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Abstract: Airborne laser scanning (ALS) systems tuned to the near-infrared (NIR; 1064 nm) wavelength
have become the best available data source for characterizing vegetation structure. Proliferation
of multi-spectral ALS (M-ALS) data with lasers tuned at two additional wavelengths (commonly
532 nm; green, and 1550 nm; short-wave infrared (SWIR)) has promoted interest in the benefit of
additional wavelengths for forest inventory modelling. In this study, structural and intensity based
M-ALS metrics were derived from wavelengths independently and combined to assess their value
for modelling forest inventory attributes (Lorey’s height (HL), gross volume (V), and basal area (BA))
and overstorey species diversity (Shannon index (H), Simpson index (D), and species richness (R)) in
a diverse mixed-wood forest in Ontario, Canada. The area-based approach (ABA) to forest attribute
modelling was used, where structural- and intensity-based metrics were calculated and used as inputs
for random forest models. Structural metrics from the SWIR channel (SWIRstruc) were found to be the
most accurate for H and R (%RMSE = 14.3 and 14.9), and NIRstruc were most accurate for V (%RMSE
= 20.4). The addition of intensity metrics marginally increased the accuracy of HL models for SWIR
and combined channels (%RMSE = 7.5). Additionally, a multi-resolution (0.5, 1, 2 m) voxel analysis
was performed, where intensity data were used to calculate a suite of spectral indices. Plot-level
summaries of spectral indices from each voxel resolution alone, as well as combined with structural
metrics from the NIR wavelength, were used as random forest predictors. The addition of structural
metrics from the NIR band reduced %RMSE for all models with HL, BA, and V realizing the largest
improvements. Intensity metrics were found to be important variables in the 1 m and 2 m voxel
models for D and H. Overall, results indicated that structural metrics were the most appropriate.
However, the inclusion of intensity metrics, and continued testing of their potential for modelling
diversity indices is warranted, given minor improvements when included. Continued analyses using
M-ALS intensity metrics and voxel-based indices would help to better understand the value of these
data, and their future role in forest management.
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1. Introduction

Airborne laser scanning (ALS) is a globally established technology for building enhanced forest
inventories (EFIs) and supplementing effective forest management [1,2]. ALS point clouds are most
often derived using near-infrared (NIR; most commonly 1064 nm) tuned lasers. Apart from high
reflectivity from vegetated surfaces, NIR lasers offer benefits including eye safety and low atmospheric
interference [3]. As a result, NIR-tuned ALS systems have become common place, improving the
cost-effectiveness of characterizing vegetation structure and generating best available geo-spatial
terrain information.

Since the adoption of ALS technologies in forestry, point cloud-derived height data have been
used to characterize forest structure. The intensity of return pulses also provides additional and often
complementary information about surface materials [4]. In a review on the role of radiometric ALS
correction and calibration, Kashani et al. [5] highlighted the interdisciplinary value of intensity data
for classifying natural and urban cover surfaces [6]. Intensity data have been shown to improve the
separation of typical landcover surfaces such as concrete and vegetation [7], though careful attention
to intensity correction and calibration methods is a prerequisite [8]. The lack of a calibrated intensity
response makes the development of models that utilize intensity limited, as they are unable to be
reliably transferred between ALS acquisitions and across different sensors and locations.

The desire to amalgamate structural descriptions from ALS and spectral characterizations
from multi-spectral imagery has been met with the development and testing of multi-spectral ALS
(M-ALS) [9–12], and the experimental use of hyperspectral ALS systems [13–17]. These systems
use multiple laser scanners at varying wavelengths, designed to be sensitive to both the structural
assemblage, and spectral response of vegetation from the top of the canopy through to the ground.

A potential benefit of M-ALS intensity data when compared to that from single-wavelength ALS
(S-ALS) is that intensity from multiple wavelengths may improve the capacity for applications such as
health and species-based forest inventory information. The potential to leverage multiple wavelengths
to produce multi-spectral intensity information, as well as to mimic passive optical data by calculating
vegetation indices, could be an important step towards improving estimates of vegetation composition
and vigor [18]. Passive optical data continue to be indispensable for forest management [19–22],
facilitating the computation of spectral indices such as the Normalized Difference Vegetation Index
(NDVI), and providing a means to derive information on land cover, species, and health. These data are,
however, limited to capturing information on the top of the canopy, and are unable to detail potentially
important information about internal canopy structure and understorey composition [23–25], both areas
where M-ALS data may prove useful and provide otherwise unattainable data products.

