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Abstract: Advances in remote sensing technologies have enabled effective drought monitoring 
globally, even in data-limited areas. However, the negative impact of drought on crop yields still 
necessitates stakeholders to make informed decisions according to its severity. This research 
proposes an algorithm to combine a drought monitoring model, based on rainfall, land surface 
temperature (LST), and normalized difference vegetation index/leaf area index (NDVI/LAI) 
satellite products, with a crop simulation model to assess drought impact on rice yields in 
Thailand. Typical crop simulation models can provide yield information, but the requirement for a 
complicated set of inputs prohibits their potential due to insufficient data. This work utilizes a rice 
crop simulation model called the Simulation Model for Use with Remote Sensing (SIMRIW–RS), 
whose inputs can mostly be satisfied by such satellite products. Based on experimental data 
collected during the 2018/19 crop seasons, this approach can successfully provide a drought 
monitoring function as well as effectively estimate the rice yield with mean absolute percentage 
error (MAPE) around 5%. In addition, we show that SIMRIW–RS can reasonably predict the rice 
yield when historical weather data is available. In effect, this research contributes a methodology to 
assess the drought impact on rice yields on a farm to regional scale, relevant to crop insurance and 
adaptation schemes to mitigate climate change. 
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1. Introduction 

For the last three decades, the world has experienced increasing occurrences of various 
disastrous events whose impacts on the economy cost approximately 250–300 billion USD annually 
[1]. In terms of agriculture-related disasters, the top three causes are droughts, volcanic eruptions, 
and storms, which are 83%, 30%, and 23%, respectively [2]. Therefore, the impact of drought can be 
devastating and must be handled with extreme priority. Thailand, as one of the top rice-exporting 
countries, is very susceptible to drought, as more than 58% of farmers still have no access to water 
resources (i.e., rainfed only), and about 60% tend small farms (<2 ha) [3]. Significant droughts 
(declared drought areas of more than 160,000 ha) have recently been recorded in 2012, 2014, 2015, 
2018, and 2019 [3]. 
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In response to this urgent problem, the Thai government initiated a pilot rice crop insurance 
program for farmers in 2010, aiming to cover loss or damage from major natural disasters including 
drought. The policy is based on weather index crop insurance [4], where damage is assessed by 
cumulative rainfall (and compared to a threshold value) from a nearby weather station within a 
25km range. This scheme seems suitable for rainfed farmlands because there is no interference from 
other water resources. Weather indices must be readjusted for each area. However, a limited number 
of operational weather stations can lead to a high variance in damage assessment, especially for 
drought, whose nature is a complex interaction among domains of parameters such as soil, weather, 
crop, and field practices. As a result, this type of insurance policy incurs a large basis risk (i.e., 
difference in the actual losses compared to the losses projected by the policy). This program is not 
well received by farmers but is still offered in the northeastern region. 

In 2011, the Thai government launched another program called “nationwide relief top-up 
insurance for rice [5].” The government subsidizes most of the insurance premium, where farmers 
pay much less to receive full coverage. In addition to the weather index, payouts for total losses are 
verified by local authorities, normally by visual inspections which hardly cover the actual losses. In 
order to mitigate this problem, a drought map1  provided by the Geo-Informatics and Space 
Technology Development Agency (GISTDA) has been used recently. This geographic information 
system (GIS)-based service is updated weekly and is based on products from the Suomi–NPP 
satellite. Although these spatial and temporal data can augment assessment, they cannot accurately 
capture damage to crop yields, and, hence, this leads to a large number of basis risk complaints.  

Previous work [6] stated that a conventional policy can become ineffective to underwrite risks 
and adjust losses at the field level. It shows that a weather index based on precipitation alone has 
very little correlation with soil moisture. On the contrary, soil moisture and normalized difference 
vegetation index (NDVI) are good indicators for drought and good proxies for yield. This study 
mentioned that big data analytics, such as text/visual analytics, predictive modeling, and machine 
learning are becoming essential tools for agriculture insurance. Big data includes weather and 
climate data (from satellites, drones and weather stations), soil and geo–spatial data (from mobile 
apps, location datasets, satellites, drones and ground sensors) and crop yield (from mobile apps, 
drones and satellites). The mobile app has become an essential tool for localized data collection 
through crowdsourcing, in conjunction with advanced satellite remote sensing products, which 
enable field-level insurance policies to be administered. 

