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Abstract: Nighttime light data have been proven to be valuable for socioeconomic studies. However,
they are not only affected by anthropogenic factors but also by physical factors, and previous studies
have rarely examined these diverse variables in a systematic way that explains differences in nighttime
lights across different cities. In this paper, hierarchical linear models at two levels of city and province
were developed to investigate the nighttime lights effect on cross-level factors. An experiment was
conducted for 281 prefecture cities in Mainland China using orbital satellite data in 2016. (1) There
exist significant differences among city average lights, of which 49.9% is caused at the provincial level,
indicating the factors at the provincial level cannot be ignored. (2) Economy-energy-infrastructure
and demography factors have a significant positive lights effect. Meanwhile, industry-information
and living-standard factors at the provincial level can further significantly increase these differences
by 18.30% and 29.01%, respectively. (3) The natural-greenness factor displayed a significant negative
lights effect, and its interaction with natural-ecology will continue to decrease city lights by 11.99%.
However, artificial-greenness is an unreliable city-level factor explaining lights variations. (4) As for
the negative lights effect of elevation and latitude, these become significant in a multivariate context
and contribute lights indirectly. (5) The two-level hierarchical linear models are statistically significant
at the level of 10%, and compared with the null model, the explained variances on city lights can be
improved by 70% at the city level and 90% at the provincial level in the final mixed effect model.
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1. Introduction

Human activities and their footprints on earth can be clearly observed in space through nighttime
light imagery [1,2]. The widely used remotely sensed nighttime data are provided by the Defense
Meteorological Satellite Program (DMSP)’s Operational Linescan System (OLS) and Suomi National
Polar-orbiting Partnership (NPP) Satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS) [3,4].
DMSP data have been used to map the global nighttime lights for many years [5], and the basic product
is the annual cloud-free stable lights imagery, which is freely available from 1992 to 2013. However,
DMSP data have been reported with several drawbacks. For instance, they have a relatively low spatial
resolution, which could lead to unreliable estimation of city lights. They are recorded with a relatively
low radiometric resolution, which could lead to saturation in urban areas and overglow near the city
boundary [6]. Recently, VIIRS data have been released by the Earth Observation Group spanning from
2011. Compared to DMSP data, they appear to be much more promising, for instance, they have a
finer spatial resolution of around 500 m, a larger number of 22 spectral bands, and a better radiometric
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resolution of 14 bits [7]. Importantly, they are radiometrically calibrated onboard, and they seem to be
less affected by the problem of over-saturation in urban areas owing to an extended spectral coverage
(from 500 nm to 900 nm) in the day/night band (DNB) [8,9]. Thus, VIIRS data can probably be regarded
as a better proxy for anthropogenic development ([5,10]).

Extensive studies have demonstrated a variety of relationships between nighttime lights and
socioeconomic or demographic factors [4,8,11–20], which means that nighttime lights variations in
space can be adequately explained or controlled by these factors. However, previous studies were
conducted mainly to explain the spatial differences of lights in terms of GDP, population, or electricity
at the country or provincial level using DMSP data [4,11]. With the availability of VIIRS data, most
studies have been focused on examining factors explaining lights differences at different levels. Shi
et al. [8] showed that VIIRS lights are correlated better with GDP or electricity than the ones from
DMSP at both provincial and city levels [8]. Ma et al. [12] reported high responses of VIIRS lights
to the population, GDP, electric consumption, road area at the city level, and passenger traffic at the
airport level. Kyba et al. [13] examined the relationship between VIIRS lights and population, and the
differences were compared for cities in the USA and Germany. Zhao et al. [14] showed that the sum of
lights has a more significant relationship with economic variables than other lights indices. Besides,
recent studies [15,20] indicated that VIIRS lights are highly correlated with human activity intensity
derived from social media data at the pixel level or city level. Interestingly, Chen and Nordhaus [17]
suggested that VIIRS lights provide a better prediction for cross-sectional GDP than time-series GDP,
and Sun et al. [16] revealed a positive correlation between VIIRS lights and land surface temperature,
which considered natural ecological factors.

The studies above explored their relationships using different regression models. Most studies
adopted a simple linear regression model [8,12,13,17,18,20], although there are a few studies using
a quantile regression [21], a quadratic polynomial regression [14], a step-wise regression [22], a
geographical weighted regression [15], or even a mixed effect regression [23]. Statistical relationships
change with variables, space, and time [24], implying the complexity of land surface and the variety
of human activities [25]. Furthermore, only a small number of variables were considered in these
models, which might give limited explanations on lights variations. This is because nighttime lights
can be affected not only by factors related to socioeconomic, infrastructure, and natural ecology
but also by the interactions between these factors. Specifically, Levin and Zhang [1] developed a
generalized multivariate linear model to explain their spatial variations at the city level using two
groups of variables including socioeconomic variables (GDP per capita, population density, et al.)
and physical variables (Normalized Difference Vegetation Index (NDVI), latitude, et al.), and their
model can explain more than 45% of lights variations. Nonetheless, it did not consider the interactive
light effect of cross-level variables, which is mainly due to the nested structure of anthropogenic
development in space [26]. In fact, current studies were focused mainly on associating nighttime
lights with characteristics of the spatial unit at one single level. However, the variations may exist
not only between cities but also within a broader spatial extent, i.e., the overall development of a city
being influenced by the region where it is located. The interactive effect between a city and where it is
situated has not been fully investigated in the literature. Specifically, with the reform and opening up
of Mainland China, the speed and intensity of urban development are unevenly distributed in different
provinces, which may also shed a non-trivial impact on nighttime lights. For instance, Du and Yu [27]
reported that provincial economic factors have impact on nighttime lights of urban areas.

