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Abstract: Forest damage due to storms causes economic loss and requires a fast response to prevent 
further damage such as bark beetle infestations. By using Convolutional Neural Networks (CNNs) 
in conjunction with a GIS, we aim at completely streamlining the detection and mapping process 
for forest agencies. We developed and tested different CNNs for rapid windthrow detection based 
on PlanetScope satellite data and high-resolution aerial image data. Depending on the 
meteorological situation after the storm, PlanetScope data might be rapidly available due to its high 
temporal resolution, while the acquisition of high-resolution airborne data often takes weeks to a 
month and is, therefore, used in a second step for more detailed mapping. The study area is located 
in Bavaria, Germany (ca. 165 km2), and labels for damaged areas were provided by the Bavarian 
State Institute of Forestry (LWF). Modifications of a U-Net architecture were compared to other 
approaches using transfer learning (e.g., VGG19) to find the most efficient architecture for the task 
on both datasets while keeping the computational time low. A custom implementation of U-Net 
proved to be more accurate than transfer learning, especially on medium (3 m) resolution 
PlanetScope imagery (intersection over union score (IoU) 0.55) where transfer learning completely 
failed. Results for transfer learning based on VGG19 on high-resolution aerial image data are 
comparable to results from the custom U-Net architecture (IoU 0.76 vs. 0.73). When using both 
architectures on a dataset from a different area (located in Hesse, Germany), however, we find that 
the custom implementations have problems generalizing on aerial image data while VGG19 still 
detects most damage in these images. For PlanetScope data, VGG19 again fails while U-Net achieves 
reasonable mappings. Results highlight the potential of Deep Learning algorithms to detect 
damaged areas with an IoU of 0.73 on airborne data and 0.55 on Planet Dove data. The proposed 
workflow with complete integration into ArcGIS is well-suited for rapid first assessments after a 
storm event that allows for better planning of the flight campaign followed by detailed mapping in 
a second stage. 

Keywords: forest damage assessment; windthrow; convolutional neural networks; GIS; remote 
sensing 

 

1. Introduction 

Over the past years, the number of storms that caused damage to forests has been increasing 
due to climate change [1]. The storm “Kolle”, for example, was responsible for 2.3 million cubic 
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meters of thrown or broken trees in Bavaria (Germany) in 2017 [2]. Fallen or damaged trees are 
considered as a loss of timber if not removed in time. Leaving these trees in the forest brings other 
risks such as an infestation by bark beetles. The European spruce bark beetle Ips typographus, for 
example, can cause severe subsequent damage, especially to spruce trees. Therefore, a quick and 
reliable method to detect the damaged areas is required for forest management. 