Although crop insurance can compensate the drought losses for farmers and shift the burdens 
from the government to insurance companies, it does not optimize the losses, which could have been 
reduced if farmers had known in advance about risks to their crop yields. For example, farmers 
could implement crop changes or an early harvest to adapt to some worst-case scenarios. Without 
adaptation plans, food security can be compromised if extreme droughts occur (which become more 
likely under current climate change conditions). In order to mitigate this, crop yield estimation and 
prediction algorithms, in combination with drought monitoring algorithms, seem inevitable for 
drought assessment and adaptation [7], for which crop production gets impacted and warnings can 
be provided promptly. Comprehensive works have been performed on drought monitoring based 
on satellite products [8–10], and, similarly, active works on rice yield estimation based on crop 
simulation models (CSMs), such as the Decision Support System for Agrotechnology Transfer 
(DSSAT) [11], the World Food Studies Simulation Model (WOFOST) [12], the Cropping Systems 
Simulation Model (CropSyst) [13], AquaCrop [14] and the Simulation Model for Use with Remote 
Sensing (SIMRIW–RS) [15]. Nevertheless, to our best knowledge, there are no such works to 
demonstrate how they can effectively work together. A major disparity between the two is their 
coverage. Drought monitoring models are normally regional scale, utilizing various types of satellite 
remote sensing indices, whereas CSMs require more input parameters and, hence, work only on 
specific areas where such input data are available. These inputs can be categorized as cultivar 
specific, soil specific, farm management, and climatic inputs that are obtained by field data 
collection. Climatic inputs need to be continuously applied until the crop ends (usually by a weather 

 
1 Available at http://droughtv2.gistda.or.th/?q=content/drought–mapping  
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station nearby) to complete the simulation. The common simulated outputs from CSMs are leaf area 
index or canopy cover, which are converted to biomass and yield at the final step. The other inputs 
are initial conditions, a few of which can be readjusted during the crop cycle to recalibrate the 
simulated results to be close to the observed data from the field. The authors of [14] showed how to 
use the HJ–1A/B NDVI satellite product to readjust the maximum canopy cover parameter in 
AquaCrop to improve the accuracy of the simulated rice yield. While satellite NDVI products can 
potentially enable regional-scale simulation in AquaCrop, this work still depends largely on field 
data collections and data from weather stations, limiting its adoption to other areas. A research 
question then becomes: can satellite products be applied to both drought monitoring models and 
crop simulation models so that they can work cooperatively and effectively at a farm scale, can they 
be extended to a regional scale, and how can this objective be acheived? 

This research answers the question in four aspects. First, we evaluate the effectiveness of 
existing satellite-based drought monitoring models [16]. Second, we propose to utilize the same 
satellite products, in place of data from weather stations, as climatic inputs into a crop simulation 
model called SIMRIW–RS. Third, we introduce a recalibration algorithm for SIMRIW–RS to attain 
better accuracy using satellite NDVI and leaf area index (LAI) products. Collectively, we show that 
these satellite data products work very well on the test site, achieving around 5% mean absolute 
percentage error (MAPE). Fourth, we empirically show how the drought situation can signify the 
simulated rice yield from SIMRIW-RS. Later, we suggest how this work can be extended to provide 
nationwide services with existing spatial data from the Thai government agencies and 
crowdsourcing data from farmers via a mobile app. 

2. Materials and Methods  

This study utilizes data from two main group sources. Figure 1 depicts data collected from the 
field (shown in blue boxes); as described in Section 2.2, these data are used as inputs for a crop 
simulation model called SIMRIW–RS to evaluate the bounded performance for the simulated yield 
versus the actual yield. On the other hand, satellite data products (shown in red boxes), detailed in 
Section 2.3, are proposed to replace field data for presumably comparable performance, with the 
potential to extend to the regional scale. Some of these satellite products are also used by the drought 
monitoring model, thereby allowing integration of drought monitoring and impact assessment on 
rice yield on the same platform.  

