space. Covering it with an impermeable paint limits the emission of light toward the ground.

3. Subject and the Scope of the Research

Two opal-sphere-type luminaires were subjected to experimental tests, the photometric properties
of which are given in Figure 1 and Table 1. The luminaire was assumed as being installed at a height of
4 m, typical for park lamps. The scope of the research included recording the illuminance on a virtual
measuring grid placed directly on the ground and on the grid (parallel to the ground) located at
a height of 14 m from the ground. To implement the project, a number of partial tasks were performed,
which included:

1. Selecting a drone model suitable for the intended purpose from a wide range of sellers;
2. Choosing a wireless data transmission technique and developing a recording method;
3. Construction of a portable park lantern;
4. Finding a suitable place to record field measurements;
5. Recording measurements;
6. Performing the analysis of results obtained from measurements.
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3.1. Task 1: Selection of the UAV Model

For measuring the illuminance from the air, it was decided to use a UAV, the selection of which
would affect the measurements. Due to the constantly growing number of drones, UAVs can be
classified according to various criteria (e.g., mass, payload, range, speed, engine types, etc.). In
general, in terms of use, drones can be divided into two main groups: military drones and civilian
drones [51]. For obvious reasons, attention was focused on civilian drones. Finally, a UAV (model
Matrice 600 PRO, company SZ DJI Technology Co., Ltd., Shenzhen, China) with a take-off weight
of 15.5 kg was selected. After deducting the drone’s own weight including batteries (9.5 kg), it can
be equipped with a load of up to 6 kg. As the selected drone is one of the largest units available on
the market (wingspan after UAV spread close to 1.7 m), it was necessary to acquire piloting skills.
Before flying in the field, many hours were spent on a dedicated flight simulator. Flying along
the planned route is not possible without specialized (paid) software. Unfortunately, at least several
such programs are available, not all of which are suitable for field measurements. Choosing the right
software was difficult because the modest description prevented the determining of the scope of its
possibilities. The UAV distributor recommends an application on a smartphone for its operation.
The application name is Itchi. Unfortunately, the app does not allow the precise planning of a flight
route. The geographical coordinates are entered manually. In turn, the UAV manufacturer recommends
its own DJI GS PRO software. Unfortunately, the version of the software offered is only available for
Apple equipment. Since this kind of equipment was not available to the author, it was decided to use
UgCS software (company SPH Engineering, Riga, Latvia), which was suitable for the UAV model that
was used in the experiment.

3.2. Task 2: Wireless Data Transmission and Recording

For ground measurements, a cable was used for communication. When recording measurements
from the air, the data recorded by the illuminance meter was sent to the ground. Ready-made solutions
on the market for simultaneous registration of an illuminance meter together with its geographical
location are not available on the market. A plastic box was attached to the drone’s construction, in
which all the necessary measuring equipment was placed together with the power source (Figure 2,
block A). The weight of the entire load was 1.3 kg. All equipment placed on the drone deck was
powered by an additional battery (12 V, 1.2 Ah). An illuminance meter was placed in a box attached to
the drone. The photometric head of the illuminance meter was placed in a hole cut out in a central place
in the bottom of the box so that the photosensitive surface was directed toward the ground. To send
the recorded illuminance values to a computer located on the ground, a radio transmitter was connected
to the illuminance meter via an RS232/UART (Recommended Standard 232/Uuniversal Asynchronous
Receiver-Transmitter) converter. Along with sending the measured illuminance value, the information
had to be sent about the current location of the UAV. For this purpose (except for the illuminance
meter), a GPS (Global Positioning System) receiver cooperating with the transmitter was installed. Data
from the equipment attached to the drone (recorded value of illuminance together with the current
location of the drone) was transmitted to the computer on the ground using radio communication
at the following 868 and 915 MHz. The computer communication with the equipment attached to
the drone was purposefully selected. Due to the controller controlling the drone (Figure 2, block C)
communicating via a frequency close to WiFi (2.4 GHz), to eliminate possible interference, the use of
the WiFi module for the transmission of measurement data was abandoned. The transmitted data, i.e.,
the measured illuminance value and the current UAV location (geographical coordinates), were received
by receivers connected to the PC via UART/USB converters (Figure 2, block B). The PC was equipped
with proprietary software that allows for the saving of data to a disk from two sources: the illuminance
meter and the GPS module. Data were in online mode so data transmission could be monitored in
real-time, which simultaneously confirmed the proper operation of the entire measurement system
onboard the UAV. In the absence of data transmission (as occurred once), the UAV was brought to
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the ground to locate and eliminate the defect in the measuring system. Figure 3 contains photos of
the drone and drone flight operation station.
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3.3. Task 3: Model of the Park Lamp Post

