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Abstract: High-resolution real-time satellite-based precipitation estimation datasets can play a more
essential role in flood forecasting and risk analysis of infrastructures. This is particularly true
for extended deserts or mountainous areas with sparse rain gauges like Iran. However, there are
discrepancies between these satellite-based estimations and ground measurements, and it is necessary
to apply adjustment methods to reduce systematic bias in these products. In this study, we apply a
quantile mapping method with gauge information to reduce the systematic error of the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification
System (PERSIANN-CCS). Due to the availability and quality of the ground-based measurements,
we divide Iran into seven climate regions to increase the sample size for generating cumulative
probability distributions within each region. The cumulative distribution functions (CDFs) are
then employed with a quantile mapping 0.6◦ × 0.6◦ filter to adjust the values of PERSIANN-CCS.
We use eight years (2009–2016) of historical data to calibrate our method, generating nonparametric
cumulative distribution functions of ground-based measurements and satellite estimations for each
climate region, as well as two years (2017–2018) of additional data to validate our approach. The results
show that the bias correction approach improves PERSIANN-CCS data at aggregated to monthly,
seasonal and annual scales for both the calibration and validation periods. The areal average of the
annual bias and annual root mean square errors are reduced by 98% and 56% during the calibration
and validation periods, respectively. Furthermore, the averages of the bias and root mean square error
of the monthly time series decrease by 96% and 26% during the calibration and validation periods,
respectively. There are some limitations in bias correction in the Southern region of the Caspian Sea
because of shortcomings of the satellite-based products in recognizing orographic clouds.

Keywords: satellite-based precipitation; PERSIANN-CCS; bias correction; quantile mapping; extreme
events; Iran

Remote Sens. 2020, 12, 2102; doi:10.3390/rs12132102 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6526-3720
http://www.mdpi.com/2072-4292/12/13/2102?type=check_update&version=1
http://dx.doi.org/10.3390/rs12132102
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 2102 2 of 20

1. Introduction

Ground-based rain gauge datasets are widely used in water management and hydrological studies.
However, the scarce distribution and/or poor coverage of rain gauges, especially in mountainous
areas and sparsely populated dry regions, can hinder their application for high-resolution distributed
studies. The advancement of remote sensing and computation technology have provided global scale
precipitation datasets, which are important for many scientific and operational applications, such as
hydrological studies, flood forecasting, water management, climate change studies and agriculture.
The Satellite-based Precipitation Estimation (SPE) products that have been produced in the last twenty
years can be categorized into two groups based on their applications. The first group includes the
PERSIANN [1], Tropical Rainfall Measuring Mission (TRMM) [2] and Climate Prediction Center (CPC)
morphing techniques (CMORPH) [3]; these products release data after a short lag time, or so-called real
time (RT), making them useful for hydrological forecasting. The other kind of SPEs, such as Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR), Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM3B42V7),
Global Precipitation Climatology Project (GPCP) and the more recently released datasets such as
Multi-Source Weighted-Ensemble Precipitation (MSWEP) [4] and Climate Hazards Group Infrared
Precipitation with Station data (CHIRPS) [5], are gauge data-merged and are available after a few
months. The latter two include reanalysis data.

RTs can be used for hydrological forecasting, and the products released after a lag time are useful
for drought and climate studies. Obviously, the gauge data-merged products are more consistent
with gauge data than the RT products but bounded by monthly gauge corrections. The SPEs with
data latency are not suitable for tracking short-term extremes and flood forecasting. Therefore,
an accurate real-time SPE with high spatiotemporal resolution is vital as input data for the hydrologic
models to provide superior flood forecasts and related disaster-controlling decisions, as required for
infrastructures such as reservoirs [6]. However, SPEs are subject to different types of errors [7,8],
including errors from sensors [9], retrieval algorithms [10], etc. In addition, several studies show errors
varying with cloud characteristics, the climate, season, geography and topography [11,12]. Therefore,
SPEs need to be corrected before being used as input data to hydrological models for real-time or
seasonal forecasting. The SPE errors originate from two sources: (1) random error, which is inherent
in measurement records, and (2) systematic bias that is related to the algorithms and postprocessing
procedures used to assimilate the available data over a specific region for a specific time. Nevertheless,
the systematic bias can be reduced or eliminated by applying statistical bias correction methods to SPEs.

Several studies have addressed the performance of SPEs at the regional [13–16] and global
scales [12,17,18] based on different temporal resolutions (daily, monthly and seasonal) compared with
ground-based observations. The results show that the SPE performance highly depends on geography,
as well as climate. For instance, Dinku et al. [19], Moazami et al. [20], Tang et al. [9] and Thiemig et
al. [21] showed SPEs have poor performances in dry areas. A number of studies have also shown the
poor performances of the SPEs in mountainous regions [22,23].

These statements agree with the previous studies of the SPEs over Iran. For example, Jvanmard
et al. [24] and Katiraie-Boroujerdy et al. [25,26] showed that SPEs have poor performances over the
mountainous areas of the coast of the Caspian Sea, as well as the mountainous area southwest of the
Zagros Mountain Range. However, rain gauge measurements that are to be considered as “truth”
have some limitations when rainfall data is extended from a point scale to a spatial scale, especially in
mountainous areas and remote terrain with low density stations.