 
Figure 1. Research methodology and data sources used in this study. See text for full details. 
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This figure also outlines the research methodology and emphasizes how satellite products can 
effectively be applied to drought monitoring and crop simulation models. Section 2.4.1 evaluates 
drought monitoring models based on the drought vulnerability index (DVI) and monthly rainfall 
from the Thai Meteorological Department (TMD) and compare the consistency of the DVI values 
before and after rainfall. SIMRIW–RS is introduced in Section 2.4.2 along with its required 
recalibration algorithm to improve the accuracy of the simulated yield. This recalibration requires 
field data called LAI, which is impractical to collect on the field; hence, Section 2.4.3 elaborates the 
performance of using satellite products to estimate the actual LAI values. Sections 3.1–3.4 explain 
simulation configurations with weather station data and satellite products as inputs, and with actual 
LAI and estimated LAI for recalibrations. Performance for each configuration is measured as % of 
MAPE against the actual yield. Section 3.5 demonstrates how DVI can explain the variation of the 
simulated yield from SIMRIW–RS, signifying the working scheme for both models. Section 4 
discusses how SIMRIW–RS can potentially be adopted at the regional scale. 

2.1. Test Site 

The selected test site is a 6.88-ha paddy field located in northeast Bangkok (13.93628, 100.87029), 
as shown in Figure 2. The soil is an acidic clay type with an average annual precipitation of 1721 mm. 
Irrigation networks allow farmers to cultivate rice twice a year, but water shortage is likely during 
drought events. Monocrops with sowing practices and chemical fertilizer usage are common in this 
area. Data were collected during April 26–August 17, 2018 based on the RD57 variety (114-day crop 
cycle). Fifty sample plots of 1x1m2 were assigned on the periphery to measure LAI and yields and 
mark the locations for comparison with the remote sensing data products. The data collection 
equipment were a GPS Garmin Colorado 3000, a LAI–2200 Plant Canopy Analyzer, a DJI Phantom 3 
advanced with a Parrot Sequoia multispectral camera installed, and other typical tools for crop 
cutting and grain moisture analysis, as depicted in Figures 3 and 4. 

 
(a) 

 
(b) 

Figure 2. (a) The test site (indicated by a red star) located in northeast Bangkok. (b) True-color image 
of the site, taken by a DJI Phantom 3 advanced equipped with a Parrot Sequoia multispectral camera 
at 10 cm ground spatial distance (GSD). Red dots on the periphery represent 50 sample plots. 
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(a) (b) (c) 

Figure 3. (a) Leaf area index––LAI measurement with a LAI–2200 Plant Canopy Analyzer. (b) and (c) 
Data collection by a DJI Phantom 3 with a multispectral camera at the test site. 

 
(a) (b) (c) 

Figure 4. Yield data collection activities at harvest: (a) crop cutting in a 1x1m2 plot, (b) measuring 
grain moisture content, and (c) weighting grains at 0% moisture content. 

2.2. Field Data Collection 

To ensure data integrity, field data collections were performed eight times during the entire 
crop season, as detailed in Table 1. LAI [17] is an index representing plant canopies. It is defined as 
the one-sided green leaf area per unit ground surface area and is normally used to indicate crop 
health/growth conditions. Time-series LAI data are very important to understand how crops 
respond to changes in their environment. 

Remote sensing data from drones are extremely important to this study. As we aim to develop a 
methodology based on satellite data, drone data fill the gap between point-based ground truth data 
and lower-spatial-resolution (≥10 m) pixel-based data from satellites. Nowadays, drones can be 
equipped with sensors whose characteristics resemble those installed aboard remote sensing 
satellites. Thus, variabilities from different spatial and temporal localities of both field and satellite 
data can be studied and deduced. Figure 5 shows the spectral responses from a Parrot Sequoia 
multispectral camera and the corresponding Sentinel–2A bands that were used in this work. 

 
Figure 5. Relative spectral responses of a Parrot Sequoia camera (Green, Red, Red Edge and NIR), as 
well as the most closely corresponding Sentinel–2A bands (bands 3, 4, 6 and 7) (excerpted from [18]). 
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Table 1. Field data collections in 2018. 

No. Date Rice Age 
(weeks) 

Average leaf area 
index––LAI 

Average Yield 
(ton·ha−1) 

1 May 16, 2018 3 0.83 – 
2 May 20, 2018 5 2.79 – 
3 June 7, 2018 7 3.94 – 
4 June 20, 2018 8 4.54 – 
5 June 29, 2018 10 4.67 – 
6 July 9, 2018 11 4.70 – 
7 August 1, 2018 14 4.36 – 

8 
August 14, 

2018 16 
– 4.35 

Weather data were collected from an automatic weather station located 2.55 km from the test 
site (13.918123, 100.855946). The station automatically transmits data at 10-minute intervals to a 
server at the Chulabhorn Satellite Receiving Station (CSRS) at Kasetsart University. These are 
processed as daily data, including accumulated rainfall (mm), average solar radiation (W·m−2), 
average temperature (°C), and day length (hours). These field data are utilized only for model 
development purposes, as they will be substituted by the equivalent satellite products when they are 
operational. 