Park luminaires are typically installed at a height of 4 m. For this study, a supporting structure (a
pole) was devised. To enable field experiments, the pole structure was designed so that it could be
easily moved from place to place (using a passenger car). Thus, the longest dimension of the column
components could not exceed 1 m (Figure 4a). The height of the supporting structure (a mast) can be
freely adjusted (designed to achieve 4 m as standard (Figure 4c), but the height can be lower or higher).
The support structure allows the installation on any park luminaire due to the replaceable insert at
the top of the pole. Installing the lamp post began by assembling the base (Figure 4b); the anchors
at the end were mounted into the ground. This solution prevents the lamp from tipping over. Then,
after assembling the mast and installing the luminaire at its end (these activities were completed in
a horizontal position (Figure 4d)), and the mast was raised to a vertical position.
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3.4. Task 4: Finding a Suitable Location for Measurements

An important task (and contrary to appearances, not an easy one) was to find a suitable place to
record field measurements. Due to the specificity of the studied phenomenon and the pilot nature of
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the research, an open area was sought, located away from any large agglomeration. The lack of near
light sources (lighthouses) is important as they could affect the results of the measurements. A forest
clearing (in the village) located away from any residential areas appeared to be a suitable location for
field trials. The owner of the land was asked for permission to carry out the measurements. Since
the measurements were recorded using a UAV, it was confirmed that UAV flights were permitted by
law in the airspace in which flights were planned.

3.5. Task 5: Measurements

A number of field trials and tests were carried out before the measurements. The first trial (test)
measurements were recorded during the day to verify the proper operation of the designed system for
data transmission and recording. After positive test results were confirmed, the final measurements
were planned. Due to the specificity of the measurements, they needed to be performed after dark.
The day before the scheduled measurements, the weather forecast was checked to avoid poor weather
conditions (i.e., strong gusty winds, storms, rains, etc.). The measurements were recorded during
a holiday period (at the turn of July to August). The measurement methodology is described in more
detail below.

3.6. Task 6: Formulation of Measurement Results

The last task was to formulate the results obtained from the measurements. To present measurement
data in three-dimensional space, the geographical coordinates were transformed.

4. Methodology for Measuring Lighting Intensity

Before proceeding to measurements, a lamp post was set up in the forest clearing. Due to
the location where the measurements were recorded, access to the power grid was not possible, so
an alternative power source was used. For this purpose, a single-phase 6.5 kW generator was used.
A schematic electric diagram of the power supply system is shown in Figure 5. The voltage from
the generator via switch 1 (Figure 5) was fed to the autotransformer, which was adjusted to 220 V (the
value was checked using voltmeter V1), and further to the voltage stabilizer, ensuring constant Root
Mean Square (RMS) voltage with 0.1% accuracy. This type of voltage stabilizer is dedicated to research
applications and especially for testing. The reduced value of the voltage supplied to the stabilizer
results from (due to the date of production) being intended for an input voltage of 220 V. The output
voltage was adjusted by another autotransformer to 230 V. Since the measurements were recorded at
night, the cooling air formed dew on the grass, so the voltage stabilizer together with autotransformers,
connectors, etc. were located on the trailer covered by a tarpaulin (Figure 6). To provide proper
ventilation (and flue gas evacuation), the power generator was placed outside the trailer in the open
air. The power supply for the luminaire and computers was distributed with reel extension cords (3 ×
2.5 mm2). All devices (luminaire and PCs) were supplied with 230 V RMS voltage.
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the luminaire (together with the necessary ignition system); 12, 13, PC.
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Figure 6. The trailer with the power system.