Several bias-correction methods have been developed to improve SPE products, ranging from
commonly used simple scaling approaches to advanced distribution mapping [27]. The simple scaling
method adjusts monthly precipitation values and corrects them with ground-truth values (using
monthly correction factors). However, this approach does not adjust the standard deviation of daily
precipitation amounts. In addition, in this method, SPEs need to be corrected by concurrent ground
data, which is not available RT. A more advanced nonparametric quantile-mapping (QM) method
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can overcome this limitation by adjusting the standard deviation of the daily SPEs with respect to
the daily reference data. Furthermore, the distribution mapping method uses only the historical
daily precipitation data to map the empirical cumulative distribution function (CDF) of SPE values
to the CDF of the reference ground-based data. The QM approach has already been successfully
implemented not only for SPE bias correction [11,28,29] but, also, for the bias correction of general
circulation models [30,31], as well as the daily precipitation of regional climate models [32,33]. Recently,
Yang et al. [34] employed QM and a gaussian weighting interpolation scheme to adjust the biases in the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Cloud
Classification System (PERSIANN-CCS) [35], incorporating daily 0.04◦ × 0.04◦ rainfall data at every
1◦ × 1◦ box region over Chile. Their results showed that the proposed approach not only improved
the accuracy of the PERSIANN-CCS daily precipitation estimation after the bias adjustment, but it
also can be used to correct SPEs into the future without the need for additional ground-based data.
However, the CDFs can be accurately approximated only for sufficiently large sample sizes. To enlarge
the sample size in some gauge-scarce regions such as Saudi Arabia, which is an arid country with a
sparse rain-gauge network, Alharbi et al. [36] used the QM for climate regions instead of a 1◦ × 1◦ box
region. Their results showed that using climate regions (CR) led to more accurate CDF matching and a
better bias correction of the PERSIANN-CCS compared to cases without climate regions.

In this study, the PERSIANN-CCS is evaluated and bias-corrected over different parts of Iran,
which include high mountains and extended deserts. For this purpose, the country is divided
into different CRs, as recommended by Alharbi et al. [36], and the empirical CDFs are derived for
each CR. Then, we apply a filter with the QM method using the CDFs derived for each CR and
season to reduce the systematic bias of the daily precipitation of the PERSIANN-CCS and generate a
gridded bias-corrected PERSIANN-CCS. The SPE daily precipitation data are calibrated using more
than 1100 rain-gauge data as the reference for the period 2009–2016 in each climate region. Then,
the bias-corrected PERSIANN-CCS data are verified with a reference dataset for the years 2017–2018.
The near-real-time SPEs are useful precipitation products for flood forecasting in areas with poor
coverage and sparse gauge distributions, like Iran. The above method uses only historical data for
the future bias correction, and it would be beneficial for the hydrologists and decision-makers of
the country.

The rest of the paper is structured as follows. The descriptions of the study area and data are
presented in Section 2. Section 3 details the methodology of the bias-correction approach and the
evaluation metrics. Results are presented and discussed in Section 4. Finally, Section 5 draws the
conclusions and remarks on the work.

2. Study Area and Data

2.1. Study Area

Iran is located in a subtropical region between 25◦ N and 40◦ N and between 44◦ E and 64◦ E
about 1,640,000 km2 (Figure 1). Based on the De Martonne [37] climate classification, the most central
parts of the country (that are covered by two great deserts: Lut and Kavir) are categorized as arid and
semiarid climates [38]. The country includes a high topography, so that altitudes vary from about 20 m
below the mean sea level (on the coast of the Caspian Sea) and more than 5600 m above the mean sea
level (in the Alborz Range), both in the Northern part of the country (Figure 1). The Zagros Range
in the west and the Alborz Range in the north of the country have an important role in the spatial
distribution of precipitation over different parts of Iran. While the mean annual precipitation in Iran is
about 250 mm, it varies from less than 50 mm in desert areas to more than 1500 mm on the coast of the
Caspian Sea. Most parts of the country have a precipitation regime with a strong seasonality, so that
the most annual precipitation occurs in the winter and spring. The rainfall pattern over Iran is affected
by the Mediterranean low-pressure system from the west, the Siberian high-pressure system from the
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north and the Sudan low-pressure from the southwest [39,40]. The synoptic systems, geographical
location and complex topography cause a great diversity of climates and rainfall patterns in the region.
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2.2. Data

The data employed in this study includes the PERSIANN-CCS rainfall estimates, which is a
near-real-time (RT) and quasi-global dataset developed by the Center for Hydrometeorology and
Remote Sensing, University of California, Irvine, CA, USA [1,35], as well as historical rain-gauge data.
The PERSIANN-CCS algorithm applies an artificial neural network model to the infrared brightness
temperature images provided by geostationary satellites and uses passive microwave observations
from low-orbit satellites to update its parameters. Cloud patches are extracted from satellite imagery
and used to prepare cloud classification groups. The rainfall rate in each pixel is then calculated from
the brightness temperature using classified cloud cluster data, histogram matching and exponential
regression techniques. The dataset provides hourly precipitation at a resolution of 0.04◦ × 0.04◦ over
the globe (60◦ S–60◦ N), with a latency of about one hour, and it is available from January 2003 to
the present.

The rain-gauge network in Iran is mainly operated by the Islamic Republic of Iran’s Meteorological
Organization (IRMO) and the Iran Water Resources Management Co (IWRM). The rain-gauge dataset
that we used in this study is obtained from these two agencies. Gauges with a large number of
missing, unrealistic, erroneous and/or nonphysical values were removed during the preprocessing
step. The preprocessing step included an outlier test and double-mass curve analysis. Among all the



Remote Sens. 2020, 12, 2102 5 of 20

1296 rain gauges from IRMO and 104 rain gauges from IWRM, 1130 homogenous gauges with lower
density coverage over deserts were selected with a time period from December 2008 to November 2018.