Yield data were collected at harvest time (when grain moisture contents are about 15–20%) on 
all 50 plots. Grain and straw were separated and dried under sunlight until the moisture contents 
were reduced to 15%. These specimens were taken to a lab to be machine dried at 70 °C until the 
weights were stable, which is represented by the weights at 0% moisture content. The average 
weights at 0% moisture content for grain and straw were 4.35 ton·ha−1 and 6.78 ton·ha−1, respectively. 

2.3. Satellite Products 

Satellite products used in this work consisted of two groups: weather-related and crop-related 
products. The first group comprises rainfall and land surface temperature (LST), whereas the other 
group consists of NDVI and LAI. To address the availability and quality issues in satellite data, 
weather-related products can be updated every ten days, called “dekadal” products. On the other 
hand, crop-related products are updated as necessary, subject to their functions, such as an input to 
a drought monitoring model or as a recalibration parameter for a crop simulation model. These 
satellite products, except for Sentinel–2, are received directly at the CSRS in real time. 

2.3.1. Rainfall from the FY–2E Satellite 

FY–2E is one of the geostationary meteorological satellite constellations operated by China 
Meteorological Agency (CMA). Our previous work [19] developed a model called Infrared 
Threshold Rainfall with Probability Matching (ITRPM) to estimate hourly rainfall (known as FY–2 
rain) using data from the IR–1 channel (10.3–11.3μm) with a 5-km spatial resolution, shown in Figure 
6a. The model was optimized for the Thailand region and has shown good root-mean-square error 
(RMSE) for medium- to long-term accumulated rainfall. Figure 6b shows the final product, called 
dekadal rainfall, which represents total precipitation during ten consecutive days. 
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(a) 

 
(b) 

Figure 6. Examples of (a) IR–1 image and (b) dekadal (10-day) rainfall product. 

2.3.2. LST from TERRA/AQUA Satellites 

Land surface temperature (LST) exhibits a good relationship with dynamic soil moisture in 
water-limited conditions [20] and also with aboveground temperature where the leaf temperature 
rises due to closure of plants’ stomata to preserve root-zone water loss through transpiration and 
soil temperature increases due to the ceasing of evaporation. This work selects a product called Land 
Surface Temperature/Emissivity Daily L3 Global (coded MOD11A1) based on the Moderate 
Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA/AQUA satellites. The product 
has 1-km spatial resolution data and is available twice a day (day and night), as depicted in Figure 7. 
These day and night data are averaged over a 10-day period and are converted to the maximum and 
minimum air temperatures, respectively. 

 
(a) 

 
(b) 

Figure 7. Examples of land surface temperature (a) LST—day product and (b) LST—night product 
on October 29, 2019. 

2.3.3. NDVI from TERRA/AQUA satellites 

The normalized difference vegetation index (NDVI) is commonly used as an interpretation of 
photosynthesis activity in plants. It can indicate crop stress that relates to depleted available 
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moisture in the root zone [9], implying a drought situation. This work selects a product derived from 
MODIS’s Surface Reflectance Daily L2G Global product (coded MOD09GA) with a 500-m 
resolution, using Band 1 (visible red or RED) and Band 2 (near-infrared or NIR) according to the 
following equation: 

NDVI = (NIR – RED) / (NIR + RED) (1) 

The result is then cloud-masked and averaged over a ten-day interval. To standardize these 
satellite products derived in Sections 2.3.1–2.3.3 for ease of implementation, they are resampled to a 
1-km resolution, time-synchronized, and put into archive to be used as inputs for both models. 
Related work [21] shows reasonably good correlations between the satellite rainfall and LST 
products with rainfall and average air temperature from TMD weather stations nationwide.   