Before the illuminance measurements commenced, it was ensured that the lamp post was turned
on about an hour earlier because from the moment of initiation of the electric discharge in the lamp to
the moment of its full stabilization process, the luminous flux of the lamp changes. The stabilization time
varies for individual light sources. In most cases, it does not exceed half an hour. However, according
to the measuring practice, the stabilization process occasionally exceeds half an hour [52,53]. To record
the illuminance, the illuminance meter capturing very low illuminance values and the computer was
used. One of its measuring ranges is 0–50 lx, with a resolution of 0.001 lx. The accuracy class of
the illuminance meter was “A” according to ISO/CIE 19476:2014 [54]. Considering the symmetries
of the luminaire photometric solids, for measurements of illuminance (both from the air and on
the ground), only one quadrant of the virtual measuring grid was used. Due to terrain restrictions (tall
trees nearby), a 25 × 28 m grid was adopted (Figure 7).
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As maintaining the planned route with manual UAV control would have been difficult,
the flight was conducted in autonomous mode (the flight was controlled by a computer) along
the pre-programmed route. For this purpose, specialized software was used to perform the flights.
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The computer software was designed so that the UAV operator can immediately take over remote
control in the event of a dangerous situation. To define the exact flight path of the UAV, geographical
coordinates of the point located above the luminaire were determined (point 1 in Figure 7). Then,
the coordinates of the point located at the edge of the long side of the grid were determined. With
the geographical coordinates of two points, the geographical azimuth (the angle between the north part
of the meridian and the indicated horizontal direction) was determined. To determine the geographical
coordinates, a Global Navigation Satellite Systems (GNSS) Real-Time Kinematic (RTK) receiver was
used. These types of receivers are used in geodesy and enable precise reading of geographical
coordinates (with an accuracy of 1–3 cm). Based on these data and with the use of the geographical
calculator available on the Australian Government website (www.ga.gov.au), the coordinates of
individual points on the calculation grid were determined, assuming the distances between points
2 and 25 m (Figure 7). Geographic coordinates with reference to 28 points (Figure 7) were fed into
the computer software for flight planning by the UAV. After sending the programmed flight route from
the computer to the smartphone (block C), the UAV began its flight. Simultaneously, data recordings
sent from measuring equipment located on the UAV’s board was enabled on the second computer
(block B) using the previously launched software. Two PCs (one in each block) were needed because
the computer software designed for planning UAV flight routes uses communication ports for data
reception. As a result, it was not possible to run the application that saved the measurement data.
The UAV was flying at a speed of 0.5 m/s (the maximum UAV speed was 18 m/s). The set altitude of
the flight was 14 m (10 m above the lamp post, which results from a previous recommendation [55]).
The total flight duration from take-off to landing was about 16 min. An acceptable estimated flight
time with a load of 1.3 kg, according to the manufacturer’s data, is <25 min, assuming that the drone
battery pack is fully charged.

After measurements recorded by the UAV with reference to the lamp post with luminaire No. 1,
measurements were also recorded on the ground. For this purpose, a trolley was constructed (Figure 8),
which was equipped with an illuminance meter, 12 V battery, and distance recording and triggering
device with a fixed step illuminance meter. Data from the illuminance meter were recorded on a tablet
equipped with computer software. The route traveled by the cart corresponded to the UAV route,
except that the UAV flew at a height of 14 m and the trolley was directly on the ground. The trolley,
along with the necessary equipment, moved in straight lines between the individual points marked in
Figure 5. The initial positions of the photometer head of the illuminance meter were set at the starting
points numbered 2, 3, 6, 7, etc. The setting was verified by a reading from the RTK-type GNSS [56]. To
keep the trolley moving along a straight line, a string of bright color was stretched between points 1
and 2, 3 and 4, 6 and 8, etc. To prevent the operator of the trolley from blocking the photosensitive
surface with the light coming directly from the light sources, the trolley was moved from the outer to
the inner edge of the virtual computational grid.
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After completing the first part of measurements, luminaire No. 1 was replaced with luminaire No.
2. While waiting for the luminous flux of the luminaire to stabilize, the UAV battery set was replaced.
About an hour after replacing the luminaire, measurements were resumed. The measurements were
first recorded in air and then on the ground.