In this study, winter includes December, January and February (DJF); spring includes March,
April and May (MAM); summer includes June, July and August (JJA) and autumn includes September,
October and November (SON). Therefore, the calibrations and validations started on December and
ended at the end of November to include four full seasons for each year, allowing a seasonal analysis of
the data for every year. Hence, the calibration period started from the beginning of December 2008 to
the end of November 2016, and the validation period started from December 2016 to November 2018.
As the accumulation time of gauged daily precipitation was in local time, 3-hourly PERSIANN-CCS
data was converted to daily to match the local time.

3. Methods

In order to assess and remove the systematic error of the PERSIANN-CCS daily precipitation,
we divided Iran into seven CRs. The accuracy of the QM approach depends on the sample size
(number of rainy days in our study) that is used to calculate the CDF. Since Iran is a semi-arid region,
the limited number of rainy days in most parts of the country can hinder constructing a reliable
CDF for a single or few gauges and pixels. Therefore, to enlarge the sample size, we divided Iran
into seven CRs based on the precipitation pattern of the rain gauges. Then, CDFs were generated
for the daily rainfalls of each CR and season for both the gauge and PERSIANN-CCS data. Finally,
we applied a low-pass filter along with the QM method using the CDFs derived in the previous step
to generate the gridded bias-corrected PERSIANN-CCS, called the PERSIANN-CCS-Bias-Corrected.
We employed multiple statistical metrics to evaluate the performance of the PERSIANN-CCS and
PERSIANN-CCS-Bias-Corrected. Hereafter, the PERSIANN-CCS and PERSIANN-CCS-Bias-Corrected
are referred to as the CCS and CCS-BC, respectively.

3.1. Climate Regions

Regionalization of the study area is a common practice in the spatiotemporal analysis of
precipitation [39–42]. Several studies have divided Iran into multiple CRs using different approaches,
leading to different CR maps. According to the spatial distribution of the seasonal precipitation regimes
point of view, Raziei [43] showed that, from the 24 possible precipitation regimes over the globe,
eight were found in Iran. The rainfall regionalization depends on the classification method, as well as
the number of stations and spatial distributions of the employed rain gauges. However, despite the
differences, some similarities exist in the resulting regionalization maps. For example, all the maps
have the same CR by the Caspian Sea, a CR in the northwest of the country and a CR in the west of the
country. Nevertheless, there are some differences between the regionalized maps in the center and
eastern parts of the country due to the sparse distribution of the rain gauges. In this study, we applied
a K-means procedure [44] to our ground data to distinguish seven CRs based on the amounts of
precipitation and gauge locations, in addition to the topographic information. Here, we assigned
more weight to the distance between the gauges in the K-means process to make sure that the distant
gauges with similar precipitation patterns were not grouped together. The final results are shown
in Figure 1, which are similar to Raziei [45], who applied the S-mode principal component analysis
(PCA) and cluster analysis (CA) procedures, along with the T-mode PCA to 155 synoptic-station data,
which resulted in five CRs. Although, using more CRs results in more homogenous precipitation areas,
and we used only seven regions to have sufficient data for constructing CDFs for each region.

Figure 1 shows the seven different CRs used in this study. Table 1 shows the areal averages of
the annual precipitation for the gauge observations, CCS and CCS-BC for the calibration period in
each climate region. CR1 is located in the southwest of Iran along the Persian Gulf. It has a marked
seasonality, so most of the annual precipitation falls in the winter and spring, with a very dry summer
and moderate autumn [39]. The mid-tropospheric trough over Iraq and the Arabian anticyclone brings
moisture from the Persian Gulf, as well as topographic effects that are responsible for the precipitation
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pattern in this region [39]. CR2 is covered by the high elevation Alborz and Zagros Ranges located
in the northwest of the country. This region is mostly influenced by the mid-latitude Westerlies and
the Siberian high-pressure system and experiences a high spring (MAM) rainfall. The area features a
pronounced seasonality and dry season in the summer [43]. CR3 is located in the northeast of Iran.
A trough with its axis over the Caspian Sea and the anticyclonic circulation from the Arabian Sea
are responsible for precipitation in this area [39]. The seasonality of this region is very similar to
CR1. CR4 is located in the western part of the study area and includes the mountainous areas of the
Zagros Range. This region is strongly influenced by Mediterranean low pressures from the west and,
sometimes, the atmospheric systems that migrate from the Red Sea [39]. The majority of the annual
precipitation occurs in the winter and spring in this area. CR5 is an arid region with a long summer in
the southeast of the country. Sometimes, the southern parts of this region experience high-intensity
monsoon rainfalls. CR6 is a narrow coastal line along the coast of the Caspian Sea (in the north of
the country), and it has the highest annual precipitation (Table 1) in the country, with a moderate
seasonality, the highest precipitation in the autumn and the lowest portion of annual precipitation in
the summer. The rainfall regime in this area is mostly orographic due to its closeness to the Caspian
Sea and the Alborz Range. The summer precipitation is from warm convective clouds that rise over the
Alborz Mountains. The pressure gradient due to the Asian high and thermal lows over the Caspian
Sea that leads to Easterlies and North-easterlies is considered the reason for high precipitation during
the autumn [40]. CR7 is an arid region that includes two large deserts located in the central part of the
country. This region that covers a large portion of the country also includes some high elevation areas
with rainfalls more abundant than in flat areas.