In addition, hierarchical linear models have been used to model the multi-level relationship of
factors in many fields [28–30]. However, there are rarely studies using this method to examine the
factors controlling nighttime lights. Therefore, this study aims to develop hierarchical linear models at
two levels of city and province for a systematic and comprehensive analysis of a variety of anthropogenic
and physical factors of nighttime lights for 281 prefecture cities in Mainland China, and particularly, it
intends to explore the nighttime lights effect of cross-level factors. As aforementioned, city lights are
not only relevant to the city’s anthropogenic and physical variables but are also affected by the diverse



Remote Sens. 2020, 12, 2119 3 of 19

variables in the province where they are located. In other words, there are significant differences in
the nighttime lights of different provinces [31]. This is highly consistent with the hierarchical (nested)
structure of the administrative system in Mainland China [32]. Thus, the main contributions of this
study are focused on the following two aspects, which are also the major differences from previous
studies. (1) We conducted a systematic analysis of the nighttime lights effect of cross-level factors,
which are derived from 12 city-level variables and 16 province-level variables. It is rarely reported
in the literature by integrating all these uncorrelated factors into the same analytic framework. (2)
We developed a two-level hierarchical linear model, which covers four types of models including the
unconditional means model, random intercept model, mixed-effect model with one single city-level
factor, and the mixed-effect model with all city-level factors. The results suggested the superiority of
our model, and they can enhance our understanding of the mechanism underlying remote sensing of
nighttime light, which will be valuable for socioeconomic studies.

The rest of this paper is organized as follows. In Section 2, we describe the study area, the datasets,
and the derivation of uncorrelated factors. In Section 3, we propose the two-level hierarchical linear
model. In Section 4, we analyze the experimental results. Discussions and limitations are presented in
Section 5. Conclusions are drawn in Section 6.

2. The Study Area, Datasets and their Preprocess

2.1. Description of the Study Area

China is located in eastern Asia, which has an unbalanced urban development for cities in different
regions. The administrative system has a hierarchical (nested) structure at different levels [32], which is
composed of 2846 counties, 333 prefecture cities, and 34 provinces as reported in 2016. This hierarchical
structure indicates that cities in developed provinces tend to have more opportunities for development
than cities in underdeveloped provinces. In this study, a total number of 281 prefecture cities are
selected from 30 provinces due to the unavailability of data in Tibet and the inconsistencies of statistics
in Taiwan, Hong Kong, and Macau. As shown in Figure 1, the selected prefecture cities are distributed
unevenly in space with different levels of average nighttime lights, and they account for 92.37% of
the population and 91.62% of the GDP in Mainland China in 2016. Statistically, cities located in the
southeastern division of the Aihui-Tengchong Line constitute around 90.76% of the total lights, while
cities in the northwestern division occupy only 9.24%. This finding roughly coincides with population
distribution in the two divisions, where 93% of population is in the southeast and only 7% is in the
northwest. Thus, it is reasonable to select the 281 prefecture cities, and they can reflect the situation in
Mainland China.
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2.2. The Datasets

2.2.1. VIIRS Nighttime Light Dataset

The VIIRS nighttime light dataset in 2016 was downloaded freely from the official site (source:
http://ngdc.noaa.gov/eog/), which belongs to the version 1 series of annual average radiance composites
spanning the globe from 75 N latitude to 65 S. It has been preprocessed to remove temporal lights and
background non-light values. It is composed of 6 tiles, and they are cut at the equator, and each span
120 degrees of latitude. In this study, we have downloaded the annual cloud-free composite of tile 3 as
it covers the entire study area, which is used to calculate the average lights levels of prefecture cities.
Besides, it was further clipped by the boundary of Mainland China. As shown in Figure 2a, we can see
that there is a wide range of pixel values from 0 to 1280.79, which indicates that it can be less affected
by the typical over-saturation problem in urban center.

2.2.2. The Ancillary Datasets

The Normalized Difference Vegetation Index (NDVI) dataset was downloaded for free from
the platform of the Computer Network Information Center at the Chinese Academy of Science
(http://www.gscloud.cn). It is a composite product (MODND1T) produced for China in 2016 at the
spatial resolution of 500 m. NDVI is calculated using the blue, red, and near-infrared reflectivity bands
of satellite imageries, and thus, it can reflect the characteristics of vegetation conditions. In this study,
it was further clipped by the boundary of Mainland China. As shown in Figure 2b, there are around
99.31% of pixels with values larger than 0, and there are only 0.69% of pixels with values less than 0,
which are mostly covered by lakes and snowy peaks.

The Digital Elevation Model (DEM) dataset was obtained from the China Historical Geographic
Information System (www.people.fas.harvard.edu/~{}chgis/), produced by a collaboration between
Harvard University and Fudan University, which provides a database for scholarly and scientific
research. In this study, we have downloaded the DEM data of China in 2016, which is based on
GTOPO-30 data from USGS and at the spatial resolution of 1000 m. It was further clipped by the
boundary of Mainland China. As shown in Figure 2c, we can roughly see that developed regions in
the southeast tend to have lower values of elevation than underdeveloped regions in the northwest. In
this respect, elevation might be indirectly related to nighttime light.

The statistical yearbook dataset in 2016 was provided for free by the CEInet Statistics Database, for
academic use only (www.db.cei.cn/page/Default.aspx), which is an authoritative organization under
the National Information Center of China. In this study, it provided basic socioeconomic information
for the prefecture cities and the corresponding provinces.
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2.3. Selection of Variables and Derivation of Factors

2.3.1. Selection of Variables

Based on the datasets, we obtained a diverse number of variables, as shown in Table 1, namely 12
city-level variables and 16 province-level variables. These variables were selected because they might
be related to nighttime lights and are available in our study area.

1. Variables at the city level: GDP, GDP per capita, population, population density, total electric
consumption, road area, urban built-up area, personal city green space area, and personal
urban green coverage area. These variables were obtained from the statistical yearbook dataset.
The personal city green space area denotes the total area of various types of green space divided
by the population, and a certain type of green space has to satisfy the strict minimum area
requirement according to the urban construction code. As for the personal urban green coverage
area, it means the total extent of green coverage divided by the population, and a single tree
can have its own coverage area (vertical projection area). Thus, both variables can reflect the
personal artificial greenness in a city. Besides, average NDVI was calculated from the NDVI
dataset for each city, which can represent the natural greenness in a city. The average elevation
was computed using the DEM dataset and the latitude variable was determined as the central
location of the urban boundary, and these two geographical variables might be indirectly related
to nighttime lights [33,34].