2.3.4. NDVI/LAI from the Sentinel–2 Satellite 

NDVI and LAI products are derived from the Multi-Spectral Instrument (MSI), covering visible 
to shortwave infrared bands with 10-m, 20-m and 60-m spatial resolutions on the Sentinel–2A/B 
satellites. Its level-1C data (called S2MSI1C)2 are top-of-atmosphere (TOA) reflectance and need to 
be processed with the Sentinel Application Platform (SNAP)3 and Sen2Cor4 plugin to generate level 
2A data. The level 2A data consist of bottom-of-atmosphere (BOA) reflectance and scene 
classification (SCL). Finally, the NDVI and LAI products are derived from BOA reflectance using 
NDVI and biophysical processors on SNAP, and then cloud–masked by SCL, as depicted in Figure 8. 
Both NDVI and LAI products have a 10-m resolution and can be updated every 5 days. 

Figure 8. Data processing for Sentinel–2’s NDVI/LAI product generation. 

2.4. Algorithm Development 

We first demonstrate that previous work on drought monitoring models [19] based on weather- 
and crop-related satellite products can successfully capture the essence of both meteorological and 
agricultural droughts, collectively known as a drought hazard index (DHI). These spatial data, when 
overlaid with agricultural land use from the Land Development Department (LDD) and irrigation 
data from the Royal Irrigation Department (RID), become a drought vulnerability map5 to be used 
for efficient drought management with regard to water resources and crop production. 
Consequently, we show how those satellite products can be linked to a crop simulation model to 
estimate or even reasonably predict crop yield under drought conditions. These comprehensive 
features have been considered one of the key challenges to the future agricultural drought 
monitoring system [7]. 

2.4.1. Drought Monitoring Model Evaluation 

In ref. [16], three satellite products were used for drought monitoring. Rainfall estimates from 
the FY–2E satellite represent meteorological drought from a precipitation deficit. The difference 
between day and night LST indirectly represents the surface soil moisture indicator, which is a good 
proxy of if a planted crop can reach its full potential. The NDVI represents the photosynthesis 

 
2 Available at https://scihub.copernicus.eu/dhus/#/home  
3 Available at https://step.esa.int/main/toolboxes/snap/  
4 Available at https://step.esa.int/main/third-party-plugins-2/sen2cor/  
5 Available at http://csrs.ku.ac.th/wegis/product/adap–t  
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activity of plants, an indicator for crop health and conditions that represents agricultural drought. 
Both are TERRA/AQUA products. Because drought is a slow-onset phenomenon, this model 
updates results every ten days using dekadal values, which are accumulated rainfall, average 
difference LST and average NDVI. A linear function of these values, optimized for the Thailand 
region, generates what is called the drought hazard value: 

DH = 11.643 + 0.356·R – 0.297·ΔT + 0.868·NDVIAVG (2) 

where DH is the drought hazard value, R is the accumulated rainfall, ΔT is the average difference 
LST, and NDVIAVG is the average NDVI, all for each 1-km2 pixel resolution. All DH values from 2016 
were sorted and arranged to form a cumulative distribution function. Threshold values were 
defined to partition the DH values into seven percentile groups; for example, if DH values are less 
than the fifth percentile, this can be considered an extreme drought condition. Meanwhile, a DH 
value greater than the 95th percentile is classified as an extreme wet condition. DHI, ranging from –3 
(extreme drought) to +3 (extreme wet), was defined based on those percentile groups. However, DHI 
alone does not explain the drought situation as it does not account for agricultural activities and 
countermeasures against drought in the area concerned. A more informative index, called the 
drought vulnerability index (DVI), is defined as a composite of DHI, agricultural areas, and irrigated 
areas, to show which agricultural areas are really affected by drought. We first define the sensitivity 
index (SI) as the ratio of agricultural areas to the total areas. Irrigation networks can ameliorate 
drought situations and create adaptive capacity (AC) to drought. Both SI and AC are based on 
provincial data. Their relationships can be described as follows: 

SI = agricultural areas / total areas (3) 

AC = 1 – (irrigation areas / total areas) (4) 

DVI = DHI × SI × AC (5) 

Figure 9 shows the DVI for Thailand in March 2020 and May 2020 versus monthly rainfall in 
April 2020 from TMD. This figure clearly shows the effectiveness of the drought monitoring model, 
where most parts of Thailand in March 2020 were experiencing extreme drought (shown in red) 
except the northern, western, and lower central regions. Precipitation in April 2020 ameliorated the 
extreme drought conditions in those areas a month later when farmers could start their crops, 
especially in the northeastern, eastern, and southern parts of Thailand. Those areas are mostly 
rainfed paddy fields.  
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(a) 

 
(b) 

 
(c) 

Figure 9. The drought vulnerability index for Thailand in (a) March 2020 and (b) May 2020, and (c) 
monthly rainfall in April 2020. Precipitation areas are relatively consistent with improved drought 
situations. 