Table 1. The areal averages of the mean annual precipitations for the seven climate
regions (CRs) for the calibration period. CCS: Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) and
CCS-BC: PERSIANN-CCS-Bias-Corrected.

Gauge (mm/year) CCS (mm/year) CCS-BC (mm/year)

CR1 294.1 318.6 284.5
CR2 333.2 643.7 297.8
CR3 246.4 593.5 239.1
CR4 407.7 442.0 366.6
CR5 118.1 237.1 121.7
CR6 882.2 752.6 653.7
CR7 160.3 476.7 173.3

3.2. Nonparametric Quantile Mapping and Bias Corrections

The popular nonparametric quantile mapping method matches the empirical CDF of the satellite
precipitation estimations to that of gauges using a transfer function. The method for calculating the
empirical CDFs is explained by Wilks [46] and employed for the QM of daily precipitations from the
climate models by Themeßl et al. [32]. In this study, the empirical CDFs are derived for every CR and
dataset. Then, a CDF-matching procedure is performed to adjust the satellite-based precipitation data.
The matching procedure employed here can be expressed mathematically as:

PCCS−BC = CDF−1
G (CDFCCS(PCCS)) (1)

where PCCS−BC is the corrected precipitation amount, PCCS is the precipitation amount to be corrected,
CDF−1

G is the inverse of the seasonal empirical CDF of the rain-gauge observations and CDFCCS is the
seasonal empirical CDF of the CCS. Using this procedure, the daily precipitations of the CCS at each
quantile are replaced with the daily precipitations of rain gauges at the same quantile. In other words,
the exceedance probability of the precipitation amount of the CCS is calculated using the empirical
CDF derived for the CCS for that particular region. Then the empirical CDF of the ground observation
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are used to find the precipitation associated with the probability. Through this CDF-matching process,
the amount of daily precipitation for each pixel of the CCS is adjusted according to the empirical CDF
derived for the CCS and gauge observations for each region. This procedure adjusts not only the
mean, standard deviation and quantiles of the satellite data but, also, preserves the extreme rainfall
amounts [32]. The effects of seasonality is included in the study by generating seasonal CDFs for
each region.

3.3. Low-Pass Quantile Mapping Filter

In this step, we apply a filter to generate the final CCS-BC product using a 0.6◦ × 0.6◦ filter
along with the QM to generate smooth gridded data. Since the resolution of the CCS and CCS-BC
are 0.04◦ × 0.04◦, the filter size is selected to be a multiplier of this grid size. The concept of the
employed filter is similar to a low-pass filter. However, rather than applying the filter to the values
of the bias-corrected CCS, each filter applies the nonparametric QM method based on the convolved
region. In other words, a 0.6◦ × 0.6◦ is constructed around each selected 0.04◦ × 0.04◦ pixel, and the
selected 0.04◦ × 0.04◦ pixel is bias-corrected according to all the CRs covered by the filter (CDFs
from the covering regions) using the nonparametric QM approach. These bias-corrected values are
then weight-averaged according to the areas covered by the 0.6◦ × 0.6◦ filter and assigned as the
bias-corrected value to the selected 0.04◦ × 0.04◦ pixel. We explored different filter sizes for this purpose.
However, after multiple trials, we realized that using a very small filter led to distinct precipitation
patterns for each CR, and using large filters affected the quality of the CCS-BC, especially for narrow
regions like the southern part of the Caspian Sea (CR6). Hence, we selected a 0.6◦ × 0.6◦ box filter to
address these issues and applied this filter to the whole study area.

3.4. Evaluation Metrics

The performances of the CCS and CCS-BC are evaluated using the root mean square error (RMSE),
mean bias (BIAS) and correlation coefficient (CORR) between the SPE data and gauge observations as
the reference. These metrics are derived as follows:

RMSE =

√∑n
i=1(Si −Gi)

2

n
(2)

BIAS =

∑n
i=1(Si −Gi)

n
(3)

CORR =
cov(S, G)√

var(S)
√

var(G)
(4)

where S = {S1, . . . , Sn} and G = {G1, . . . , Gn} denote the satellite rainfall and gauge rainfall, respectively.
The cov() and var() represent the covariance and variance operators, respectively. Obviously,
the increased CORR and reduced RMSE and BIAS after bias correction indicates that the CCS-BC
outperforms the CCS and reveals the effectiveness of the approach. In addition, some categorical
statistics, including the probability of detection (POD), false alarm ratio (FAR) and Heidke skill score
(HSS), are derived for the daily evaluations [46].

4. Results

The study area includes a high spatial precipitation variability and high seasonality. Therefore,
the calculations are required to be applied to seasonal temporal resolution and, also, CR spatial
resolutions (Figure 1).