Manual storm damage detection and mapping based on remote sensing data require a great 
amount of time and effort, and the automation of the process has been attempted in numerous 
research articles in the past years. Traditional methods of forest damage assessment utilize a 
multitude of different sensor types and approaches. A method for autonomous, object-based change 
detection of storm damages as described by [3] uses high-resolution multispectral images. Satellite 
images with resolutions of 5 m and 10 m from before and after a storm event in the southwest of 
France were combined in the study. To achieve the best results, the authors report the degree of 
damage but also consider how much damage was present prior to the storm. Using a mean shift 
segmentation algorithm, an overall of 87.8% correctly classified pixels was achieved. This method 
yields better results than an approach described by [4] to which it was compared. The latter operates 
on a purely pixel-based detection with an overall accuracy of 78.68%. Using Landsat Thematic 
Mapper, [5] proposes a method to detect storm damage in rugged terrain in northern Europe. The 
study area is located in the northern part of Norway with low sun angles that cause particularly long 
shadows of trees. The data consists of resampled satellite images with a resolution of 25 m. Correction 
models for the sun elevation are applied to the data to eliminate the effects of long shadows. The 
vegetation is dominated by spruces that grow on the steep slopes of the area. By using linear and 
non-linear regression models and by comparison with digital surface models (DSMs), various forms 
of damage could be detected, ranging from slight defoliation at the treetops to entirely dead trees. 
The pixel accuracy of damage detection in flat terrain was 80% while only 72% could be achieved in 
rugged terrain. The study highlights that change detection can lead to good results in areas with 
rugged terrain and low sun angles (and related shadows) using satellite image data. A two-step 
approach to forest storm damage classification was presented by [6] for an area around the city of 
Bern, Switzerland. The data consists of satellite images from the IKONOS and the SPOT4 missions 
with resolutions of 4 and 10 m, respectively. The different elevation levels of the mountains in the 
area (555 m to 2,060 m), lead to many different vegetation types and, therefore, tree species 
compositions. Damage assessment was performed by using a pixel-wise classification that uses the 
minimum and maximum values for each image band to assign a class to each pixel using a 
parallelepiped regression algorithm, as well as a rule-based object-oriented classification approach. 
Labeling of the entire forest area is available and was used together with visual interpretations of the 
images as ground truth. The achieved classification accuracy is 98% (forest class), 74% (damage class) 
on the IKONOS images, and 98% (forest class) and 71% (damage class) on the SPOT4 images. A 
method proposed by [7] utilizes C-band Synthetic Aperture Radar (SAR) data and change detection 
to determine the differences in back scatter images from before and after the storm event with a 
minimal operating area of 0.5 ha. With an accuracy of 88% for various test areas, the method is very 
promising, especially since SAR technology is independent of atmospheric conditions, and data can 
be generated very quickly after a storm event. Another approach that combines both passive and 
active methods utilizes unmanned Aircraft system (UAS) together with ALS data for a study area in 
Slovakia (200 ha) in the Kremnica mountain range [8]. The ALS sensor operates in the near-infrared 
spectrum with about 5 points per m². The UAS data is taken from approximately 700 m height in 
short flight campaigns. The total detected areas of windthrow is compared to each other, and the 
reference data that was collected via a Global Navigation Satellite System (GNSS). Windthrows were 
detected using a comparison of the NVDI computed before and after the event. The overall matching 
percentage between reference and the UAS based approach is 82%, and in combination with ALS 
data, the overall matching percentage is 88%. 

One major downside of the described methods is their dependency on data before as well as 
after the storm event. As storms are rather unpredictable and affected areas can be large, it is difficult 
to keep data from before the event in storage. In [9] a first approach using Deep Learning for damage 
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detection was presented that only requires one post-storm image. Deep Learning and Convolutional 
Neural Networks (CNNs), in particular, have seen increasing popularity in the field of remote 
sensing. The advantage of CNNS in comparison to traditional methods is their capability of learning 
complex features and to adapt that knowledge to new scenes. In a recent paper [10], an example of 
landcover mapping using Deep Learning is provided. By using convolutional filters in every single 
processing step, fully convolutional networks (FNCs) can provide highly accurate results and are 
widely used in image classification and segmentation tasks (e.g., [11]).  

This study is a follow-up project to [9] and further investigates the capacity of convolutional 
neural networks for satellite and high-resolution data. We use only one image collected after the 
storm to automatically detect damaged areas based on the texture and color information of the image 
and investigate the transferability of the final models. Thus, the main focus of this paper is to 
determine whether PlanetScope data can be used to predict storm damage using advanced CNNs in 
a first step as it might take a long time to aquire high resolution data from a flight campaign after a 
storm and this canhamper a rapid response. 

2. Materials and Methods 

2.1. Data 

Our study area is located in the eastern part of the state of Bavaria, Germany (Figure 1). It covers 
an area of 160 km² and consists of forests, fields, and villages. Remote sensing data was collected after 
a storm event on the 18th of August 2017. The data were available in two different sets, one containing 
satellite images provided by the PlanetLabs corporation, and one containing aerial images provided 
by the Bavarian State Institute of Forestry (LWF). The satellite images were collected by the 
PlanetScope mission that currently consists of 130 small cube satellites with a daily revisit time or 
lower, resulting in one image of every part of the landmass of the earth at least once a day. The spatial 
resolution is 3 m, and the spectral resolution is 4 bands (RGB-NIR) [12]. The aerial images have a 
spatial resolution of 0.2 m and the same spectral bands as the satellite data (RGB-NIR) and were 
acquired using a digital mapping camera (DMC). During the flight campaign, a forward overlap of 
80% and a side overlap of 50% were used. Orthophotos were computed using an ALS-DTM of the 
Bavarian Surveying Administration for orthorectification. The aerial images are split into 45 tiles with 
10,000 × 10,000 pixels for file size reasons. 