2.4.2. SIMRIW–RS and Recalibration Method 

SIMRIW–RS [15] is a crop simulation model for rice that requires only three sets of inputs. First, 
the daily weather dataset, which includes rainfall, average temperature, day length, and average 
solar radiation. Second, the pre-optimized cultivar parameters, which are localized data embedded 
in the model and can be estimated based on historical yields and the corresponding NDVI or LAI 
time-series data. However, these cultivar parameters are not currently user-adjustable. Third, the 
initial field parameters, which need to be optimized by recalibration of the simulated LAI (an output 
from the model) with the actual LAI value from the field at an early crop stage. Since LAI 
measurements are impractical for model operations, satellite products are highly recommended for 
LAI estimations: [22] shows that two recalibrations, at early crop stages, of the simulated LAI with 
synthetic aperture radar (SAR)-estimated LAI can achieve good results. Similarly, [23] shows that 
two recalibrations within 50 days after sowing, using drone NDVI or two-band enhanced vegetation 
index (EVI2) products to estimate LAI, are also possible. The flexible recalibration dates allow 
satellite products to be used for LAI estimation, particularly the NDVI/LAI products from Sentinel–2 
satellites with a 10-m resolution and 5-day revisit time. 

An algorithm for SIMRIW–RS recalibrations, using datasets from 2018, is illustrated in Figure 
10. The daily weather data were intentionally replaced by dekadal satellite products. Rainfall from 
the FY–2E satellite and LST from the TERRA/AQUA satellites were averaged daily and used as 
rainfall and temperature inputs. The day length was calculated with software developed with 
Python and the ephem package6. Lastly, the solar radiation was obtained from a nearby weather 
station. The cultivar parameters were optimized for the test site in 2018.  

With a daily weather dataset input being ready, SIMRIW–RS can start simulating the rice crop 
with its default parameters. It generates the daily simulated LAI output, simulated dry matter and 
simulated yield at the crop end. The simulated LAI output corresponds to the nitrogen uptake 
ability of the field, which is one of the most relevant field parameters needed for accurate crop 
simulation. SIMRIW–RS lets the user optimize this parameter (ranging from 0.040 to 0.011 with 
0.0001 steps) through recalibration of its simulated LAI with an estimated LAI from the Sentinel–2 

 
6 Available at https://pypi.org/project/ephem/  
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LAI product using a numerical method, which iterates until the RMSE of the simulated LAI is 
minimized. Once the parameter is ready, the model can simulate till crop harvest, and its 
performance is measured as the percentage MAPE of the simulated yield against the actual yield. 

Since there are many estimated LAI values for the test site (each value corresponds to a 5x5m2 
area), we considered how SIMRIW–RW should handle these data. The first approach is to let 
SIMRIW–RS handle them individually and average the results to obtain the simulated yield. The 
second approach assumes a homogenous LAI value by averaging all the data and then lets 
SIMRIW–RS handle this data to obtain the simulated yield. The MAPE of the simulated yield will 
determine which approach is more efficient, as the first approach requires more computation. 

Of the three sets of input parameters, the cultivar parameters (pre-optimized for 2018 crop data) 
were embedded in the model and are not adjustable. Therefore, we used SIMRIW–RS to perform the 
simulation on the test site with 2019 crop data (all other inputs are from satellite products, except the 
actual yield) to observe how robust these cultivar parameters are when other parameters changes. 
This also validates our proposed algorithm. 

Finally, we evaluated the ability of SIMRIW–RS to reasonably forecast the yield by preparing 
the future weather dataset from historical satellite products. This weather data will be used, after the 
recalibration process is performed, by SIMRIW–RS to complete the simulation for two months 
earlier. The output simulated yield is, therefore, known to the user beforehand, enabling farmers to 
make informed decisions on adaptation to climate change. 