5. Visualization of Field Measurement Results

Illuminance is a parameter at a specific point. As, practically, no objects are points (all physical
objects have specific dimensions), the lighting of the ground and the virtual grid located above the lamp
post (at a height of 14 m from the ground) can be characterized by providing the distribution of
illuminance at many points (Figure 9). Knowing the distribution of illuminance on two surfaces
located above and below the lamp post, the luminous flux emitted in the upper hemisphere (toward
the sky) and toward the ground can be calculated. The luminous flux sent into the upper hemisphere
is irretrievably lost. In lighting technology, this is called useless luminous flux. To analyze the results
obtained from the measurements, the illuminance distributions for both luminaires are provided in
one drawing. One common color scale for all charts was adopted. Despite the measurements being
recorded for only one-quarter of a surface measuring 28 × 25 m (Figure 5), the measurement results
were visualized for the entire surface measuring 56 × 50 m (Figure 9). The average light intensity Eave

was determined for each measurement grid, respectively:
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Figure 9. Visualization of the illuminance distribution when using: (a,c) oval ball, (b,d) oval ball
half-covered with black paint, recorded values relate to measurements taken: (a,b) from the air using
a UAV, (c,d) on the ground.

Having the average values of illuminances (Figure 9) and knowing the surface of the measuring
grid (S = a × b), one can calculate the luminous flux that will be emitted towards the sky and
the ground by individual luminaires respectively. It is worth to point out that the luminous flux
emitted in the upper hemisphere (wasted luminous flux) is the sum of two components: the direct
component (the luminous flux emitted directly into the upper hemisphere by the luminaire) and
the intermediate component (the luminous flux reflected from the ground). The illuminance meter
installed on the UAV records both illumination caused by radiation emitted directly by the luminaire
and radiation reflected from the ground. The luminous flux emitted in the lower hemisphere (useful
flux) is mainly the effect of radiation emitted by the installed luminaire. In the case of city centers,
artificial radiation directed towards the ground after reflection from the atmosphere and clouds will
have some share in the generation of illumination on the ground. An illustrative presentation of
the individual components of radiation registered by the luxmeter placed on the UAV deck is given
in Figure 10. Due to the fact that the spectral coefficient of reflection of the grass on the surface of
which the portable lantern was installed is unknown, the data from the Jet Propulsion Laboratory
(JPL) spectral library was used to plot this coefficient. These data are widely available on the National
Aeronautics and Space Administration (NASA) website [33].
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Figure 10. Illustrative visualization of the radiation that reaches the luxmeter placed on the deck of
the UAV.

The luminous flux values resulting from laboratory measurements, field measurements as well as
simulations are summarized in Figure 11. All luminous flux values were referred to the total luminous
flux emitted by the light source (HPS high-pressure sodium lamp) with which both luminaires
cooperated. In order to facilitate the analysis of the obtained data, the luminous flux values are
additionally shown in Figure 11. The symbol ΦΛ indicates the luminous flux directed into the upper
half-space, while ΦV into the lower half-space, respectively. For section “(A)” in Figure 11, the symbol
ΦΛ stands for ULR and ΦV for DFF of the luminaire. In other sections, ΦΛ and ΦV indicate the luminous
flux that goes to the computational grid, above the lantern and on the ground, respectively. The last
section in Figure 11 (“(C) Calculations”) contains the results of calculations carried out in a computer
program supporting the lighting design process. Due to the fact that the reflection properties of
the ground in the DIALux program are characterized by the value of the total reflection coefficient
(there is no way to enter the spectral reflection coefficient), a typical grass reflection coefficient of 16%
was adopted.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 20 
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The main task of park-type luminaire is to illuminate the ground. Therefore, it is important to
effectively use the luminous flux generated by the luminaire. A measure of the efficiency of using
the luminous flux emitted from a luminaire to illuminate the ground is the quotient of the useful
luminous flux to the total luminous flux of the luminaire. In the case of the luminaire No. 1. this
ratio is around 26%, while for the luminaire No. 2 is around 44%. However, the given values do not
take into account the efficiency of the luminaires. After taking into account the LOR indicator, it will
be possible to determine the efficiency of using the luminous flux generated by the light source. For
luminaire No. 1, the value of lighting efficiency is around 21%, while for luminaire No. 2 it is around
13%. Hence, in the case of the luminaire No. 1, approximately 21% of the luminous flux of the light
source is used to illuminate the ground, the remaining fraction (about 79%) is unused (part will be lost
inside the luminaire and the rest is directed outside the illuminated area). In turn, for luminaire No.
2, this balance is even less optimistic because around 87% of the lamp’s luminous flux is not used to
illuminate the ground.