With computation of spectral indices in mind, a critical consideration of M-ALS data is that
sensors are made up of laser scanners with diverging beams. Each point within a multi-spectral
point cloud, therefore, contains intensity data from a single wavelength only. This contrasts to other
three-dimensional remote sensing technologies such as digital aerial photogrammetry (DAP), where
all points are attributed with all spectral information derived from overlapping imagery [23,24].
In order to compute vegetation indices using M-ALS point clouds, voxelization approaches can be
applied, where all points within a voxel of predetermined size are used to calculate vegetation indices.
Okhrimenko et al. [9] found that voxelization of M-ALS wavelengths facilitated the computation
of vertical spectral vegetation index profiles using Optech Titan data for stand-level analyses.
The aggregation of points to voxels leads to loss in three-dimensional detail, however, also allows for
the calculation of spectral indices using M-ALS data. Apart from voxel-based indices, calculations
can also be conducted within delineated features such as individual tree extents [26], and at the plot
level [10].

Examples of the application of M-ALS data in the literature are growing, with many studies
utilizing the Optech Titan M-ALS sensor for land cover and forest inventory analyses [6,10–12,26–28].
The addition of the 532 nm wavelength is largely driven by the desire to improve sampling of terrain,
vegetation, and riparian environments. Canopy attenuation has been more of a challenge with the
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532 nm wavelength than the 1064 and 1550 nm wavelengths, likely due to leaf absorption, limiting point
densities and vertical distributions within point clouds [3]. The addition of the 1550 nm wavelength
has increased water absorption properties and remains eye safe when emitting higher energy pulses.

Land-cover classification studies such as Wang et al. [4] investigated the potential to
combine different ALS wavelength data from separate acquisitions, indicating that multiple
wavelengths improved the ability to discriminate low vegetation compared to a single wavelength.
Hopkinson et al. [3] likewise tested differences between data acquired using a M-ALS sensor and
three S-ALS sensors for forest classification. Incorporation of spectral and structural laser return
data were found to improve foliage profiling and land surface classifications. Vertical distribution
of points, number of ground returns, and characterization of canopy foliage differed among S- and
M-ALS datasets, while acquisition configurations such as flight altitude influenced intensity-based
characterizations of the canopy [3,29].

Individual tree-based classification studies such as Axelsson et al. [11] have also highlighted the
value of M-ALS data. Intensity distributions and features from the upper and outer parts of tree
canopies combined with structural characterizations were found to improve classification accuracies.
Yu et al. [30] compared S- and M-ALS data to discriminate between three tree species, with findings
indicating that models incorporating metrics derived from M-ALS data were most accurate, but were
not markedly higher than S-ALS alternatives. Budei et al. [26] corroborated these findings, where
the effectiveness of S- and M-ALS for classifying individual trees into forest type, genus, and species
was compared. Additional intensity data, and derived vegetation indices such as the NDVI, were
found to be influential in improving classification accuracies, especially when species diversity was
high (seven classes or more). Application of M-ALS data to predict individual tree attributes such as
volume [12] indicated that M-ALS data performed better than S-ALS data, but were not as effective
as the combination of optical imagery and S-ALS. The prediction accuracy of above-ground carbon
storage using M-ALS was found to be 11% higher than S-ALS in urban trees, and that the combination
of spectral and structural data were influential in improving tree detection and delineation outputs [27].

Given the success of land-cover and individual tree-based classifications, there is an opportunity
to further assess the potential of these data for area-based approaches (ABA; [31]). The ABA combines
geo-located field samples and ALS metrics to create predictive models of inventory attributes. Following
model creation, these models can be applied over the entire coverage of ALS acquisitions, providing
managers with wall-to-wall coverage of inventory predictions with known errors [1]. Boreal tree species
composition predictions using M-ALS data were found to be comparable to those from conventional
ALS and optical data combined [28], indicating that intensity values from M-ALS improve tree species
discrimination. Comparison of ALS and DAP metrics for ABA inventory modelling indicated that
the use of DAP spectral metrics provided no benefit [24]. Further investigations into the benefit
of additional wavelengths for structural and spectral characterizations of inventory attributes is
warranted, especially given the success of the ABA using traditional S-ALS systems.