2. Variables at the provincial level: primary industrial added value, secondary industrial added
value, tertiary industrial added value, which reflect the net value of total economic activity by
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removing production costs for the three sectors, respectively. Total sales of consumer goods
and the total amount of fixed assets investment, which are of fundamental importance to reflect
economic growth. The number of mobile phone users, internet users, and broadband access
users are three variables to reflect the popularity and coverage of Internet and Communication
Technology (ICT). The total passenger traffic, road passenger traffic, and rail passenger traffic
are three variables to measure how much people travel in one year, which might be related to
nighttime lights [35]. Personal wages, personal disposable income, and personal consumption
expenditure are three variables to measure the living standard of city residents. Besides, forest area
and natural ecological conservation area were selected to reflect the ecosystem at the provincial
level. All these variables were obtained from the statistical yearbook dataset.

Table 1. Selection of variables at the city level and provincial level.

12 Variables at the City Level 16 Variables at the Provincial Level

GDP An economic variable Primary industrial
added value

An industrial
variable

GDP per capita An economic variable Secondary industrial
added value

An industrial
variable

Population A demographic variable Tertiary industrial added
value

An industrial
variable

Population density A demographic variable Total sales of consumer
goods

An economic
variable

Total electric
consumption

An energy-related
variable

Total amount of fixed
assets investment

An economic
variable

Road area An infrastructure-related
variable

Number of mobile phone
users

An ICT-related
variable

Number of internet users An ICT-related
variable

Urban built-up area An infrastructure-related
variable

Number of broadband
access users

An ICT-related
variable

Total passenger traffic A transport-related
variable

Personal city green space
area

An urban ecological
variable

Road passenger traffic A transport-related
variable

Rail passenger traffic A transport-related
variable

Personal urban green
coverage area

An urban ecological
variable

Personal wages A living standard
variable

Personal disposable
income

A living standard
variable

Average NDVI A natural ecological
variable

Personal consumption
expenditure

A living standard
variable

Average elevation A geographical variable Forest area A natural
ecological variable

Latitude A geographical variable Natural ecological
conservation area

A natural
ecological variable

2.3.2. Derivation of Factors

Techniques of principal component analysis were applied to derive the uncorrelated factors and to
mitigate the multiple collinearities among the variables. As shown in Table 2, the first six components
were derived as factors at the city level, contributing around 88.92% of the variance. The first four
components were derived as province-level factors, accounting for around 92.09% of the variance.

1) Factors at the city level: economy-energy-infrastructure factor, artificial-greenness
factor, elevation factor, latitude factor, natural-greenness factor, and demography factor.
The economy-energy-infrastructure factor can explain about 41.80% of the variance, which
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is mainly determined by the variables of GDP, electric consumption, road area, and urban built-up
area with loadings of 0.43, 0.42, 0.42, and 0.43, respectively. The artificial-greenness factor
can explain around 15.06% of the variance, which mainly represents the variables of personal
city green space area and personal urban green coverage area with loadings of 0.62 and 0.63,
respectively. The factors of elevation, latitude, natural-greenness, and demography can explain
the variances of 10.54%, 8.04%, 7.63%, and 5.85%, which mainly reflect the variables of elevation,
latitude, NDVI, and population density with loadings of 0.58, 0.79, 0.81, and 0.75, respectively.
These constitute the explanatory factors of nighttime lights at the city level.

2) Factors at the provincial level: industry-information factor, living-standard factor, natural-ecology
factor, and passenger-traffic factor. The industry-information factor can explain 58.39% of the
variance, and it mainly represents the variables of added values in three sectors, total sales
of consumer goods, the total amount of fixed assets investment, and the number of mobile
users, internet users, and broadband access users. The living-standard factor contributes around
22.00% of the variance, which is mainly determined by the variables of personal wages, personal
disposable income, and personal consumption expenditure with loadings of 0.51, 0.49, and 0.50,
respectively. As for the natural-ecology factor, it explains around 6.82% of the variance, which
mainly reflects the variables of forest area and natural ecological conservation area with loadings
of 0.65 and 0.67, respectively. The passenger-traffic factor contributes 4.88% of the variance and
can be represented by the variables of total passenger traffic and road passenger traffic with
loadings of 0.49 and 0.52. These constitute the explanatory factors of nighttime lights at the
provincial level.

Table 2. Derivation of factors at the city level and provincial level using PCA analysis. Note: percentages
in bold indicate the proportion of total variance that can be explained by the selected factors.

6 Factors at the City Level 4 Factors at the Provincial Level

Factors Eigenvalues Percentage Cumulative Factors Eigenvalues Percentage Cumulative

economy-energy
-infrastructure 5.02 41.80% 41.80% industry

-information 9.34 58.39% 58.39%

artificial-
greenness 1.81 15.06% 56.86% living-

standard 3.52 22.00% 80.39%

elevation 1.27 10.54% 67.40% natural-
ecology 1.09 6.82% 87.21%latitude 0.96 8.04% 75.44%

natural-
greenness 0.92 7.63% 83.07% passenger-

traffic 0.78 4.88% 92.09%
demography 0.70 5.85% 88.92%

3. Methodologies

3.1. Construction of a Two-Level Hierarchical Linear Model

As shown in Figure 3, we developed a hierarchical linear model at the levels of city and province,
including the unconditional means model, random intercept model, mixed-effect model with one
single city-level factor, and mixed-effect model with all city-level factors.

3.1.1. Unconditional Means Model: Model 1

An unconditional means model is also known as the null model and was first developed to verify
whether there are significant differences in nighttime lights in different provinces. As shown from
Equation (1) to Equation (4), we present the two-level model and its variation components, where the
response variable light of Equation (1) is the average nighttime light of a city, β0 is the mean value
of city light in a particular province, r is the random error of lights among cities, G00 is the grand
mean value of lights for all cities, u0 is the random error of lights among provinces. It is assumed
that the random error at the city or provincial level follows Gaussian normal distribution in terms
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of r ∼ N
(
0, σ2

)
or u0 ∼ N(0, τ00). Thus, the variance of lights should be σ2 + τ00, and ICC denotes

the intra-group correlation coefficient, which reflects the ratio of intra-group variance to the total
variance. More specifically, if the average city light is independent at the provincial level, then there is
no difference in nighttime lights in different provinces, which means the value of ICC is 0.