TERRA AQUAFY-2E

SIMRIW-RS

- Precipitation
- Temperature

- Solar Radiation
- Daylength

Weather 
Station

Dekadal 
Rainfall 
Product

Dekadal LST/NDVI 
Products

SENTINEL-2

Estimated field 
LAI from NDVI/

LAI Products

LAI-2200

Actual LAI from 
the field

Evaluate Performance 
using MAPE
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RMSE of simulated LAI versus field LAI 
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LAI values

Optimized Field 
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Two samples of field LAI 
values at early crop stage 

(< 50 days)
Daily

Weather Dataset
Default

Field Parameter
Embedded-Optimized
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Estimated field 
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Product

Drone

Python-generated 
Daylength value

Solar Radiation 
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End

Simulated 
LAI (Daily)

 
Figure 10. Proposed algorithm for the Simulation Model for Use with Remote Sensing––SIMRIW–RS 
recalibration. Red boxes represent data sources for recalibration and validation processes only, 
whereas green boxes represent future work. Only satellite products are required when operating 
SIMRIW–RS. 
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2.4.3. Estimating Actual LAI with Remote Sensing Data 

This study proposes to use Sentinel−2 NDVI/LAI products to estimate the actual LAI values 
required by the SIMRIW−RS recalibration process. Their performances were evaluated against that 
of the drone NDVI product. The LAI values and multispectral data from the drone were collected at 
the test site. Each LAI value is indeed an average of five LAI measurements in a 1x1m2 plot. The 
drone data from a Sequoia multispectral camera were processed with Pix4D software to generate 
NDVI products with a 10-cm ground sample distance (GSD) and were plotted against the actual LAI 
on the same locations as shown in Figure 11. Since the drone pixel is 100 times smaller than a plot, its 
NDVI products are averaged to match the actual LAI value. Only the first three data collections 
(corresponding to early crop stages) were considered for a total of 150 data pairs. This should give a 
performance bound on estimating actual LAI with Sentinel–2 products. It shows an exponential 
relationship with R2 = 0.8336, meaning that the drone NDVI can reasonably estimate the LAI from 
the field. The equation is: 

Y = 0.1524e3.4927·X (6) 
 

where Y is the estimated LAI and X is the drone NDVI product. 

 

Figure 11. Exponential relationship (with R2 = 0.8336) between drone NDVI and actual LAI values at 
early crop stages. 

NDVI products from TERRA/AQUA and Sentinel–2 might be used. However, at a 10-m 
resolution and 5-day revisit time, the Sentinel–2 NDVI product is superior in a farm-level simulation 
without compromising the recalibration performance. The Sentinel–2 LAI product is also 
investigated. The Sentinel–2 data were acquired on May 22, May 26 and June 6, 2018, respectively. 
We first compared the relationships between the Sentinel–2 NDVI and LAI products with the actual 
LAI in Figure 12. Only the pixels that collocated with the sample plots were considered, totaling 68 
data pairs for each product. The Sentinel–2 LAI product showed a promising result for LAI 
estimation with R2 = 0.8364. In contrast, the Sentinel–2 NDVI product performed much worse with 
R2 = 0.4622. 
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(a) (b) 

Figure 12. Performance of LAI estimation using (a) Sentinel–2’s NDVI product and (b) Sentinel–2’s 
LAI product. 

Direct estimation of LAI from Sentinel–2 NDVI constitutes pixel size and index disparities. 
Thus, we split this process into two steps. First, a relationship between the Sentinel–2 NDVI and 
drone NDVI was found; see Figure 13a. This gave us insight into the effect of pixel size disparity. 
Second, the estimated drone NDVI was used to estimate the LAI using the relationship obtained 
from Figure 11. The derived product is called “Sentinel–2 NDVI–estimated LAI”. Figure 13b shows 
that the overall performance of R2 = 0.4185 is comparable to the direct estimation, R2 = 0.4622, from 
the Sentinel–2 NDVI. We noticed that the Sentinel–2 NDVI products were very dispersed at values < 
0.5, when the rice age was less than 5 weeks and its surface was widely covered with water. In 
addition, since our plots were on the periphery of the test site, the collocated Sentinel–2 pixels may 
include data from nearby paddy fields. Both cases may account for the dispersion of Sentinel–2 
NDVI values. We also plan to investigate other satellite NDVI products for more conclusive results. 
To ensure robust operation, it is quite common to prepare for alternative satellite NDVI products 
when the Sentinel–2 LAI product is not available. It is clear that the Sentinel–2 LAI product can 
reasonably estimate the actual LAI for the next step. The equation for the estimated LAI is 

Y = 1.1413·X – 0.0646 (7) 
 

where Y is the estimated LAI and X is the Sentinel–2 LAI product. 