In this study, we assess the potential of M-ALS structural metrics for modelling conventional forest
inventory attributes, as well as determine the added benefit of intensity information for estimating a
number of plot-level forest stand attributes, including species richness, a variable commonly estimated
poorly from S-ALS. To do so, we develop predictive models under two scenarios. First, structural and
intensity metrics from each M-ALS wavelength, and all wavelengths combined, were generated and
used as predictor variables within random forest (RF) models. Second, the point clouds were voxelized,
and a variety of spectral indices calculated, for each voxel. Computed indices were summarized to the
plot level and used as RF predictors. By comparing the two approaches, we investigate the potential
benefit of M-ALS vegetation indices for improving forest attribute model predictions using an ABA, as
well as better understand the potential value of voxel-based vegetation indices derived from M-ALS
intensity data.
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2. Methods

2.1. Study Site

This research took place at the Petawawa Research Forest (PRF; 45◦57′ N, 77◦34′ W) near Chalk
River, Ontario, Canada (Figure 1). Established in 1918, the PRF has been the location for numerous
short- and long-term research initiatives, leading to variation in stand structures and compositions [32].
The PRF is situated at approximately 350 m above sea level and is composed of both planted and
naturally regenerating stands. The forest is naturally diverse with respect to tree species, with
overstorey conifer species including jack (Pinus banksiana Lamb.), white (Pinus strobus L.), and red
pine (Pinus resinosa Ait.), and eastern hemlock (Tsuga canadensis L.), while deciduous species include
trembling aspen (Populus tremuloides Michx), sugar (Acer saccharum Marsh) and red maple (Acer rubrum
L.), red oak (Quercus rubra L.), and white birch (Betula papirifera Marsh.).

Figure 1. Relief map of the Petawawa Research Forest. Black markers indicate field plot locations.

2.2. Data

2.2.1. Field Data

A total of 84 circular 1000 m2 field plots were selected from previously established plots [33]
that were representative of predominant provincial forest types and basal area conditions [34].
Measurements occurred in the summer of 2016 and 2017, where species and diameter at breast height
(DBH) were measured for all trees with DBH ≥ 9 cm (Table 1). A representative subset of field measured
trees from each plot were selected based on species and diameter class to create species-specific DBH
to height regression models. Models were then applied to trees where only species and diameter were
measured [35]. Tree-level attributes were used to summarize gross volume (V, m3/ha), basal area (BA,
m2/ha), Lorey’s height (HL, m), and stem density per hectare (Nha) at the plot level. Plot centers were
geo-referenced using a SX Blue II-GNSS survey grade GPS unit.

Plot-level diversity indices of overstorey species including the Shannon index, Simpson index,
and species richness (species count per plot) were calculated using the following equations:

H = −
R∑

i=1

pi ln pi (1)

D = 1−
R∑

i=1

p2
i (2)
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where H is the Shannon index, D is the Simpson index, R is the species richness, and pi is the proportion
of individuals belonging to the ith species.

Table 1. Summary statistics for forest inventory and diversity index attributes. N = 84.

Attribute Min Mean Max SD

Nha 50 886.1 2420 429.1
HL (m) 6.6 19.9 33.6 6.5

V (m3/ha) 20.6 236.5 734.6 144.4
BA (m2/ha) 5.1 27 54.5 10.9

D 0 0.6 0.8 0.2
H 0 1.3 2.2 0.5
R 1 7 12 3

2.2.2. Multi-Spectral Lidar

M-ALS data were acquired on July 20th 2016 using a Teledyne Optech Titan multi-wavelength
scanning system during leaf-on conditions. Due to a known temporary scan line intensity banding
effect with the Optech Titan sensor [9,29], the number of single and split returns from opposing scan
directions were compared for individual M-ALS channels (Figure 2). Comparisons demonstrated that
the number of recorded returns from right-traveling (relative to flight path) scan lines were 20.3% and
24.5% higher than those from left-traveling scan lines for single and split returns, respectively. Points
from left-traveling scan lines were, therefore, marked as compromised and omitted from analysis [9].
This phenomenon can occur due to a misalignment between returning pulses and the scanner mirror,
leading to a reduction in energy passing through the optical path [36]. The removal of the compromised
scanlines resulted in the loss of point cloud density for all M-ALS channels. Specifications for the
M-ALS data for the full and reduced data are in Table 2.

Figure 2. Comparison of return frequency between right-traveling (relative to flight path) and
left-traveling scanline directions.
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Table 2. M-ALS (Optech Titan) acquisition specifications. SWIR–short-wave infrared; NIR–near-infrared;
AGL–above ground level.