 
Figure 1. Full extent of the study area with aerial images and respective labels for damaged areas 
overlain as red polygons. Due to confidentiality agreements, we are not able to add location detail. 
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Labels of the damage were provided by LWF for both data sets. These labels were originally 
produced using both remote sensing datasets (PlanetScope and aerial images). First, the PlanetScope 
data was used to delineate the damaged forest areas in a two-step process. In the first step, an object-
based image classification was applied using the software Trimble eCognition. In the second step, all 
resulting polygons of the object-based classification were visually checked and manually revised. For 
this mapping, a minimum mapping area of 200 m² was defined. After that, a second manual mapping 
was conducted based on the aerial images. Here, a minimum mapping area of 100 m² was used to 
delineate the damaged areas (Figure 2). 

As one of the greatest challenges in remote sensing is the transferability of classification or model 
from one area to another area, we used a second dataset to assess the performance of our final models. 
This second dataset was provided by HessenForst and was used as an independent test dataset to 
validate the model’s generalization performance on new data with slightly different characteristics. 
It includes both, Planet satellite data with 3.5 m resolution and aerial images with 0.2 m resolution as 
well as corresponding labels. However, the forest structure was not the same as in Bavaria (more 
deciduous trees), the quality of the labels was not ideal (compared to high-resolution images often 
not digitized in detail and incomplete), and the state of labeling was not complete as only the state 
forest was labeled while private forests were not labeled. Thus, we do not have a comprehensive set 
of ground-truth labels and can only assess the performance visually after the prediction. 

 
Figure 2. Comparison of the two different sets of labels used in the study overlain on PlanetScope 
data (left) and aerial images (right). 

2.2. Methods 

Figure 3 shows the overall workflow of the study. In the following, we will describe the 
respective sections in detail. 
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Figure 3. Flowchart showing the analytical workflow of the study. 

2.2.1. Data Preprocessing 

Prior to feeding the data into the network, it was split into a training and a test set with a ratio 
of ca. 80:20. This was done by randomly splitting the satellite data into 2 parts, and by selecting 8 out 
of the 45 ortho tiles. The training data was used to train the convolutional neural networks. The test 
data was used to assess the performance of the final networks. To feed the data into the network, it 
was then split into tiles of 256 × 256 × 4 pixels for images and 256 × 256 × 1 pixels for the labeling. The 
labeling tiles were binary images with the value 0 representing damage and the value 1 representing 
no damage. This was done for both datasets, satellite, and aerial images, using the ArcGIS Pro (2.5) 
tool ‘Export data for Deep Learning’ that, among others, creates RCNN mask tiles from image and 
labeling data. In total, 2000 satellite tiles and 14,600 ortho tiles were created that contained at least 
one pixel of damage (tiles without damage were not exported as this would even increase class 
imbalance) in their respective labeling tile (Figure 4). The independent test data set provided by 
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HessenForst was not split into tiles as it was only used inside ArcGIS Pro to validate the already 
trained networks. 

After the export, extensive data augmentation was performed to increase the set of available 
training data and to help the model to generalize better. This included rotations, mirroring, as well 
as adding random noise to the individual image bands. Close attention was paid not to create artificial 
data that was unlikely or impossible to occur naturally in Germany, like sun angles from the North. 
After the augmentation step, 24,000 satellite and 60,000 ortho tiles were available for training. Figure 
4 shows example images and label tiles for both the satellite and the aerial image data. To additionally 
increase the data set and improve the ability of the model to distinguish between damaged and 
undamaged forest, 600 tiles of undamaged forest were added to the data. This was only done for 
orthophotos since the resolution of 3 m for satellite data left almost no tiles with entirely undamaged 
forest in the first place. 

(a) (b) (c) (d) 

Figure 4. Image and label tiles for satellite (a, b) and aerial image (c, d) data. White represents 
damaged, black not damaged. For scale: 256 × 256 pixels with 3 m (a, b) and 0.2 m (c, d) spatial 
resolution. 