The measurement results presented (Figure 11) relate to the new luminaires. It is worth noting
that with the duration of luminaire exploitation, the luminous flux value will decrease. The reason for
this will be, among others, the aging and soiling of the components of the luminaire. This will result in
lowering the already low value of lighting efficiency.

6. Conclusions

Using the ULR (Upward Light Ratio) value for luminaires does not provide information about
the luminous flux emitted to the sky. The ULR value does not take into account nearby objects (i.e.,
trees) and the reflection properties of the ground above which it is installed. The difference between
the luminous flux of luminaire No. 1 sent in the upper half-space (3501.9 lm) and the value obtained
from measurements carried out by UAV (2636.4 lm) is about 33%. In the case of luminaire No. 2,
the difference is 39%. The differences between the results of simulations and measurements made
using UAV are smaller and are 3% for luminaire No. 1 and 15% for luminaire No. 2, respectively.
Bigger differences in the case of luminaire No. 2 result from the fact that the component reflected from
the ground plays a larger share in the production of the luminous flux in the upper half-space. On
this occasion, it is worth emphasizing one more time that both the spectral distribution of radiation
of the luminaire illuminating the ground and the spectral reflection coefficient have a significant
impact on the value of the reflected luminous flux. Based on the obtained measurement results and
simulations, it can be stated that the ULR indicator of the luminaire recorded by luxmeter mounted on
the UAV is lower, and that obtained from the simulations is higher.

The rapid development of light-emitting diodes, which are characterized by increasingly better
photometric parameters than other light sources, means that they may be also installed in the opal
sphere type luminaires. If we assume that instead of a high-pressure sodium lamp, an LED source
with the same luminous flux and identical photometric body is installed, the results of simulations
(carried out in the DIALux computer program) will not change, while the values recorded by the UAV
luxmeter will change. The degree of these changes will depend on the spectral distribution of
the luminaire radiation.

From the point of view of adverse impacts of the considered luminaires on the effect of light
pollution, a more favorable solution is luminaire No. 2, for which the calculated (based on measurements
using UAV) luminous flux value emitted towards the sky is lower by almost 82% compared to the value
obtained for the luminaire No. 1. Unfortunately, in the case of luminaire No. 2, the luminous flux
directed towards the ground will be about 37% lower than corresponding luminous flux concerning
luminaire No. 1. Due to the fact that the main task of external luminaires is to illuminate the ground,
in practice, the luminaires like luminaire No. 1 are more often used.

An important limitation of the conducted research is the lack of information on the spectral
distribution of radiation emitted towards the sky. The measurements conducted with a luxmeter only
allow the luminous flux to be determined. Due to the fact that the phenomenon of light pollution
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is also greatly influenced by the spectral characteristics of radiation (as noted in [57–59]), the author
plans to consider this aspect in future studies by installing a spectrometer onboard the UAV.

Despite the advanced design and the possibility of fully autonomous flight control, commercially
available UAVs are designed for installing small loads on board. This limits the possibility of installing
measuring equipment of any weight. The measuring apparatus installed on the drone should be
compact, light, and shock-resistant. Of course, the apparatus that meets these requirements is available.
Therefore, financial resources remain the only barrier.

A number of problems had to be addressed when preparing for field measurements. Carrying
out measurements using an unmanned aerial vehicle proved to be a complex research project. In order
to carry out the work, individual subtasks were successfully completed. One could venture to say
that the essence of conducting field measurements is to become free from simplifying assumptions.
The recorded illuminance values of the meter installed on the UAV board take into account both
the radiation (with specific spectral characteristics) emitted directly by the lamp post and reflected from
the ground (with real reflective properties). The measurement results included in the article concern
two luminaires equipped with a high-pressure sodium lamp. In the research that will follow, the author
plans to take into account the impact of other types of light sources (including LED sources) installed in
the luminaire on the value of the luminous flux emitted towards the sky. The advantage of the presented
measurement concept is full mobility. Measurements can be carried out in different locations by
installing the lamp post on different surfaces. Considering the data on the operating temperature range
included in the UAV and illuminance meter specifications (−10 + 40 ◦C), measurements can be carried
out at different times of the year, thus considering the seasonal change in the reflection properties of
the substrate on which the lantern was installed.
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