Parameter Value

Mean Pulse
Density Full

Dataset
(Points m−2)

Mean Pulse
Density
Reduced
Dataset

(Points m−2)

Beam
Divergence

(mrad)

Footprint
Diameter (m)

Wavelength
SWIR (1550 nm) 9.6 5.8 0.35 0.38
NIR (1064 nm) 10.0 6.2 0.35 0.38

GREEN (532 nm) 4.1 2.8 0.70 0.77
Flying altitude 1100 m AGL

Pulse repetition rate 375 kHz
Scanning frequency 40 Hz

Scan half angle 20◦

Flight line overlap 50%

2.2.3. M-ALS Data Processing

The methodology for this study is summarized in Figure 3. Structural and intensity metrics were
derived from each M-ALS point cloud following height normalization using ground returns from
the NIR channel. Metrics were used to generate predictive models using structural metrics only, as
well as the combination of structural and intensity metrics for each M-ALS channels, and all channels
combined. Height-normalized M-ALS point clouds were then voxelized at 0.5, 1, and 2 m resolutions,
within which mean intensities for each channel were computed. Voxels containing at least 1 point
from each M-ALS channel - referred to herein as sufficiently populated - were isolated to compute a
suite of voxel-level vegetation indices for each voxel resolution. Plot-level summaries of voxel indices
were used as predictor variables for RF models. To analyze the benefit of the additional multi-spectral
information collected, structural metrics were calculated using the NIR band only (NIRstruc), akin
to a traditional S-ALS data acquisition. NIRstruc were combined with voxel indices to compare their
effectiveness. Models incorporating spectral only, structural only, and the combination of metrics were
generated to enable comparison between predictor pools and voxel resolutions. Following modelling,
the distribution of M-ALS points within voxels were analyzed to understand factors limiting spectral
index computation, while spectral metrics produced for each voxel resolution were analyzed to outline
differences or trends in computation and consistency.

Following height normalization using ground returns from the NIR channel, ALS data were
co-located with field plot locations, and structural metrics were computed for each M-ALS wavelength
using the lidR package in R [37]. Computed structural (SWIRstruc, NIRstruc, and GREENstruc) and
intensity (SWIRint, NIRint, and GREENint) metrics are listed in Tables 3 and 4 respectively.

In order to undertake plot-level comparisons, normalized point clouds were voxelized at 0.5, 1,
and 2 m resolutions. Voxels containing at least 1 point from each M-ALS channel were considered
sufficiently populated and were included for spectral index calculations. The total number of sufficiently
populated voxels, the number of voxels containing only points from the NIR and SWIR channels,
and voxels containing points from M-ALS channels individually were separately tallied to understand
the distribution of points within respective voxel resolutions.
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Figure 3. Graphical description of methods.
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Table 3. List of structural metrics calculated for M-ALS point clouds.

Structural Metrics Description

zmax maximum height
zmean mean height

zsd standard deviation
zskew skewness
zkurt kurtosis

zp5, zp10, . . . , zp95 5th–95th percentile of height

zpcum1, zpcum2, . . . , zpcum9 cumulative percentage of returns within vertical strata
(Woods et al., 2008; Tompalski et al., 2019).

prop_>_threshold2 proportion of points above 2 m
prop_>_threshold5 proportion of points above 5 m

prop_>_mean proportion of points above mean
prop_>_median proportion of points above median

prop_d_05, prop_d_2, . . . prop_d_15 density of points within vertical strata (e.g., prop_d_15 is the
proportion of points from ground to 15 m)

Table 4. List of intensity metrics calculated for M-ALS point clouds.

Intensity Metrics Description

itot total intensity
imax maximum intensity

imean mean intensity
isd standard deviation of intensity

iskew skewness of intensity
ikurt kurtosis of intensity

ipcumzq10–ipcumzq90 cumulative proportion of intensity within vertical strata

Using only sufficiently populated voxels, the mean intensity of each wavelength was computed
and used in the following equations such that indices were calculated for all channel pairings:

NRatioC1/C2 =
(C1mean −C2mean)

(C1mean + C2mean)
(3)

Sum = C1mean + C2mean + C3mean (4)

RatioC1/C2 =
C1mean

C2mean
(5)

CVIC1 =
(C2mean ∗ C3mean)

C12
mean

(6)

where NRatio is a normalized difference ratio between channels, CVI is the chlorophyll vegetation
index [38] adapted to use SWIR and NIR channels, and C1mean, C2mean, and C3mean are the mean
intensity of SWIR, NIR, and GREEN M-ALS channels within voxels. Voxel-level vegetation indices
were then summarized to the plot level and used as predictor variables for RF modelling (Table 5).
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Table 5. List of metrics calculated using plot-level summaries of voxel vegetation indices, where SI is
the computed spectral index.

Voxel Index Summaries Description

SI_Mean Mean of voxel index
SI_Sd Standard deviation of voxel index

SI_P5, SI_P10, . . . , SI_P95 Voxel index percentiles
SI_L10, SI_L20, . . . , SI_L100 Average voxel index within increasing 10% height layers.