2.2.2. Model Architectures 

As one of the challenges of this study was the limited amount of training data, even after data 
augmentation (compared to, for example, the ImageNet dataset (ImageNet, 2016)), we based our 
main approach on U-Net modifications, since it can be trained from scratch on small data sets. U-Net 
was originally developed for biomedical image segmentation at the University of Freiburg by Olaf 
Ronneberger [13] and won first place at the ISBI cell tracking competition 2015 [14]. The name U-Net 
was derived from the resemblance of the letter U of the encoding and decoding parts (Figure 5). The 
encoder gradually decreases the input dimensions by a factor of 2 using maximum pooling 
operations. This keeps only the most significant features at the bottleneck with the cost of losing their 
exact location and shape. The encoder is a mirrored version of the decoder with upconvolutions 
instead of max pooling operations, which increases the data dimensions again by a factor of 2 in every 
step. The unique feature of U-Net are the concatenation steps in between each encoder and decoder 
block that transferred the extracted features in every sampling step. This leads to a highly detailed 
segmentation map with relatively low memory usage and inference time. The architecture of U-Net 
is shown in Figure 5 as it was proposed by Ronneberger et al. We tested several modifications during 
our study that are described in the next section. 

In addition to U-Net, a modification of the much deeper VGG19 was used and compared to U-
Net. VGG19 is a version of the VGG model developed by the Oxford Visual Geometry Group. It 
consists of 19 layers (16 convolution layers, 3 fully connected layers, 5 pooling layers, and a softmax 
layer) [15]. It was pre-trained on the ImageNet database [16]. Using weights from previous training 
on a different problem instead of randomly initializing weights and training from scratch is called 
transfer learning and can be useful for some tasks that are similar, as computation times can be 
reduced. To adapt the network to semantic segmentation we added a custom decoder consisting of 
the right half of U-Net with 6 upconvolution blocks. The custom decoder was trained in 5 epochs 
using our training data while the encoder weights were frozen and thus not updated. Transfer 
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learning was mostly tested on aerial image data, since the histogram curves of satellite data were 
completely different from those that VGG19 expects, which led to a failure of the model. 

 
Figure 5. The general architecture of U-Net. We tested different configurations and modifications that 
are described in the following sections. Modified from Ronneberger et al. (2015) [13]. 

2.2.3. Evaluation Metrics 

A commonly used metric for measuring the performance of a neural network is the accuracy 
(Equation (1), [17]) where TP, TN, FP, and FN represent true positive, true negative, false positive, 
and false negative. It states how many pixels were classified correctly in total. There was, however, a 
large class imbalance in the dataset with up to 95% no-damage pixels in the labels generated based 
on the PlanetScope data and 65% no-damage pixels in the labels generated based on the aerial image 
data (compare Figure 2), which made the accuracy not an ideal metric. The Intersection over Union 
(IoU, Equation (2), [18]) shows how many pixels are correctly classified as damaged to the sum of 
actual and classified damaged pixels. It is, therefore, the more reliable metric and is further used. 
Since the outcome of the network was a pseudo probability of each pixel containing damage or not, 
a threshold of 0.5 was introduced to acquire binary values for validation during training. This 
threshold can be modified by the user depending on whether to maximize the TPs or the overall 
accuracy. In our scenario, the forestry department might want to maximize the TPs in order to avoid 
bark beetle infection in areas that would have been overseen otherwise. Another measure would have 
been the area under the curve (AUC), but as it is not widely used in computer vision, we opted for 
the two measures described below. For a discussion of the ROC curve and setting the threshold, we 
refer the reader to the previous paper by Hamdi [9]. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁 (1) 

𝐼𝑜𝑈 =  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛  (2) 

2.2.4. Hyperparameters and Experiments 

Hyperparameters were only tested and tuned for the Planet satellite data and labels. As this 
paper was a follow up of a study by Hamdi et al. [9] that presents extensive research on the same 
ortho data, we do not focus on the U-Net architecture for aerial images. The respective 
hyperparameters were adopted with slight adjustments regarding the model architecture as well as 
an improved loss function. For all experiments on satellite data as well as aerial data, the Rectified 
Linear Unit (ReLU [19]) was used as activation function and Adam [20] as the optimizer. To find the 
best modification of the architecture and the ideal hyperparameters for our task, we conducted 
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several experiments. During the training of the models, the dataset was randomly split into a training 
and validation set (20%) to assess their performance. The hardware used was a Tesla P100 GPU with 
16 GB of memory alongside 488 GB of main memory at the facility of the Leibniz Supercomputing 
Centre (LRZ). 