Therefore, the empirical CDF of the CCS daily precipitation for each 0.04◦ × 0.04◦ pixel, as well as
the empirical CDF of the daily precipitation of the point scale rain-gauges, are constructed for each
season and CR for the calibration. Then, we applied the low-pass QM filter using Equation (1) to
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bias-correct the CCS daily precipitation in each 0.04◦ × 0.04◦ pixel using the derived CDFs for each
CR and season. The accuracy of the QM corrections in the spatial pattern and temporal spread are
evaluated using statistical indices (Equations (2)–(4)) against the rain-gauge observations during the
calibration and validation periods. Figure 2 represents the CDF of the seasonal daily precipitation
for the CCS and gauge observations for the seven CRs and four seasons. Table 1 and Figure 2 both
demonstrate the systematic bias of the CCS in comparison to the rain-gauge daily precipitation in
each region. Table 1 shows the areal average of the mean precipitation for the CRs. These values
show the average of the mean areal precipitation for the gauge observations, CCS and CCS-BC for
each CR for the calibration period. The CCS generally overestimates the daily precipitation in most
CRs and underestimates the daily precipitation in CR1 (winter), CR6 (summer and autumn) and CR4
(winter and autumn). This can also be observed in Figure 2. For instance, considering CR2 in the
winter, the 95th percentile of the gauge observation is around 5 mm/day, while the 95th percentile of
the CCS is around 15 mm/day. This shows that the CCS is overestimating the precipitation in this
region for the winter. We further evaluated the spatial and temporal performances of the CCS and
CCS-BC, subsequently.
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4.1. Spatial Evaluations

The average annual precipitation for the CCS, CCS-BC and gauge for the calibration and validation
time periods are shown in Figure 3. These maps show that, in general, the CCS overestimated the
annual precipitation in the northern parts of the country. As evident from the figure, the bias correction
of the CCS improved the CCS spatial pattern of the mean annual rainfall for both the calibration
and validation periods. On the other hand, CCS underestimates the mean annual precipitation over
the coast of the Caspian Sea (CR6), especially in the western parts, even after the bias corrections.
Many studies have mentioned the poor performance and significant underestimation of different
satellite-based precipitation estimations over this region [20,24,25]. The narrow coastal region, which is
the wettest part of the country, is located in the Southern part of the Caspian Sea and surrounded by
the Alborz Range (more than 5000 m). The rainfall regime in this area is mostly orographic due to its
closeness to the Caspian Sea and Alborz Range. Different studies [47–49] showed that satellite products
have limitations in representing the warm rain processes associated with the convective–orographic
cloud formations. Both the satellite and gauge datasets showed a significant difference between the
annual precipitation of the Northern and Southern parts of the Alborz Range, since the Alborz Range
behaves like a high wall and prevents moisture from passing the mountains. The gauge as the reference
dataset showed high annual precipitation over the West of the Zagros Range (CR1 and CR4), especially
in high elevation areas, which was captured by the CCS-BC (after bias correction). The overestimations
of the CCS in the Central and the Southeastern parts of the country were corrected in the CCS-BC not
only for the calibration period but, also, for the validation period, which showed the effectiveness
of the applied method. To compare the annual rainfall from the satellite and gauge in each climate
region, the scatter plots of the average annual rainfall at the gauged pixels versus the CCS, as well as
the CCS-BC, for each CR are shown in Figure 4. The scatter plots illustrate that the QM bias correction
approach enhances the annual rainfall amount in most CRs. A quantitative assessment of the spatial
pattern of the CCS and CCS-BC annual averaged precipitations for the calibration and validation
periods are presented in Tables 2 and 3, respectively.
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Table 2. Quantitative results of the spatial evaluations for the mean annual and mean seasonal
precipitations of the CCS and CCS-BC compared to the gauge observations for the seven CRs for the
calibration period. BIAS: mean bias, CORR: correlation coefficient and RMSE: root mean square error.