SI_above_Z_P5, SI_above_Z_P10, . . . ,
SI_above_Z_P95, Voxel index value above specified height thresholds

SI_zmax_mean Average voxel index value of the uppermost populated voxels

2.3. Random Forest Modelling

Prior to modelling, Pearson’s correlation coefficient (r) was calculated for structural and intensity
metrics, as well as plot-level voxel index summaries. If metrics had a r > 0.9, a single metric was
randomly retained, while other metrics were removed from predictor pools. Metrics were then centered
and scaled to a mean of 0 and standard deviation of 1 to standardize all data and improve model
interpretability [39,40]. Plot-level models were generated for each key forest inventory attribute (V, BA,
HL) and diversity index (H, D, R) for overstorey species using conditional RF within the caret package
in R [41]. Conditional RF were used to reliably quantify the importance of individual metrics within
models. Conditional permutation importance can reliably reflect the true impact of predictor variables,
in this case structural and intensity metrics, by accounting for correlations [42], thus allowing for
more meaningful variable selection and interpretation. Models were all trained using leave-one-out
cross-validation and were tuned using the cforest_unbiased function, which returns settings suggested
for the construction of unbiased random forests [43].

Four separate modelling strategies were tested:

• Structural metrics from each M-ALS wavelength independently and combined.
• Structural and intensity metrics from each M-ALS wavelength independently and combined.
• Voxelized spectral indices at 0.5, 1, and 2 m resolutions only.
• Voxelized spectral indices at 0.5, 1, and 2 m resolutions combined with structural metrics from the

NIR wavelength.

Models combining structural and intensity metrics and voxelized indices were assessed to inform
on the added benefit of including both metric types in a single model, and to determine whether
a particular voxel resolution outperformed others. All models were validated using leave-one-out
cross-validation, and conditional variable importance measures were calculated to understand and
compare the benefit of spectral and structural metrics within models [24,42]. Variable importance
measures from final models were compared and the most important metrics were identified. Model
performance was evaluated based on relative root mean squared error (%RMSE), and relative bias
(%bias) using the following equations:

%bias = 100×
1
N
∑N

i=1(ŷi − yi)

y
(7)

%RMSE = 100×

√√√ N∑
i=1

(ŷi − yi)
2

N
/y (8)

where N is the number of plots, ŷi are model predicted values of plot i, yi are observed values in plot i,
and y is the mean of observed y values.

Statistical equivalence tests were performed for each model, where observed values were used
as a reference [24,44,45]. Tests were performed using the equiv.boot function from the equivalence
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package in R [46], which bootstraps a regression-based equivalence test for model validation. Statistical
equivalence is determined by establishing linear models between observed and predicted values and
comparing these values to predetermined regions for slope and intercepts. Slope and intercept tests are
performed independently, where statistical equivalency ranges are compared to confidence intervals [46].
The default of ± 25% was used for regions of equivalence following previous studies [24,47,48].

3. Results

3.1. Structural and Intensity Point Cloud Metrics

Our study focused on the potential benefits of point cloud intensity metrics and voxelized indices
for estimating forest inventory attributes and overstorey species diversity. Models developed using
SWIRstruc were shown to be the most accurate for H (%RMSE = 14.3, %bias = 0.1) and R (%RMSE = 14.9,
%bias = 0.3; Table 6). Addition of SWIRint for these models was found to increase %RMSE (Table 6).
Both SWIRstruc and NIRstruc models for HL had a %RMSE = 8.7 (Table 6, Table 7). GREENstruc+int

models for all attributes were found to show a decrease in %RMSE compared to the structural only
models (Table 8). Models using Combinedstruc+int were found to be the most accurate for V (%RMSE
= 19.1, %bias = 0.8; Table 9). SWIRstruc+int and Combinedstruc+int indicated the best accuracies for
HL (%RMSE = 7.5; Table 6, Table 9). The Equivalence test results indicated that predictions of all
attributes were statistically equivalent for intercept, and that HL was the only attribute with statistical
equivalence for slope.

Table 6. %RMSE and %bias results for structural only and combination of structure and intensity
models derived from the shortwave-infrared (1550 nm) M-ALS wavelength.

SWIR

Structural + Intensity Structural Only

Variable %bias %RMSE %bias %RMSE

HL −0.3 7.5 −0.1 8.7
V 0.3 21.3 −0.1 21.0

BA −0.1 14.8 −0.2 14.4

D 0.1 13.3 −0.4 14.6
H 0.4 15.2 0.1 14.3
R 0.7 15.8 0.3 14.9

Table 7. %RMSE and %bias results for structural only and combination of structure and intensity
models derived from the near-infrared (1064 nm) M-ALS wavelength.