Level 1 : light = β0 + r
Level 2 : β0 = G00 + u0

(1)

Mixed model : light = G00 + u0 + r (2)

σ2 = Var(r), τ00 = Var(u0)

Var(light) = Var(r + u0) = σ2 + τ00
(3)

ICC =
τ00

σ2 + τ00
(4)

3.1.2. Random Intercept Model: Model 2

A random intercept model can be developed by introducing the city-level factor one by one to
Model 1. In this respect, a total number of six sub-models of Model 2 are developed by adding the
factors of economy-energy-infrastructure, artificial-greenness, elevation, latitude, natural-greenness,
and demography, respectively. As shown in Equation (5) to Equation (7), we present the two-level
model and the mixed model, where G10 is the coefficient of the corresponding city-level factor.

Level 1 : light = β0 + β1(city_ f actor) + r (5)

Level 2 : β0 = G00 + u0

β1 = G10
(6)

Mixed model : light = G00 + G10(city_ f actor) + u0 + r (7)

3.1.3. Mixed-Effect Model with One Single City-Level Factor: Model 3

Based on Model 2, province-level factors are all added into the random intercept model at the
provincial level, which is used to explain the slope and intercept at the city level. In this respect,
a two-level mixed-effect model with one single city-level factor was developed, which led to six
sub-models of Model 3 with respect to each city-level factor. As shown in Equation (8) to Equation
(10), we display the corresponding two-level model and the mixed model, where G01, G02, G03,
and G04 represent the coefficients of province-level factors of industry-information, living-standard,
natural-ecology, and passenger-traffic, respectively, and G11, G12, G13, and G14 denote the coefficients
of the interaction between each city-level factor and the four province-level factors, respectively.
Specifically, the interactive coefficients can reflect the degrees of lights effects of a certain city-level
factor and the corresponding interactions with the province-level factors.

Level 1 : light = β0 + β1(city_ f actor) + r (8)

Level 2 : β0 = G00 + G01(InduIn f o) + G02(LivStd) + G03(NatEco) + G04(PassTra) + u0

β1 = G10 + G11(InduIn f o) + G12(LivStd) + G13(NatEco) + G14(PassTra)
(9)

Mixed model :
light = G00 + G01 (InduIn f o) + G02(LivStd) + G03(NatEco) + G04(PassTra)

+G10(city_ f actor) + G11(InduIn f o)(city_ f actor)
+G12(LivStd)(city_ f actor) + G13(NatEco)(city_ f actor)
+G14(PassTra)(city_ f actor) + u0 + r

(10)
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3.1.4. Mixed-Effect Model with All City-Level Factors: Model 4

Based on Model 3, all city-level factors are added at the city level, but the four province-level
factors are added one by one at the provincial level. In this respect, a two-level mixed-effect model
with all city-level factors was developed, which led to four sub-models of Model 4 with respect to each
province-level factor. It should be noted that this model was developed in a multivariate context and
aimed to further improve the explaining capacity of factors at both the city level and provincial level.
As shown in Equation (11) to Equation (13), we present the corresponding two-level model and the
mixed model, where G01 is coefficient of a particular province-level factor, G10, G20, G30, G40, G50, and
G60 represent the coefficients of city-level factors of economy-energy-infrastructure, artificial-greenness,
elevation, latitude, natural-greenness, and demography, respectively, G11, G21, G31, G41, G51, and G61

denote the coefficients of the interaction between each province-level factor and the six city-level
factors, respectively. However, to avoid the complexity of the model, each province-level factor does
not need to have interactions with all city-level factors. Instead, it has its own interactive pattern, as
shown in Table 3. For instance, industry-information factor at the provincial level might affect the
factors of economy-energy-infrastructure and demography at the city level, and thus the coefficients of
G11 and G61 should be considered.

Level 1 : light = β0 + β1(EcoEneIn f ) + β2(ArtGreenness) + β3(Elevation)
+ β4(Latitude) + β5(NatGreeness) + β6(Demography) + r

(11)

Level 2 : β0 = G00 + G01(Province_ f actor) + u0

β1 = G10 + G11(Province_ f actor)
β2 = G20 + G21(Province_ f actor)
β3 = G30 + G31(Province_ f actor)
β4 = G40 + G41(Province_ f actor)
β5 = G50 + G51(Province_ f actor)
β6 = G60 + G61(Province_ f actor)

(12)

Mixed model :
light = G00 + G01 (Province_ f actor) + G10(EcoEneIn f )

+G11(Province_ f actor)(EcoEneIn f ) + G20(ArtGreenness)
+G21(Province_ f actor)(ArtGreenness) + G30(Elevation)
+G31(Provine_ f actor)(Elevation) + G40(Latitude)
+G41(Province_ f actor)(Latitude) + G50(NatGreeness)
+G51(Province_ f actor)(NatGreeness) + G60(Demography)
+G61(Province_ f actor)(Demography) + u0 + r

(13)

Table 3. Coefficients of explanatory factors in Model 4.

Industry-Information Living-Standard Natural-Ecology Passenger-Traffic

Model Model 4-1 Model 4-2 Model 4-3 Model 4-4
G00 G00 G00 G00

economy-energy-infrastructure G10 G10 G10 G10
artificial-greenness G20 G20 G20 G20

elevation G30 G30 G30 G30
latitude G40 G40 G40 G40

natural-greenness G50 G50 G50 G50
demography G60 G60 G60 G60

G01 G01 G01 G01
economy-energy-infrastructure G11 G11 —— G11

artificial-greenness —— —— G21 ——
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Table 3. Cont.

Industry-Information Living-Standard Natural-Ecology Passenger-Traffic

elevation —— —— G31 ——
latitude —— —— G41 ——

natural-greenness —— —— G51 ——
demography G61 G61 —— G61

3.2. Model Estimation and Comparison

As shown in Figure 3, to estimate the regression coefficients and variance components of our
hierarchical linear models, a restricted maximum likelihood method [36] was adopted, which is known
as an efficient parameter estimator for multi-level models with normally distributed errors. This
method can produce unbiased estimates of variance components and has been implemented in many
popular statistical packages. In this study, we used the HLM 6.08 package for model estimation.