Annual Winter Spring Summer Autumn

CCS CCS-BC CCS CCS-BC CCS CCS-BC CCS CCS-BC CCS CCS-BC

CR1

CORR 0.7038 0.7388 0.6389 0.6855 0.6242 0.5884 0.6920 0.6477 0.811 0.8236

RMSE 7.1 6.7 4.15 3.65 4.49 2.55 1.39 0.27 1.67 1.54

BIAS 24.5 −9.59 −26.8 −3.8 49.9 −3.8 13 −0.1 −11.6 −1.8

CR2

CORR −0.193 0.0118 −0.323 −0.001 −0.198 −0.135 0.6465 0.6652 −0.160 0.0793

RMSE 38.5 14.6 17.4 5.5 17.2 5.4 2 2.4 4.9 4.6

BIAS 310.5 −35.4 143.3 8.2 143.8 −21.9 5.4 −13.5 18.1 −8.1

CR3

CORR 0.3115 0.3470 0.0605 0.0852 0.4056 0.2947 0.4888 0.4995 0.4414 0.4783

RMSE 28.7 8.3 10.6 3.3 14.5 3.3 1.4 1.2 3.2 2

BIAS 347.1 −7.3 123.5 2.1 181.4 −11.1 9.9 −0.5 32.3 2.2

CR4

CORR 0.0600 0.1816 −0.097 −0.059 0.1760 0.2295 0.5649 0.5469 0.3085 0.3770

RMSE 8.8 8.2 4.3 4.1 4.1 2.9 0.4 0.2 2.3 2.1

BIAS 34.4 −41.1 2.1 −10.2 49.7 −17 5.4 0.04 −22.8 −13.9

CR5

CORR −0.090 −0.062 −0.107 −0.081 0.0807 0.0837 0.6281 0.6037 0.1687 0.1893

RMSE 19.2 10.4 8.1 6 9 3.3 3.8 0.9 2 1.6

BIAS 119 3.7 31.3 1.8 60.7 2 20.3 −1.3 6.7 1.2

CR6

CORR 0.4 0.2430 0.1082 0.2462 0.4733 0.4211 −0.147 −0.295 0.4043 0.2528

RMSE 43.7 51.6 14 11.8 21.1 6.8 12.7 11.2 39.1 28.6

BIAS −129.5 −228.4 36.6 −31.9 164.7 −24.8 −86 −59.6 −244.8 −112.1

CR7

CORR 0.3708 0.5367 0.1843 0.3817 0.1895 0.2936 0.6939 0.7563 0.4585 0.6250

RMSE 23.2 5.9 8.2 2.5 12 2.2 0.9 0.7 2.9 1.5

BIAS 316.4 13 110.1 6.3 165.4 3.3 7.5 0.4 33.5 3

Figures 5 and 6 show the spatial patterns of the mean seasonal precipitation for the CCS, CCS-BC
and gauge in each CR for the calibration and validation periods, respectively. The gauge interannual
distribution of the precipitation with a dry summer and autumn shows a severe seasonality in most
parts of the country. However, most annual precipitations fall in the winter and spring in most CRs,
but the autumn precipitation includes the highest portion of annual precipitation in CR6. Compared to
the gauge, the CCS overestimates the winter and spring rainfall amounts over northern parts of Iran for
both the calibration and validation periods. Figures 5–8 indicate that the QM successfully reduces the
systematic bias for seasonal precipitation not only for the calibration but, also, for the validation time
periods (statistics are shown in Tables 2 and 3). As presented in Tables 1 and 2, the CCS overestimates
the annual precipitation in most CRs, but it underestimates the annual precipitation in CR6. In this
region, most of the annual precipitation falls in the autumn, and the CCS underestimates the autumn
precipitation. As most of the rainfall over CR6 is from warm orographic clouds that are not effectively
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detected by satellites, the CCS has a poor performance in this region, and the improvement from the
bias-correction approach is not significant. The CCS has a better performance in CR1 in comparison
to other CRs (higher CORRs and lower RMSEs and BIASs), and the performance is improved after
the bias correction. However, for the annual precipitation, the areal average (excluding CR6) of the
RMSEs reduces by 137.5 mm/year (56%), and the areal average (excluding CR6) of the BIASs reduces by
179 mm/year (about 100%), but the CORRs show small increases in some regions (by about 7%) during
the calibration period. The bias correction with respect to the annual precipitation improves the RMSEs
in all the CRs (excluding CR6) from 5.4 mm/year (1.8% annual precipitation) for CR1 to 249 mm/year
(155% mean annual precipitation) for CR7 for the calibration period. The bias correction with respect
to winter precipitation improves the RMSEs from 2.8 mm/season (1.8% mean winter precipitation) for
CR4 to 103.8 mm/season (182.5% winter precipitation) for CR7 for the calibration period. Similar results
for RMSE enhancements for the spring precipitation in CR4 and CR7 indicate that the bias correction
in relatively flat areas such as CR7 is more effective than in high topographic regions like CR4. Figure 6
shows the scatter plots of the areal averages of the seasonal precipitations for the CCS and CCS-BC
with respect to the gauge data in each CR for the calibration period. The CCS overestimates most
seasonal precipitations, which are dominant in CR2, CR3 and CR7, but, after the bias adjustments,
the estimations significantly reduce to values close to the gauge seasonal precipitations. In CR6 (the
wettest area among the other CRs), the bias-correction approach has slightly improved the performance
of the CCS-BC, but it still underestimates the precipitation, especially for autumn, which is the most
humid season in this area. This is due to the limitations of the SPEs, which are discussed in the
methodology section.

Table 3. Quantitative results of the spatial evaluations for the mean annual and mean seasonal
precipitation of the CCS and CCS-BC compared to the gauge observations for the seven CRs for the
validation period.