Nir

Structural + Intensity Structural Only

Variable %bias %RMSE %bias %RMSE

HL −0.3 7.8 −0.1 8.7
V −0.2 20.2 0.8 20.4

BA 0.2 13.9 0.2 12.7

D −0.1 13.4 −0.1 14.3
H 0.5 15.2 0.5 16.3
R 0.8 16.0 0.1 16.8
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Table 8. %RMSE and %bias results for structural only and combination of structure and intensity
models derived from the Green (532 nm) M-ALS wavelength.

Green

Structural + Intensity Structural Only

Variable %bias %RMSE %bias %RMSE

HL −0.2 7.7 0.2 8.9
V 0.1 20.1 1.1 21.1

BA 0.13 12.5 0.4 13.2

D 0.2 13.4 −0.4 14.0
H −0.1 15.4 0.4 16.4
R 0.5 14.7 0.6 15.4

Table 9. %RMSE and %bias for structural only and combination of structure and intensity models
derived from the all M-ALS wavelengths combined.

Combined

Structural + Intensity Structural Only

Variable %bias %RMSE %bias %RMSE

HL −0.1 7.5 0.2 9.1
V 0.8 19.1 0.7 22.0

BA 0.3 12.2 0.2 12.3

D 0.3 11.5 0.4 14.0
H 0.5 14.8 0.7 16.1
R 0.4 15.9 1.1 15.3

Conditional variable importance predominantly indicated that point cloud structural metrics
describing upper height percentiles, skewness of height returns, and concentration of points within
vertical strata were the most influential to model performance for inventory and diversity models.
The HL model indicated that zp95 was most important for all channels individually and combined.
The BA model indicated that zskew and prop_d_05 were found to be most important for SWIR and NIR
models, while prop_>_mean was most important for the GREEN and combined models. The ipcumzq90
and ipcumzq30 intensity variables were also found to be important for individual channel models for
BA, but not for the combined model. The zp95 metric was found to be most important for estimating V
for all models followed by zskew and prop_d_15.

The zp95 predictor was found to be most important for H and D models while the prop_d_05
metric was most important for R models. Metrics describing the cumulative proportion of intensity at
height intervals (ipcumzq90 and ipcumzq30) were found to be important for SWIR, NIR, and combined
models for R. These same metrics were important for both the H and D models. Other intensity metrics
(itot, isd, and ikurt) were also included, although were less important to model performance.

3.2. Voxelized Spectral Indices

Spectral indices produced at 0.5, 1, and 2 m voxel resolutions were summarized to the plot level
and used as model predictors for forest inventory and diversity attributes. Models trained using
voxelized vegetation indices were found to have higher %RMSE values for all voxels sizes and models
(Table 10). The inclusion of NIRstruc was found to decrease %RMSE for all forest inventory and
biodiversity models, with the largest reductions occurring for HL, V, and BA (Table 11). Negligible
differences in %RMSE were found across voxel resolutions for all models. Voxelized model predictions
of forest inventory and diversity attributes were found to not be within the ± 25% region of equivalency
for slope and intercept.
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Table 10. %RMSE and %bias results for models trained using voxel vegetation indices at 0.5, 1, and 2
m resolutions.

Voxelized Indices Only

0.5 m Voxel 1 m Voxel 2 m Voxel

Variable %bias %RMSE %bias %RMSE %bias %RMSE

HL 0.2 14.7 0.4 11.5 −0.1 11.0
V 1.9 28.6 0.9 28.7 −0.1 27.1

BA 0.3 18.2 0.3 17.9 1.2 17.6

D −0.2 14.9 0.3 11.7 −0.1 11.8
H 0.2 15.7 0.3 14.8 0.2 14.1
R −0.3 16.5 0.6 16.6 0.1 15.6

Table 11. %RMSE and %bias results for models trained using voxel vegetation indices at 0.5, 1, and 2 m
resolutions and NIR structural metrics.

NIR Structural Metrics + Voxelized Indices Only

0.5 m Voxel 1 m Voxel 2 m Voxel

Variable %bias %RMSE %bias %RMSE %bias %RMSE

HL −0.1 7.9 −0.1 7.6 0.1 7.6
V 0.6 18.2 0.4 17.6 0.7 18.2

BA 0.3 12.8 −0.1 12.7 0.1 12.8

D 0.1 10.8 0.4 10.6 0.4 10.4
H 0.5 12.8 0.1 13.8 0.8 12.1
R 0.1 14.7 0.5 15.1 0.1 14.9

Variable importance for models using voxelized indices at 0.5, 1, and 2 m resolutions indicated
that structural metrics were the most important predictors. The zp95, prop_d_05 and prop_d_15 metrics
were found to be highly important for HL, V, and BA models. BA and V models indicated that zskew
and zq5 were important for all voxel resolutions. A variety of vegetation indices indicated minor
importance for BA models, though orders of magnitude less than structural metrics.