The first parameter we tested was the tile size of the training data. We compared results for sizes 
of 128 × 128 pixels and 256 × 256 pixels using multiple test scenarios with the other parameters being 
randomly selected. The second experiment was to find the optimal number of U-Net blocks as well 
as the individual number of convolutional filters in each block. Additionally, we performed tests to 
find the optimal learning rate as it was a critical parameter for good results as well as for efficient 
backpropagation [21]. The introduction of batch normalization layers into our model allowed for 
slightly higher learning rates, resulting in fewer epochs to reach the same accuracy and thus decrease 
the likelihood of overfitting. The training itself was done in batches of 80 image and label tiles with 
the optimum being reached at around 25 epochs for satellite data and 3 epochs for ortho data. The 
satellite data were heavily unbalanced in favor of “no damage” pixels. Class imbalance is a general 
problem in many machine learning tasks (e.g., [22–24]) and needed to be addressed. To compensate, 
a weighted loss function was used (Equation (3)). The weighted binary cross-entropy added weights 
according to the proportion of pixels that contained damage (5%) and pixels that contained no 
damage (95%). The imbalance for ortho data was less pronounced, with 35% damage to 65% no 
damage pixels. The equation iterates over 𝑁 pixels with 𝑦  as the true class and 𝑦  as the prediction, 
as well as the additional weights 𝑤  and 𝑤 . 

𝐿 = − 1𝑁 𝑦 log 𝑦 𝑤 + 1 − 𝑦 log 1 − 𝑦 𝑤  (3) 

Since the labels derived from aerial images were much more precise in terms of spatial resolution, 
the network for satellite data was trained not only on the less precise satellite labels but also on the 
aerial image labels in two different model instances. The testing was also performed with both sets 
of labels to investigate differences and to find the best setting for future predictions. 

3. Results 

3.1. Fine-tuning Results 

Results from our experiments are summarized in Tables 1 and 2. With respect to tile sizes, 256 × 
256 pixels performed better than the smaller tile size for both satellite and ortho data and will thus 
be used in the final models (Table 1) even though differences were only in the third decimal place of 
the IoU parameter and thus almost negligible. Testing different modifications of U-Net showed that 
a block configuration of [8,16,32,64,128] delivered good results, with [64,64,64,64] being slightly better, 
but considerably slower (Table 2). This configuration represents 5 blocks in total with 8 filters in the 
first block, followed by blocks of 16, 32, 64, and 128 filters. Finally, the optimal learning rate was 
found at around 0.002 (Table 1). 

Table 1. Comparison of different training scenarios regarding the optimal tile size. 

    128  ×  128 256  ×  256 

Scenario Learning 
Rate 

Number of 
Blocks 

Number of Filters Per 
Block IoU Seconds IoU Seconds 

1 0.001 4 [32,32,32,32] 0.4573 290 0.4588 475 
2 0.0015 5 [8,16,32,64] 0.4566 260 0.4574 445 
3 0.001 3 [16,32,64] 0.4461 370 0.4512 530 
4 0.002 4 [16,16,32,32] 0.4481 310 0.4577 420 
5 0.001 5 [8,16,32,64,128] 0.4632 410 0.4658 610 
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Table 2. Comparison of different training scenarios regarding the optimal block configuration. 

Scenario Number of Blocks Number of Filters Per Block IoU Seconds Per Epoch 
1 4 [64,64,64,64] 0.4666 880 
2 5 [8,16,32,64,128] 0.4658 610 
3 4 [16,32,64,128] 0.4640 760 
4 3 [32,64,128] 0.4629 830 
5 6 [4,8,16,32,64,128] 0.4527 600 
6 5 [4,8,16,32,64] 0.4365 410 
7 5 [16,16,16,16,16] 0.4457 430 
8 4 [32,32,32,32] 0.4576 480 
9 5 [64,32,16,8,4] 0.4382 600 
10 4 [64,32,16,8] 0.4538 560 

3.2. Prediction Results for PlanetScope and Airborne Data 

Table 3 shows the final results of our U-Net implementation for satellite data as well as both 
architectures (U-Net and VGG19) on airborne data. We found that the network worked best when 
trained and tested using the more accurate labels form the orthophotos and not the less accurate 
labels form the data itself. This is not surprising as the first set of labels is a much better ground-truth 
information than the labels for the satellite data. 