Once the variance components were estimated, we could compare two models in a quantitative
way. Specifically, compared with Model 1, we can compute the percentage of variance explained by
Model k at the city level and provincial level as PVEk

city and PVEk
province, respectively [29]. These are

defined explicitly in Equation (14), where σ2(Model k) is the variance of lights difference in Model k at
the city level, τ00(Model k) is the variance of lights difference in Model k at the provincial level, and k
denotes the number of the model. In this respect, we could tell whether or how much one model is
out-performed by the other one. PVEk

city =
σ2(Model 1)−σ2(Model k)

σ2(Model 1)

PVEk
province =

τ00(Model 1)−τ00(Model k)
τ00(Model 1)

(14)
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4. Analytic Results

4.1. Analysis of the Nighttime Lights Effects of Influencing Factors

4.1.1. Results of Unconditional Means Model: Model 1

As shown in Table 4, the value of ICC was calculated as 0.4990. Besides, the random variance
u0 passed the chi-square test at a significance level of 1%, which meant that the value of ICC was
statistically significant. Therefore, the results of Model 1 (null model) suggested that there were
significant differences in nighttime lights across different provinces, and the province-level factors
should not be ignored.

4.1.2. Results of Random Intercept Model: Model 2

As shown in Table 4, the following findings can be reported:

1) As for 2-1, there is a significant positive correlation between economy-energy-infrastructure
factor and city lights. Specifically, with the increment of one unit of this factor, city lights might
be increased by about 73.46% on average. This finding coincides well with many previous
studies, which suggested that city lights are highly correlated with economic status [17], energy
consumption [37], and urban infrastructure [38].

2) As for 2-2, the artificial-greenness factor is negatively correlated with city lights [38], but the
influence is not significant. This is probably because green space in urban areas tends to be
decorated with lighting facilities, which might affect the absorption and block of nighttime lights
by vegetation. As for 2-3, elevation factor has a significant negative influence on city lights. Such
situation coincides very well with the unbalanced development in Mainland China. In particular,
cities in the northwest tend to be underdeveloped and are located at high altitudes, while those in
the southwest are likely to be developed and are located at low altitudes. Specifically, with the
increment of one unit of this factor, city lights might be decreased by about 11.69% on average.

3) As for 2-4 and 2-5, we can observe significant negative correlations between city lights and
factors of latitude and natural-greenness. Such results are reasonable in the Chinese context
because southern cities with low latitudes are more developed than northern cities with high
latitudes, and cities with large coverages of vegetation tend to absorb or block more lights than
those with small vegetation coverages [1]. Specifically, with one unit’s increase in latitude and
natural-greenness, city lights could be decreased by 14.49% and 18.05%, respectively. However,
as for 2-6, a significant positive correlation can be observed with the demography factor [22,39].
For instance, city lights might be increased by about 16.04% on average with the increment of one
unit of this factor.

Table 4. The estimation of parameters and variance components (with standard errors) for Model 1
and Model 2 (Note: *, **, and *** denote the significance level at 10%, 5%, and 1%, respectively).

Model 1 2-1 2-2 2-3 2-4 2-5 2-6

Fixed effect:

G00
0.1398

(0.1643)
−0.1096
(0.1456)

0.1716
(0.1901)

0.1942 *
(0.1754)

0.1698 *
(0.1777)

0.1729 *
(0.1753)

0.1440
(0.1747)

G10 —— 0.7346 ***
(0.0450)

−0.1791
(0.1704)

−0.1169 *
(0.0780)

−0.1449 *
(0.0852)

−0.1805 **
(0.0498)

0.1604 ***
(0.0542)

Variance components:

σ2 0.6974
(0.8351)

0.3447
(0.5872)

0.6509
(0.8068)

0.6882
(0.8296)

0.6799
(0.8246)

0.6767
(0.8226)

0.6729
(0.8203)

τ00
0.6947 ***
(0.8335) —— —— —— —— —— ——
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4.1.3. Results of the Mixed Effect Model with One Single City-Level Factor: Model 3

As shown in Table 5, the following findings could be observed:

1) In general, from model 3-1 to 3-6, we observed that the factors of industry-information,
living-standard, and passenger-traffic at the provincial level had positive correlations with city
lights, although some factors do not display significant influences. Moreover, the natural-ecology
factor has a negative correlation with city lights, but it is not significant in most models. As
indicated by the values of G10 in these models, each city-level factor had almost a similar
influencing pattern as observed in Model 2, although the magnitude and significance of the
effects varied slightly. For instance, artificial-greenness factor again showed a non-significant
relationship with city lights, but the magnitude was relatively weak. These are probably due to
the regulatory effects of province-level factors on each city-level factor [30].

2) Model 3-1 is a two-level mixed-effect model with economy-energy-infrastructure, and the results
are shown in the second column of Table 5. Firstly, compared with the results of Model 2-1,
the positive lights effect of economy-energy-infrastructure changes from 73.46% to 44.24% with
a reduction of 39.78% on average, which further confirms the existence of intra-group and
inter-group differences. Secondly, significant interactions can be observed for the lights effect
of economy-energy-infrastructure with industry-information and passenger-traffic. Specifically,
factors of industry-information and passenger-traffic can enhance the lights effects. For instance,
a one-level increase in industry-information or passenger-traffic might significantly improve
nighttime lights by 18.30% or 14.59% on average. The observed multiplying effect of economic
activities from both provincial level and city level on lights indicates the important role of
coordinated development of the regional economy. Thirdly, there are no significant interactions
between the other two province-level factors and lights effects of economy-energy-infrastructure.

3) Model 3-2 is a two-level mixed-effect model with artificial-greenness, and the results are shown
in the third column of Table 5. Firstly, compared with the results of Model 2-2, the non-significant
negative lights effect of artificial-greenness is weakened by 66.67%, which is probably due to the
regulatory effect of the natural-ecology factor at the provincial level. Secondly, natural-ecology
factor has a significant interaction with the lights effect of artificial-greenness, which may have
enhanced this negative influence. Specifically, with the increment of natural-ecology value
in one unit, city lights will be decreased further by 4.07% on average. This is not surprising
because forest area or natural conservation area in ecosystem can play a large role in cooling the
cities [40]. Thirdly, the lights effect of artificial-greenness did not have significant interactions
with other province-level factors, such as the factors of industry-information, living-standards,
and passenger-traffic.