The ratio between NIR and GREEN as well as CVISWIR were found to be most important for 1
and 2 m voxel resolutions for the D model. The model for H also included these metrics as important,
though less so than structural metrics. Models for R found that prop_d_05 was the most important
metric. Similar variable importances were found for H and D, indicating that prop_d_05 and prop_d_15
were important. Variable importance for 0.5 m voxel models for D, H, and R were dominated by
structural metrics. Spectral indices became more prevalent within 1 m and 2 m models.

3.3. Spectral Metric Computation for Varying Voxel Sizes

The total number of sufficiently populated voxels, i.e., voxels containing points from each M-ALS
wavelength, as well as voxels containing NIR and SWIR were tallied for all voxel resolutions (Figure 4).
Counts of sufficiently populated voxels varied by resolution. The 2 m resolution was found to have the
highest total number of sufficiently populated voxels for all plots combined (15,533), followed by the
1 m (13,792), and 0.5 m (4412) resolutions respectively (Figure 4).

A count of voxels containing at least one point from the green wavelength was found to closely
mimic the number of sufficiently populated voxels for the 1 m and 2 m resolutions. The relatively low
number of points from the green channel limited the total number of sufficiently populated voxels
regardless of voxel size. This relationship was most prominent in the 2 m voxel count distribution.
As voxels decreased in size, counts of sufficiently populated voxels and voxels containing NIR and
SWIR points declined. This generally indicates that smaller voxels have a lower probability of
containing points in general.
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Figure 4. Total count of voxels for all plots containing at least one point for each M-ALS wavelength
individually, where NIR and SWIR were both contained within a voxel, and sufficiently populated (SP)
voxels with points from all bands. Descriptive statistics indicate the total number of SP voxels, as well
as the mean and standard deviation (SD) of SP voxels per plot.

4. Discussion

This study utilized structural and spectral data from M-ALS point clouds to assess their potential
for modelling forest inventory and diversity attributes. Results indicated that although Titan Optech
M-ALS sensors provide additional intensity information for SWIR and green spectral channels, that
structural metrics were predominantly found to be the best-performing predictors for plot-level
estimates of forest inventory and diversity attributes. These results were further supported by variable
importance rankings, where structural metrics largely exceeded intensity metrics and voxelized indices
at all resolutions. Upper height percentiles (zp95), point densities within vertical strata (prop_d_05,
prop_d_15), and point cloud skewness (zskew) were found to be important for most models, highlighting
that the distribution of points, particularly those characterizing stand height and density of the canopy
structure at low (0.5 m) and intermediate (15 m) heights were more effective than intensity metrics
for explaining variance. Modelling results were predominantly most accurate when using structural
metrics from wavelengths individually, or all wavelengths combined. The inclusion of intensity metrics
was, however, found to be important and resulted in small accuracy improvements in some models,
particularly those for diversity indices, indicating that there is still potential to leverage these data for
improving non-traditional forest attribute models using M-ALS. Modelling gains when including the
cumulative intensity of points at height percentiles (ipzcum30, ipzcum90) indicate that these metrics
may have value for isolating differences between internal canopy structure. Future work into the
potential of these metrics to detail information about understory canopy could be valuable.

Addition of NIRstruc metrics to voxel-based models reduced %RMSE for all models, with HL, V,
and D realizing the largest improvements. Results confirming that structural predictors were the most
appropriate for modelling V, BA, and HL confirm those of numerous past studies, though few have
tested and compared differences between traditional NIR sensors and additional SWIR and GREEN
channels. Negligible differences between NIR, SWIR, GREEN and all channels combined indicate that
structural metrics from any of these channels were appropriate for modelling HL, BA, and V. Given
the more widespread availability and research surrounding the use of traditional NIR sensors, their
continued use is supported by results herein.

A potential cause of diminished importance for intensity metrics within models could be due to
heterogeneity in species composition. Intensity metrics may be more capable of improving attribute
predictions within plots with lower species diversity as intensity variables may provide information
related to species fractions. As diversity increases, however, intensity differences driven by species may
become mixed, leading to their reduced importance within models. Studies such as Gallus et al. [49]
indicated that the inclusion of forest type information such as conifer and broadleaf proportions was
beneficial to improving model accuracies. The inclusion of such data alongside intensity metrics could
be a method for improving their predictive potential, especially in diverse and complex forest types.