Results for aerial images were already reported in detail by Hamdi et al. 2019. With our slightly 
modified architecture that included batch normalization and the weighted binary cross-entropy loss 
function described in the methods section, final test accuracies were now 86%/0.73 IoU (vs. 92%/ less 
than 0.42 IoU reached by Hamdi et al., but with different and now much more complete and accurate 
labeling). Note that compared to the study of Hamdi et al. 2019, who used 12 images, we also used a 
much larger dataset with 45 images. 

Table 3. Test results for different model types on different data and thresholds with aerial labeling. 

Model Data Learning Rate Threshold 
(Accuracy = max) Accuracy Threshold 

(IoU = max) IoU 

U-Net Planet 0.002 0.26 92% 0.12 0.55 
U-Net Airborne Data 0.002 0.67 86% 0.58 0.73 

VGG19 Airborne Data 0.002 0.39 83% 0.51 0.76 
Figure 6. shows an example satellite data tile (A), the corresponding satellite label (B) the 

prediction(C) after setting the respective threshold. D, E, F show an example tile for the final model 
for orthophotos. 
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Figure 6. Image tile for Planet (A–C) and aerial data (D–F) together with the respective labeling and 
prediction prior to thresholding. 

The final models were now imported into a custom ArcGIS toolbox for upscaling predictions to 
a large, continuous dataset. This has the advantage that every user can now use the model as a 
geoprocessing tool, and it allows for further analysis and processing of the results. We created a 
custom tool that incorporates several post-processing steps, such as smoothing or removal of artifacts. 
A schematic representation of the steps is shown in Figure 7. The vectorization function is used to 
create polygons that directly show the total area of damage. By adjusting the threshold, less or more 
area is included in the prediction. Figure 8 shows an example of the prediction on satellite data with 
the prediction as red polygons and the ortho labels as green polygons. 

A B C

D E F
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Figure 7. Schematic representation of the processing steps implemented in a toolbox in ArcGIS Pro. 



Remote Sens. 2020, 12, 2121 12 of 19 

 

 
Figure 8. Prediction (red) on PlanetScope satellite image compared to labels (green). 

Figure 9 shows the prediction results on the same spatial extent for an aerial image. While the 
prediction was close to the labels in the western and northern forest border, it was less accurate on 
the eastern and southern border. This was likely due to shadows that created similarities to the 
damaged forest (Figure 10). This could be compensated for by using more training data that includes 
shadows or by adding additional penalties to incorrectly labeled shadow areas during training. 
Shadows are a common problem in remote sensing, and several approaches exist to deal with this 
problem. In their paper, [25], for example, show an approach on the classification of cloud, shadow, 
and land cover scenes using PlanetScope Data that would allow masking these areas. 
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Figure 9. Prediction on orthophoto from an aerial flight campaign (red) compared to the labels 

(green). 

In addition, we see artifacts outside the forests in settlements. However, this could easily be 
resolved by using a forest mask (a delineation polygon of forests is available for many forest agencies 
in Germany). The total predicted damaged area for the model trained on satellite data and the labels 
generated based on the aerial image data is 34% larger than the labeled area (23.35 km² vs. 17.35 km²). 
The model trained on the labels generated from the aerial image data was 18% smaller with 14.15 
km² instead of 17.35 km² when maximizing the IoU parameter. Depending on the threshold (0.80 
used for satellite and 0.73 for aerial images), the total predicted area can be adjusted without the need 
of training the model again, depending on the needs of the user. The visual inspection of the maps 
was very useful in the decision-making process. 

Results for the much deeper VGG19 were slightly better than the custom U-Net with an IoU 
score of 0.755 at a threshold of 0.51. In a qualitative observation, however, the predictions look more 
discontinuous and coarser at the edges. 
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Figure 10. Prediction on orthophoto (red) overlain with the manually digitized reference polygons 
(green). Shadows lead to overestimating the damaged area by the model. 