4) Model 3-3 is a two-level mixed-effect model with elevation, and the results are shown in the fourth
column of Table 5. Firstly, the negative lights effect of elevation displays a slight decrease of 13.94%
as compared with those of Model 2-3, and importantly, it becomes non-significant. This finding
indicated that the impact of elevation on city lights might be unreliable by only considering their
linear relationship. Secondly, there is a significant interaction between passenger-traffic factor
and the lights effect of elevation, and passenger-traffic factor could reduce the negative effect
of elevation. For instance, a one-level increase in passenger-traffic could significantly increase
city lights by 1.84% on average. This finding is reasonable because urban transportation can
improve urban economic development [41], which might lead to a high level of nighttime lights.
Thirdly, there are no significant interactions between the lights effect of elevation and the factors
of industry-information, living-standard, and natural-ecology.

5) The estimation results of Model 3-4 are summarized in the fifth column of Table 5. Firstly,
compared with those of Model 2-4, the negative lights effect of latitude is diminished by a large
percentage of 46.03% and becomes non-significant, which suggests that the impact of latitude
on city lights might be unreliable by only considering their linear relationship. Secondly, the
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living-standard factor shows a significant interaction with the lights effect of latitude, which will
continue to weaken this negative impact. For instance, with a one-level increase in living-standard,
city lights will be increased largely by 26.81% on average. Thirdly, the natural-ecology factor
displays a significant interaction with the lights effect of latitude, but the negative effect will
be enhanced. For instance, city lights will be further decreased by 12.55% on average with
the increment of one level’s natural-ecology factor. Fourthly, no significant interactions can be
observed between city lights and the factors of industry-information and passenger-traffic.

6) The estimation results of Model 3-5 are shown in the sixth column of Table 5. First, it reports that the
negative lights effect of natural-greenness is increased by a large percentage of 34.85% and remains
significant. This finding implies the stability of the impact of natural-greenness on city lights
for the entire Mainland China, which coincides well with a few previous studies [1,42]. Besides,
this negative lights effect could be enhanced by a significant interaction with the natural-ecology
factor, where city nights would be further decreased by 11.99% on average with one level’s
increase on the value of natural-ecology factor. The finding can be given a similar explanation as
elaborated in Model 3–2. Furthermore, the results suggest non-significant interactions between
the lights effect of natural-greenness and the other three province-level factors.

7) The last column of Table 5 summarizes the estimation results of Model 3-6. Firstly, the positive
lights effect of demography is increased by a large percentage of 49.84% and is still significant as
compared with those of Model 2-6. This finding indicated the reliability of the relationship between
city lights and demography, which agreed very well with those of most previous studies [22,39,43].
Secondly, the impact of demography on city lights is significant in its interactions with the factors
of industry-information and living-standards. In particular, city lights will be further increased
by 12.27% or 29.01% with the increment of one unit on industry-information or living-standard.
This is reasonable because people are more likely to live in cities with more job opportunities
and higher incomes [44]. Thirdly, there are no significant interactions between the lights effect of
demography and the other two province-level factors.

Table 5. The estimation of parameters and variance components (with standard errors) for Model 3
(Note: *, **, and *** denote the significance level at 10%, 5%, and 1%, respectively).

Model

3-1
(Economy
-Energy

-Infrastructure)

3-2
(Artificial

-Greenness)

3-3
(Elevation)

3-4
(Latitude)

3-5
(Natural

-Greenness)

3-6
(Demography)

Fixed effect:

G00
0.0210

(0.0514)
−0.2613
(0.1069)

0.1057
(0.1102)

0.1652 *
(0.0929)

0.2666 **
(0.1310)

0.2127 ***
(0.0904)

G01
0.0735 *
(0.0384)

0.1375 ***
(0.0840)

0.1340 *
(0.0595)

0.1322 *
(0.0645)

0.1321
(0.0796)

0.2221 ***
(0.0580)

G02
0.3366 **
(0.0655)

0.9793 **
(0.2353)

0.7337 ***
(0.2075)

0.7643 **
(0.2266)

1.0553 ***
(0.3045)

0.9073 **
(0.1856)

G03
−0.0071
(0.0341)

−0.0258
(0.0652)

−0.0597 *
(0.0520)

−0.0769
(0.0480)

−0.0213*
(0.0620)

−0.0084
(0.0342)

G04
0.0166

(0.0474)
0.0429

(0.0793)
0.0152

(0.0552)
0.0034 ***
(0.0681)

0.0067
(0.0573)

0.0166
(0.0569)

G10
0.4424 ***
(0.0789)

−0.0597
(0.1087)

−0.1006
(0.0781)

−0.0782
(0.1078)

−0.2343 ***
(0.1085)

0.2405 **
(0.0940)

G11
0.1830 *
(0.0497)

0.2385
(0.0620)

0.0937
(0.0872)

0.0620
(0.0804)

0.0041
(0.0765)

0.1227 ***
(0.0379)

G12
0.0535

(0.0568)
0.0664

(0.2468)
0.1151

(0.1255)
0.2681 *
(0.2103)

0.2651
(0.1347)

0.2901 *
(0.1746)

G13
−0.1449
(0.0661)

−0.0407 *
(0.0328)

−0.0236
(0.0512)

−0.1255 *
(0.0472)

−0.1199 *
(0.0709)

−0.0150
(0.0319)

G14
0.1459 *
(0.1070)

0.1316
(0.1195)

0.0184 *
(0.0748)

0.0631
(0.0796)

0.0092
(0.0388)

0.0674
(0.0355)
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Table 5. Cont.