Reductions in %RMSE, though to a lesser degree for H, D, and R models, as well as intensity
metrics being important variables from conditional random forest, indicate that intensity data from
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M-ALS channels may play an important role in future endeavors to model forest diversity. Findings
from Dalponte et al. [10] indicated that intensity metrics were found to be important for modelling
diversity indices, including H. Findings herein that the ratio between NIR and GREEN as well as
CVISWIR metrics were important for modelling D, and to a lesser degree H, show similarities between
these studies. Higher %RMSE overall when using voxelized indices alone align with comments from
Kukkonen et al. [12], who suggested that spectral ratios from M-ALS wavelengths should not be
considered equivalent to the same indices derived from optical imagery. Voxelization to compute
spectral indices using mean intensity values from M-ALS is likely not directly comparable to optical
imagery products due to spectral averaging.

Marginal improvements and similarities amongst model accuracies using M-ALS intensity data
for ABA are similar to results from Tompalski et al. [24], who found that spectral information from
DAP point clouds also did not significantly increase model accuracy. In contrast to M-ALS, DAP
spectral indices can be calculated at the point level due to each point being attributed all wavelength
attributes. The need to voxelize or spatially amalgamate M-ALS data to compute comparable indices
reduces the three-dimensional detail of point clouds, potentially limiting the utility of these metrics
for ABA. Findings from other studies have indicated that best modelling results were achieved by
structural metrics from ALS and spectral metrics from ortho imagery [12]. Methods to facilitate the
computation of M-ALS spectral indices without having to voxelize may improve the capabilities of
these data for modelling purposes and facilitate calculation of additional spectrally derived metrics.

The lack of realized improvement from plot-level summaries of voxel spectral indices could be
due to the observed relationship in sufficiently populated voxel counts (Figure 4). Mean counts of
sufficiently populated voxels were highest for the 2 m resolution, followed by the 1 m and 0.5 m
resolutions respectively (Figure 4). As resolution decreases, the total number of potentially available
voxels within a plot increases; however, the chances of having a point from all three wavelengths
decreases due to constriction of three-dimensional space. Unsurprisingly, the 0.5 m resolution was
found to have the fewest sufficiently populated voxels, while the 2 m resolution was found to have
more sufficiently populated voxels than 1 m. The difference between voxel resolution and number of
sufficiently populated voxels is interesting when compared with the importance of spectral indices
within diversity index models. The 1 and 2 m resolutions were found to have higher importance
measures for some spectral indices, while spectral indices were not found to be important for the 0.5 m
models. This indicates that voxel resolution, and the continued investigation of the potential to utilize
intensity metrics from M-ALS in a three-dimensional context could improve modelling outcomes.

A limitation for increasing the number of sufficiently populated voxels relates to the point density
of each M-ALS point cloud, the divergence of each M-ALS laser, and utilizing Optech Titan data
without scanline banding effects (Table 2). The reduction in point cloud density (Table 2) following the
removal of inward scanlines resulted in substantial losses to point density for each M-ALS channel.
The green point cloud had much fewer points than the NIR and SWIR point clouds, which was found
to be the largest limiting factor for sufficiently populated voxel counts. This is especially evident
in the 2 m resolution distributions in Figure 4, where sufficiently populated voxel and green band
voxel counts mimic a similar trend. Hopkinson et al. [3] noted that leaf absorption is a likely cause of
reduction in the penetration of points from the green wavelength, potentially leading to the reduced
number of points found in our results. Flying lower could improve the intensity based predictive
results, as this would diminish the influence of attenuation on the green channel and thus normalize
the return sampling densities across the three channels. Similar point densities and counts within
voxels for SWIR and NIR wavelengths are likely related to their higher energy pulses.

Given that few ABA studies exist where M-ALS structure and intensity metrics are utilized,
a thorough comparison to results found using individual-tree detection (ITD) approaches is not yet
possible. Preliminary comparisons do, however, indicate that M-ALS intensity metrics may be better
served for tree-level classification and attribute prediction applications. High modelling accuracies for
species delineation in a variety of forest settings have indicated that both structure and intensity metrics
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improve model performance [11,26,30]. The ability for these metrics to differentiate between forest
attributes and types could, therefore, be scale dependent. ABA, where metrics are summarized at the
plot level, could lead to a reduced signal to those found in individually delineated tree crowns, reducing
their effectiveness. Further comparisons between ABA and ITD results are needed to confirm these
assumptions and to better understand the role that these M-ALS data have in forest inventory practices.

5. Conclusions

Model comparisons indicated that structural metrics from M-ALS channels were found to be most
important for most forest attribute and diversity index models. Spectral metrics from M-ALS channels
were found to be important for some models, particularly diversity indices, indicating potential for
future the plot level studies. Voxel-based models were found to have the lowest accuracies and the
inclusion of NIRstruc metrics improved forest inventory and diversity attribute estimates. The ability for
M-ALS metrics to be used to differentiate between forest attributes and types is likely scale-dependent.
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