Annual Winter Spring Summer Autumn

CCS CCS-BC CCS CCS-BC CCS CCS-BC CCS CCS-BC CCS CCS-BC

CR1

CORR 0.487 0.525 0.029 0.116 0.584 0.0.576 −0.023 −0.031 0.615 0.703

RMSE 139.2 136.5 85.4 78.5 64.9 46.1 27.2 25.8 53.5 50.7

BIAS 10.8 −19.7 −42.2 −16.7 44.6 −17.1 −2 −5.1 10.3 19.2

CR2

CORR −0.071 0.141 −0.046 0.195 0.039 0.162 0.445 0.380 −0.004 0.181

RMSE 465 151.7 126.1 75.7 267.2 73.5 26 27.9 96.3 59.5

BIAS 420.9 21.8 91.6 −38.2 254.6 42.7 −0.6 −12.5 75.3 29.8

CR3

CORR −0.016 0.082 −0.094 −0.038 0.180 0.176 0.248 0.263 0.009 0.147

RMSE 367.1 101 98.6 44.5 224.1 47.7 13.6 14.3 65.2 33.6

BIAS 343.5 5.7 82.9 −15.4 216.1 23.8 0.8 −5.7 43.7 2.9

CR4

CORR 0.361 0.421 0.279 0.326 0.270 0.209 0.124 0.101 0.212 0.353

RMSE 183.6 164 92.4 95.8 133.3 88.3 26.7 27.5 65.5 64.6

BIAS 73.2 −5.2 −38.8 −48.4 108.7 31.4 −4.7 −8.1 7.9 20

CR5

CORR −0.043 −0.025 −0.310 −0.239 0.328 0.270 0.278 0.201 0.461 0.381

RMSE 166.6 96.5 90.2 69.3 67.1 25.9 29.8 14.1 17.4 15.3

BIAS 117.7 11 47.3 12.7 52.5 −3.3 10.7 0.5 7.2 1

CR6

CORR 0.521 0.395 0.335 0.451 0.196 0.250 0.177 −0.085 0.505 0.203

RMSE 313.7 367.7 96.4 105.1 282.8 88.3 156.1 155.7 257.7 225.7

BIAS 4.9 −145.5 1.9 −60.9 272.2 65.9 −89.7 −81.6 −179.5 −68.9

CR7

CORR 0.392 0.485 0.176 0.253 0.232 0.228 0.574 0.420 0.270 0.564

RMSE 369 99.9 103.2 46.1 222.2 49.1 10.8 12.6 65.4 27.3

BIAS 384.9 18.5 87.4 −4.3 211.2 14.1 −0.8 −3.9 51.1 12.5
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Figure 7 shows the average seasonal precipitation map for the CCS, CCS-BC and gauge data.
The maps show that the CCS substantially overestimates the spring precipitation in the northern
half of the country during the validation period, which has been functionally corrected by the QM
technique. The scatter plots of the areal mean of the seasonal precipitation for the CCS and CCS-BC
against the gauge are shown in Figure 8. The quantities of the annual and seasonal statistics for the
validation period are shown in Table 3. The areal average (excluding CR6) of the annual RMSEs
and BIASs decrease significantly (157 mm/year and 220mm/year, respectively), whereas the areal
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average of CORRs show a slight change (Table 3 and Figures 3 and 4). Similar to Figure 6 (calibration
period), Figure 8 (validation period) shows that the CCS overestimates the winter and spring rainfall
amounts (which comprise the majority of the annual rainfall) in CR2, CR3 and CR7. On the other hand,
the CCS-BC has improved the winter and spring seasonal precipitation for these CRs compared to
the gauge, even for the validation years. According to Table 3, the average (excluding CR6) annual
precipitation RMSEs are reduced by 56%, and the average BIASs are decreased by 98% during the
validation period. Although the seasonal average RMSEs and BIASs are reduced strongly after the
bias correction, there are no significant changes for the CORR. As illustrated in Table 3, the mean
seasonal CORRs increased by 111%, 59% and 17%; the RMSEs reduced by 54%, 65% and 66% and the
BIASs decreased by 95%, 98% and 95% after the bias correction for CR2, CR3 and CR7, respectively.
This means that the spatial disagreements between the satellite estimations and gauge observations
decreased in CR2, CR3 and CR7 after the bias adjustment, which agrees with Figure 8.

4.2. Temporal Evaluations

In this section, we evaluate the time series of the areal mean of the monthly precipitation in
the gauged pixels for the CCS and CCS-BC for each CR. Figure 9 shows the timeseries of the CCS,
CCS-BC and gauge data for the calibration and validation periods. These timeseries are derived by
areal averaging the monthly precipitation amounts for each CR and product. According to Figure 9,
the CCS overestimates the monthly areal mean precipitations in most regions for both the calibration
and validation periods. On the other hand, these systematic biases are removed effectively after the
bias corrections in the CCS-BC. The relatively high temporal correlations between the CCS and gauge
observations indicate that the temporal variations of the monthly precipitation estimations of the CCS
are consistent with the gauge observations, even for the validation period. All statistics improved
after the bias corrections. The average CORR, RMSE and BIAS for each calibration period for the
CRs (excluding CR6) were 0.717, 31.5 and 16 mm/month and changed to 0.753, 14 and −1 mm/month,
respectively. However, the CORRs reduced on average (except CR6) by 4%, and the average of the
RMSEs and BIASs decreased by 47% and 96%, respectively, during the validation period.
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The results of daily scale evaluations, including the CORR, RMSE and BIAS, as well as the
categorical statistics (POD, FAR and HSS) for the calibration and validation periods, are shown in
Table 4. A one-mm threshold is employed for deriving the categorical statistics for the timeseries of each
region. The statistics are calculated from the timeseries of the areal average of the CCS and CCS-BC
daily precipitation estimations in the gauged pixels in each climate region compared to the timeseries
of the areal average of the gauge daily observations in the gauged pixels in the same CR. The CCS has
a better performance in CR1 in comparison to other CRs (lowest BIAS and highest CORR) and a poor
performance in CR6 for the calibration and validation periods. The CORRs of the CCS vary from 0.11
for CR6 to 0.71 for CR1 during the calibration period. There are small changes after the bias corrections.
The average RMSE in the CRs (except CR6) reduced by 31% and 26% after the bias corrections for
the calibration and validation periods, respectively. Moreover, the average BIAS in the CRs (except
CR6) reduced by 106% and 96% after the bias correction for the calibration and validation periods,
respectively. However, the mean FAR of the country (excluding CR6) improved slightly after the bias
correction (decreases by 7% and 14% for the calibration and validation periods, respectively), but the
average POD of the country (excluding CR6) reduced by about 9% and 21%, while the HSS reduced
by 7% and 5% for the calibration and validation periods, respectively. The overall bias correction
significantly improved the accuracy statistics (RMSE and BIAS) and categorical statistics (FAR and
HSS) for the areal average of the daily precipitations.