Model

3-1
(Economy
-Energy

-Infrastructure)

3-2
(Artificial

-Greenness)

3-3
(Elevation)

3-4
(Latitude)

3-5
(Natural

-Greenness)

3-6
(Demography)

Variance components:

σ2 0.3199
(0.5655)

0.5963
(0.7458)

0.6484
(0.8417)

0.6366
(0.8346)

0.6247
(0.8152)

0.6017
(0.8134)

τ00
0.0190 ***
(0.1379)

0.1173 ***
(0.3425)

0.1247 ***
(0.3605)

0.1242 ***
(0.3578)

0.1904 ***
(0.4017)

0.1217 ***
(0.3521)

4.1.4. Results of Mixed Effect Model with All City-Level Factors: Model 4

The estimation results from Model 4-1 to Model 4-4 are presented in Table 6. Collectively,
economy-energy-infrastructure and demography had significant positive correlations with city lights,
while elevation, latitude, and natural-greenness in most models were significantly negatively correlated
with city lights. These results were roughly consistent with those of Model 3, although a major
difference could be observed. For instance, artificial-greenness displayed a non-significant positive
impact on city lights, which was different from the non-significant negative impact of Model 2 and
Model 3. This finding reconfirmed the unreliability of artificial-greenness controlling city lights.
Besides, factors of elevation and latitude become significant in most models as compared with those of
Model 3, which implies that they might contribute lights collectively in a multivariate context.

In addition, industry-information can significantly enhance the lights effects of
economy-energy-infrastructure and demography by further percentages of 19.92% and 0.72% in
Model 4-1, which coincides well with those of Model 3-1 and 3-6. As for Model 4-2, living-standard
can continue to significantly increase the positive lights effect of demography by around 26.74%, while
its interaction with the positive lights effect of economy-energy-infrastructure is not significant. This
finding also agrees well with those of Model 3-1 and 3-6. As for Model 4-3, natural-ecology had
significant interactions with the lights effects of artificial-greenness and natural-greenness, which
further imposed negative effects of 8.9% and 10.73%, respectively. However, its interactions with the
negative lights effects of elevation and latitude were not significant, which roughly coincided with
those of Model 3-2, 3-3, 3-4, and 3-5. Lastly, passenger-traffic displayed significant interactions with
the lights effects of economy-energy-infrastructure and demography, which could enhance the positive
effects of 15.98% and 10.71, respectively. Specifically, these interactions were much more significant
than those of Model 3-1 and 3-6.

Table 6. The estimation of parameters and variance components (with standard errors) for Model 4
(Note: *, **, and *** denote the significant level at 10%, 5%, and 1%, respectively).

Model 4-1
(Industry-Information)

4-2
(Living-Standard)

4-3
(Natural-Ecology)

4-4
(Passenger-Traffic)

Fixed effect:

G00 −0.0734
(0.0950)

0.1236 ***
(0.0969)

0.0025
(0.0791)

−0.0063
(0.0647)

G10 0.5605 ***
(0.1108)

0.6237 ***
(0.1530)

0.7136 ***
(0.1320)

0.7564 ***
(0.1225)

G20 0.0345
(0.0668)

0.0728
(0.0970)

0.0733
(0.0960)

0.0697
(0.0902)

G30 −0.1205 **
(0.0646)

−0.2056 *
(0.0750)

−0.1569 *
(0.0785)

−0.1503 ***
(0.0709)

G40 −0.0321
(0.0582)

−0.0318 *
(0.0563)

−0.0150
(0.0606)

−0.0693 **
(0.0555)

G50 −0.1036 *
(0.0739)

−0.0948 **
(0.0725)

−0.0790 *
(0.0763)

−0.1346 **
(0.0650)
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Table 6. Cont.

G60 0.0356 *
(0.0337)

0.1591 ***
(0.0554)

0.0460 *
(0.0635)

0.0387 *
(0.0284)

G01 0.0394
(0.0546)

0.3288 **
(0.2326)

−0.0653
(0.0795)

0.0681 **
(0.0525)

G11 0.1992 ***
(0.0533)

0.0231
(0.0641) —— 0.1598 *

(0.1084)

G21 —— —— −0.0890 *
(0.0551) ——

G31 —— —— −0.0049
(0.0705) ——

G41 —— —— −0.0372
(0.0891) ——

G51 —— —— −0.1073 **
(0.0727) ——

G61 0.0072 **
(0.0479)

0.2674 **
(0.1261) —— 0.1071*

(0.0488)

Variance components:

σ2 0.1578
(0.5306)

0.1670
(0.5398)

0.1783
(0.5402)

0.1876
(0.5521)

τ00 0.0477 ***
(0.5988)

0.0485 ***
(0.6012)

0.0595 ***
(0.6215)

0.0618 ***
(0.6411)

4.2. Model Comparisons and Variance Analysis

As shown in Table 7, the results can be summarized in the following points. (1) Compared with Model
1 (null model), the explained variances are all improved in Model 2 by adding city-level factors and in Model
3 by adding province-level factors. (2) The six sub-models of Model 3 can explain much more variances
than the corresponding six sub-models of Model 2, which is mainly due to the significant interactive effects
with the province-level factors. (3) The explained variances are dramatically improved in Model 4 with the
percentages greater than 70% at the city level, which can be attributed mainly to the inclusion of all city-level
factors; and they are higher than 90% at the provincial level, which is probably due to the interactive
effects with the specified province-level factor. This further suggests the plausibility of Model 4. (4) The
values of the -2LL (-2 multiplied by logarithmic likelihood) statistic decreased from Model 1 to Model 2 by
adding each city-level factor, which indicated that Model 2 improved in terms of goodness-of-fit. (5) The
inclusion of province-level factors led to a further reduction of the -2LL statistic value with respect to the
six sub-models of Model 3, which hinted that each sub-model of Model 3 outperformed the corresponding
sub-model of Model 2 in terms of goodness-of-fit. (6) Most of the -2LL statistic values in Model 4 further
decreased compared to the ones in Model 3, which meant that Model 4 could give a better performance. (7)
It should be noted that all the 17 models passed the KS (Kolmogorov–Smirnov) test at a significance level
of 10%, which proved the effectiveness and superiority of our models.

Table 7. Variance explained by the models and their statistical tests.

Model PVEcity PVEprovince -2LL stat. KS stat.