3.3. Transfer Results (Hesse Data) 

We tested the transferability of U-Net for airborne and satellite data as well as for VGG19 on 
airborne data. As described in the data section, we do not have complete ground-truth labels to report 
the usual metrics and thus only report results from a qualitative visual inspection within the GIS 
environment. The prediction of U-Net on satellite data was good given that the satellite data had a 
slightly different spatial resolution (3 m vs. 3.5 m) and also had considerable variability in spectral 
characteristics (Figure 11). The extensive data augmentation is a possible explanation. Figure 11 
shows an example of the prediction. A lot of the fields were ‘false positives’, however, these features 
could be removed using a forest mask that was available from HessenForst. Nevertheless, damaged 
areas inside the forested areas were recognized quite well. The prediction of our custom U-Net on 
the airborne data, however, failed. This was due to the difference in recognizable features in this high-
resolution data (different forest structures, scattered trees vs. partly removed trees). VGG19 trained 
on a huge database (14,197,122 images of ImageNet) can deal with a lot more variability and performs 
considerably better in this scenario. More data, especially more diverse data from different storms 
and representing various forest types would be required to further investigate the performance of 
the U-Net architecture and will hopefully be available in the future. 
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Figure 11. Prediction on a satellite image (red) from Hesse compared to the labels (green). Note that 
the labels are not complete and of bad quality (see methods section). Spectral differences in the Planet 
data are due to different acquisition dates. 

4. Discussion 

In our hierarchical approach for storm damage assessment, we showed how innovative 
algorithms from the field of computer vision could be adapted to remote sensing data and have the 
potential of rapidly providing valuable information for disaster management. We developed an AI-
based workflow for jointly using satellite images with 3 m resolution for rapid assessment and 
airborne data for accurate mapping of damaged areas. All models were tested on a test dataset, and 
a transfer study was conducted to a different area of Germany with slightly different input data to 
assess the power of generalization. With accuracies of 92% for satellite data and 86% for orthophotos 
and an intersection over union score of 0.55 and 0.73, respectively, results are very promising. At first 
glance, it is confusing that the accuracy for satellite data is higher than for orthophotos, while for the 
IoU parameter, we find the opposite pattern. The latter parameter is the better measure in our 
scenario as the accuracy parameter also includes true negatives, which is misleading in scenarios with 
class imbalance. In addition, the parameters are also dependent on the spatial resolution of the data 
and reflect the accuracy with respect to 20 cm and 3 m, respectively. This leads to the wrong 
impression that the classification based on Planet data itself is better if only looking at the accuracy 
parameter. 
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4.1. Comparison to Other Remote-Sensing Approaches 

Compared to traditional machine-learning algorithms such as Support Vector Machines (SVM) 
or Random Forest Algorithms, CNNs have the advantage of exploiting the correlation between 
neighboring pixels and, thus, finding spatial features effectively. This explains their success in 
different computer-vision tasks and has led to some popularity in remote sensing, as highlighted in 
our study. In comparison to other approaches for mapping forest damage (e.g., [6,7]), the presented 
approach only needs one post-storm image and does not require additional datasets from active 
systems, such as ALS or SAR data, but achieves similar results. However, a comparison of different 
studies is only possible to a limited extent because different datasets (spatial resolution, spectral 
resolution, active vs. passive sensors) were used, and the investigations were carried out in different 
study areas. 

The prediction accuracy of our model is comparable to the method described by [3] who used 
multispectral satellite images and classification on a pixel-based scale with a mean shift segmentation 
algorithm and it somewhat outperforms the pixel-based classification approach by [5]. Compared to 
[6], who presented an object-based detection method based on satellite data and parallelepiped 
regression, our results measured in terms of accuracy are slightly better (92% vs. 74%), however, our 
images have a better spatial resolution and thus cannot be compared directly (especially as class 
imbalance has a big impact on the accuracy). In comparison to change detection based on SAR data 
with a heuristic windthrow index (e.g., [7]), we reached comparable results. With respect to the prior 
study of Hamdi [9], the addition of batch normalization layers, and the introduction of a weighted 
cross-entropy loss function, we were able to increase the IoU score from 0.67 to 0.73 by but also saw 
a decrease in accuracy from 0.92 to 0.86. As the accuracy measure is not ideal for class imbalance 
settings, we give more importance to the IoU score. Furthermore, the labeling used in the present 
study was improved significantly by LWF in the meantime, which makes a direct comparison 
difficult. The extensive data augmentation of this study, which was not performed by Hamdi is very 
likely to improve results and also the capacity for generalization of the network. 