Table 4. The quantitative and categorical statistic results of the daily evaluations of the areal mean
for the CCS and CCS-BC compared to the gauge observations for the seven CRs for the calibration
(2009–2016) and validation (2017–2018) periods.

Calibration Validation

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR1 CR2 CR3 CR4 CR5 CR6 CR7

RMSE
(mm/day)

CCS 2.11 3.64 2.79 2.25 1.44 6.90 2.21 2.77 3.28 3.90 2.81 1.33 6.39 2.60

CCS-BC 1.95 1.79 1.65 2.18 1.15 5.52 1.11 2.57 2.17 2.11 2.68 1.13 5.08 1.28

BIAS
(mm/day)

CCS 0.06 0.83 0.92 0.14 0.33 −0.37 0.86 0.03 1.11 0.96 0.24 0.33 0.03 0.95

CCS-BC −0.02 −0.11 −0.04 −0.08 0.01 −0.63 0.05 −0.05 0.04 0.03 0.01 0.03 −0.37 0.06

CORR
CCS 0.71 0.39 0.47 0.67 0.57 0.11 0.53 0.69 0.50 0.27 0.65 0.63 0.11 0.46

CCS-BC 0.76 0.52 0.39 0.69 0.57 0.25 0.50 0.74 0.46 0.24 0.68 0.62 0.28 0.36

FAR
CCS 0.48 0.50 0.57 0.48 0.67 0.50 0.69 0.55 0.49 0.61 0.45 0.75 0.53 0.65

CCS-BC 0.43 0.41 0.48 0.40 0.55 0.49 0.57 0.47 0.41 0.52 0.44 0.59 0.49 0.57

POD
CCS 0.85 0.83 0.79 0.79 0.82 0.50 0.88 0.75 0.85 0.91 0.75 0.70 0.52 0.86

CCS-BC 0.80 0.61 0.55 0.73 0.60 0.43 0.62 0.70 0.69 0.59 0.65 0.60 0.48 0.54

HSS
CCS 0.59 0.50 0.43 0.53 0.43 0.20 0.40 0.48 0.50 0.47 0.50 0.32 0.21 0.43

CCS-BC 0.62 0.47 0.42 0.57 0.47 0.20 0.44 0.53 0.50 0.44 0.46 0.44 0.24 0.40

5. Summary and Conclusions

The objective of this paper was to assess the QM method bias corrections of the PERSIANN-CCS
daily precipitation estimations using daily rain gauge observations over Iran. The CCS is a real-time
satellite-based dataset that can be used for flood forecasting and hydrological studies. The main
findings of this study can be summarized as follows:

1. The QM bias correction approach is an effective method for the bias correction of satellite-based
precipitation products upon availability of the ground-based precipitation observations.

2. The QM method can be trained on historical data to effectively bias-correct future remotely
sensed observations.

3. The CCS have poor performances in representing the precipitation rates and patterns in the
Northern part of Iran (CR6), and QM is not effective in bias-correcting the CCS in this region due
to its orographic and climatic conditions.

The seasonal CDFs of the daily gauge observations, as well as the CCS daily precipitation
estimations, are employed to remove the systematic bias from the CCS estimates in seven different
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climate regions. The CCS has a better performance in CR1 in comparison to other CRs, which means
it can better detect clouds in this area than in other regions. The results of some regional studies
indicate that the Southern water bodies such as the Persian Gulf, the Oman Sea and the North Indian
Ocean are the main sources of cloud moisture in this region [50,51]. The results show that the spatial
distribution of the satellite estimates effectively improves after the bias corrections for the mean
annual and mean seasonal precipitations in most CRs (except CR6) not only for the calibration period
but, also, for the validation period. The areal average of the annual RMSEs and BIASs reduced by
137.5 mm/year (56%) and 179 mm/year (100%), respectively, during the calibration period (2009–2016).
Additionally, the average (excluding CR6) of the annual precipitation RMSEs reduced by 157 mm/year
(56%), and the average BIAS decreased by 220 mm/year (98%) during the validation period. As the
CCS overestimates the annual and seasonal (winter and spring) precipitations in the Northern half of
the country, the improvement of the bias corrections is significant in CR2, CR3 and CR7. The CCS
underestimated the annual precipitation in CR6 and had a poor performance after the bias corrections.
Previous studies [20,24,25] have shown that different satellite products have poor performances over
this area. In fact, most rainfall results from warm orographic clouds that rise above the Alborz
Mountains are not captured by satellites.

The results for the validation period indicate that the historical rain gauge data and the QM
bias correction method can be effective in reducing the systematic bias of the satellite precipitation
estimations in the future. Obviously, more historical data that covers year-to-year precipitation
variations would help to make more accurate CDFs and lead to further improvements for satellite
estimates after bias corrections. In this bias correction method, we do not need concurrent rain gauge
data, which are important for real-time SEPs. However, for constructing CDFs in each CCS pixel
(0.04◦), or even a 1◦ × 1◦ box (as used by Yang et al. [34]), sufficient samples are necessary, but rain
gauges are sparse in mountainous and desert areas such as Iran. Therefore, using climate regions with
homogenous precipitation patterns as employed in this study and other similar works [36] would
be an appropriate method to overcome this restriction in similar areas. Furthermore, using climate
regions revealed the distinguished effects of bias corrections in different climates. Overall, the QM
method reduced the bias in the annual, seasonal and monthly scales, but random errors caused by
day-to-day precipitation variations remained as expected.
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