1. —— —— 760.04 0.287(0.000)
2-1 50.56% —— 575.94 0.215(0.000)
2-2 6.66% —— 752.04 0.173(0.000)
2-3 1.31% —— 759.26 0.082(0.000)
2-4 2.51% —— 758.90 0.049(0.099)
2-5 2.96% —— 756.20 0.079(0.000)
2-6 3.51% —— 755.82 0.091(0.000)
3-1 54.13% 97.26% 522.20 0.163(0.000)
3-2 14.49% 83.11% 685.44 0.209(0.000)
3-3 7.01% 82.06% 727.94 0.200(0.000)
3-4 8.71% 82.12% 726.26 0.279(0.000)
3-5 10.42% 72.60% 725.08 0.235(0.000)
3-6 13.72% 82.48% 715.46 0.186(0.000)
4-1 77.37% 93.14% 538.28 0.137(0.000)
4-2 76.06% 93.01% 555.58 0.130(0.000)
4-3 74.43% 91.44% 585.58 0.147(0.000)
4-4 73.09% 91.11% 564.08 0.142(0.000)
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5. Discussions and Limitations

Nevertheless, this study has a few issues worthy of discussion, which require further investigations.
Firstly, most of the correlations reported in this study can be substantiated and agree very well

with the findings in the literature [1,17,22,37–39,42,43]. For instance, the negative lights effect of
natural-greenness can be enhanced by a significant interaction with the natural-ecology factor at the
provincial level, which implies the stability of the impact of natural-greenness on city lights for the
entire Mainland China. However, the correlation with artificial-greenness becomes unstable and is not
significant through our models, which might indicate that it was an unreliable factor controlling city
lights. The reasons could be relevant to the decoration of lighting facilities, although we acknowledged
the limitation of substantiating such a correlation. Besides, correlation with demography is positive
and significant, but it does not mean that city lights can be a reliable estimator of population. On the
one hand, city lights might function as a diverse number of factors in a multi-level manner. On the
other hand, the increase in population does not necessarily lead to the expansion of urban areas, which
follows that new public lighting installations might not be urgently needed [45]. In these respects, we
attempted to substantiate our findings via comparisons with those in the literature. As for these new
findings, we tried to give reasonable explanations, although they require further investigations.

Secondly, it is not an easy task to explain the differences in nighttime lights across different
cities, because our analytic results can be affected by several issues, which might constitute potential
limitations of our study. (1) New satellite products, such as Luojia-1 nighttime light imagery with high
spatial resolution [46], can provide accurate estimates of nighttime lights, which might improve the
statistical reliability of our results and require further studies. (2) Light emissions can vary differently
with the zenith angle for different spectral bands [47], which means that light output patterns in
different places can also be a potential issue affecting the differences in light emissions, and it needs
further studies. (3) Light emissions could show seasonal behavior [1], which was neglected in our
study owing to the usage of the annual average nighttime lights, and it poses a limitation. (4) Light
emissions could be underestimated owing to the introduction of outdoor white LED lighting products
because the VIIRS DNB sensor is not sensitive to the emission of blue light from LED sources. This is a
common problem for the society of remote sensing of nighttime lights, but how it affects our results
requires further studies. This relies on either the methodology to distinguish high-pressure sodium
lamps from white LEDs or the design of new nighttime sensors with the ability to detect blue light.
(5) Light emissions could be affected by the scattered lights near the city boundary, which were once
thought to be an instrumental error but in fact represent a real detection of lights scattered in the
atmosphere [48]. This problem appears to be obvious for brightly lit cities like Beijing and Shenzhen or
urban agglomerations like the Yangtze River Delta Region, but it becomes trivial for most small- and
medium-sized prefecture cities surrounded by rural areas. Considering its complicated characteristics,
the extent to which it might affect our results needs further evaluations.

Thirdly, to some extent, our study could make some responses to the theory of regional
development by validating the hypothesis that the inter-provincial variation contributes to the
nighttime lights. For instance, industry-information, living-standard, and passenger-traffic present
significant direct influences on the nighttime lights, being consistent with previous studies that indicated
that regional socioeconomic factors could affect local nighttime lights. In terms of the interactive effects,
industry-information and passenger-traffic at the provincial level can continue to enhance significantly
the positive lights effect of economy-energy-infrastructure at the city level. Living-standard shows
significant interaction with demography by strengthening its positive lights effect, and natural-ecology
displays significant interactions with artificial-greenness and natural-greenness by increasing their
negative light effects. These findings might agree well with the perspective of coordinated regional
development, but it requires further studies to contribute to the theory of urban development by
proposing a typology of nighttime lights of cities.
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6. Conclusions

This study developed a two-level hierarchical linear model to explore nighttime lights effects of
cross-level factors, which is different from conventional studies using regression models for a single
level of factors. Based on our method, using the VIIRS nighttime light data in 2016, the experiment
was conducted for 281 prefecture cities in Mainland China. Our results not only confirmed the
findings of current studies on the correlation between city lights and socioeconomic factors, but it
also reported significant correlations with other physical factors including elevation, passenger-traffic,
natural-greenness, and others. Importantly, our results emphasized the underlying interactive lights
effects of cross-level factors considering the hierarchical structure of anthropogenic development
in space, which is traditionally neglected in the studies of factors controlling nighttime lights.
In this respect, our study suggests that nighttime lights should be modeled and explained in a
multi-level manner.

The findings of this study might benefit a better understanding of the mechanisms underlying
nighttime light remote sensing and improve the reliability and effectiveness of relevant applications.
(1) Variations of nighttime lights in space can be affected by a diverse number of factors organized
in a hierarchical way, which means factors at a high level might impose a non-trivial impact on the
nighttime lights through their interactions with the factors at a low level. (2) Because of the multi-level
non-linear relationship between nighttime lights and a variety of factors, it should be very cautious to
estimate some socioeconomic indicators using a simple regression of nighttime lights with only the
measured socioeconomic values, such as GDP or population. (3) Nighttime light remote sensing has
been widely applied to extract urban built-up areas and examine urban growth patterns. It should
carefully use a specified threshold value to delineate the urban built-up area because lights brightness
can be affected by many factors. For instance, the ambiguity of artificial-greenness might lead to
unreliable estimation of threshold value.
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