4.2. Limitations of the Proposed Approach 

Key challenges using meter-scale satellite data were the spatial resolution of only 3 m, the 
variability in spectral characteristics as well as the limited amount of training data. The implemented 
U-Net architecture is well suited to be trained from scratch on small datasets, and with an IoU score 
of 0.55 most of the relevant damaged areas were detected. The model does have difficulties, however, 
to detect small damaged areas that only consist of a few pixels. The total predicted damaged area is 
34% larger than the ground truth (compared to high-resolution labels from LWF) when optimizing 
the IoU parameter. However, by adjusting the threshold value that transforms the pseudo probability 
prediction into a binary classification, this can be adjusted, depending on whether the total accuracy 
should be optimized, all damage included (but accepting more false positives), or no false positives 
are allowed. In general, the biggest limitation of the data for forest management is the spatial 
resolution that is inferior to the airborne data and the variability of the spectral characteristics. 

The accuracy of the prediction on airborne data is high, with an IoU score of 0.73. The model is 
mostly capable of distinguishing between undamaged and damaged forests as well as damaged 
forests and fields. Only on forest edges where shadows occur, some false positive areas are noticeable. 
This could be either compensated for by more training data, a special penalty during training for 
false-positive predictions, or by acquiring images with a high position of the sun. 

With respect to the transferability of the models to a different area, we found that U-Net is 
capable of detecting damage on the Planet data, however, errors occur in the background class and 
need to be corrected by post-processing algorithms within GIS. More and more diverse data would 
be needed to further improve the capacity of the models to generalize. 

With airborne data, the custom model failed. This is due to the different structures and thus 
features in the second area. While the airborne data in Bavaria was collected right after the storm and 
fallen trees are visible, the data for Hesse was only acquired with some delay and damaged areas are 
not in the original damaged state anymore, but forest management activity has led to cleared areas 
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and other features (such as vehicle tracks) in some areas. This, together with the different forest 
structures due to a different composition of tree species (more deciduous trees), leads to different 
features that the custom U-Net has not learned. To overcome this problem, U-Net would have to be 
trained on a much larger, more diverse dataset, maybe including a third class for already cleared 
damaged areas. The issue of input data is confirmed by the transfer learning results based on the 
modified VGG-19 model that predicts major damaged areas on the Hesse dataset because it is a very 
deep, pre-trained feature extractor that includes more diverse features than the shallow custom U-
Net. However, even for VGG-19, results could still be much better, and more research is needed to 
further investigate in that direction. 

In summary, the most important limitation of the proposed deep-learning approach is the 
amount of reliable training data as well as sometimes varying conditions of the image collection (e.g., 
different season, different sensor, temporal delay after the storm.). In the future, if a comprehensive 
dataset is available, we believe that transferability could be significantly improved. However, another 
limitation to using huge amounts of data, besides the lack of labels, is the availability of computing 
facilities that a) have the storage capacity required for large remote sensing datasets and b) the GPU 
processing capability. Using commercial clouds such as Azure or Amazon is still expensive with these 
requirements and might not be feasible for forest agencies. 

5. Conclusion and Outlook 

We successfully tested storm damage assessment using Deep Learning on PlanetScope and high-
resolution aerial images to support forest management with disaster response. This hierarchical 
approach allows for fast response and ensures accurate mapping in a second step. A major advantage 
compared to other state of the art forest damage detection methods is the requirement of only one 
after-storm image instead of additional data before the storm for a before-after comparison. However, 
the performance of the model is highly dependent on the quality of the labels used for training. The 
models were trained and tested on satellite and aerial images with 3 m and 0.2 m spatial resolution 
and the achieved IoUs are 0.73 and 0.55, respectively (corresponding accuracies of 86% and 93% are 
comparable to results reported for change-detection approaches) (e.g., [3,5,6] with accuracies of 74% 
to 92%) and to human perception, especially for satellite data. The custom U-Net proved to be more 
accurate than a very deep pre-trained network in our study area. Transferring the model to another 
area, however, was only possible for satellite data as features in high-resolution data differ too much. 
The transferability of classifiers is an open research question in remote sensing, and more and diverse 
data is necessary to investigate further the potential of Deep Learning in this direction. Our first tests 
with transfer learning based on VGG-19 show a lot of potential for high-resolution data; for satellite 
data appropriately, pre-trained networks are still missing. The integration into ArcGIS Pro results in 
a seamless workflow for forest agencies as the created toolbox can be used easily by any user, on any 
machine, as well as in the cloud to process huge datasets. Results can be accessed from mobile devices 
for field workers in the forest using Collector for ArcGIS. 
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