 
(a) 

 
(b) 

Figure 13. A two-step conversion relationship from Sentinel–2 NDVI to (a) drone NDVI and (b) 
actual LAI, with a total R2 = 0.4185. Sentinel–2 NDVI were highly dispersed at values < 0.5, yielding 
poor conversion in the first step and affecting the overall performance.  
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3. Simulation Results 

3.1. Performance Based on Weather Station Data 

These experiments utilized data from a weather station to provide best-case scenarios. They are 
summarized in Table 2. The LAI values were obtained from field measurements (LAI2200), and the 
NDVI product from the Parrot Sequoia Multispectral Camera (Drone) and from the Sentinel–2 LAI 
product (Sentinel–2), called E1, E2 and E3, respectively. There were two simulation modes, 
homogenous and non–homogenous. The homogeneous mode assumed a single LAI value averaging 
over all the LAI data and SIMRIW–RS was executed only once for the test site. This should work 
well for small farms with monocrop practices. The non-homogeneous mode executed on all LAI 
data. Performance was measured as the MAPE of the simulated yield versus the actual yield. All 
homogeneous simulations performed better than their counterparts, which might be a result of the 
law of averages, with the best MAPE at 3.61% from LAI–2200 (E1). Surprisingly, the MAPE from 
Sentinel–2 (E3) was the second best at 6.45%, slightly better than the MAPE at 6.75% from drone (E2). 
This result confirms our previous suggestion that Sentinel–2 LAI is better than drone NDVI for 
estimating the LAI.  

Table 2. Performance of SIMRIW–RS based on weather station data. 

Experiment No. LAI data source Homogenous LAI MAPE (%) 
E1 LAI2200 No 10.95 

 LAI2200 Yes 3.61 
E2 Drone No 12.73 

 Drone Yes 6.75 
E3 Sentinel–2 No 10.10 

 Sentinel–2 Yes 6.45 

3.2. Performance Based on Satellite Products 

These experiments substituted weather station data with dekadal rainfall and LST products, as 
shown in Table 3. Note that the solar radiation was still retrieved by a weather station (a substitution 
with satellite products is underway). It is quite interesting that all results were in favor of satellite 
products which updated data every ten days. This may suggest that SIMRIW–RS is not very 
sensitive to weather data. Once again, homogeneous LAI from the field (E4) performed the best with 
a MAPE of 2.03%, and that from the Sentinel–2 (E6) followed with a MAPE of 5.12%  

Table 3. Performance of SIMRIW–RS based on dekadal satellite weather-related products. 

Experiment No. LAI data source Homogenous LAI MAPE (%) 
E4 LAI2200 No 10.59 

 LAI2200 Yes 2.03 
E5 Drone No 12.34 

 Drone Yes 5.38 
E6 Sentinel–2 No 9.79 

 Sentinel–2 Yes 5.12 

3.3. Performance Validation for 2019 Crop Data 

We validated our algorithm with crop data in 2019. This experiment also proved the robustness 
of the pre-optimized cultivar parameters embedded in SIMRIW–RS. The rice variety was changed to 
Phitsanulok 2 (planted between May 4 and August 20, 2019) whose actual yield was 4.90 ton·ha−1 
(obtained via farmer interview). Weather station data were included in the experiment to evaluate if 
the model could still perform well with satellite products (as it did with 2018 crop data). The actual 
LAI were estimated with the Sentinel–2 LAI product to demonstrate the intended satellite-based 
operation. Table 4 shows that the results were consistent with previous experiments in favor of 
satellite products and a homogenous LAI value (E8), with the best MAPE at 3.54%.  
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Table 4. Performance validation of SIMRIW–RS for 2019 crop data. 

Experiment No. Weather Data Homogenous LAI MAPE (%) 
E7 Station No 7.25 

 Station Yes 4.05 
E8 Satellite No 4.83 

 Satellite Yes 3.54 

3.4. Yield Prediction Performance for 2018/19 Crop Data 

Since the validity of SIMRIW–RS was confirmed, we conducted experiments to evaluate if 
SIMRIW–RS could reasonably predict the yield in advance, after it was properly recalibrated. The 
experiments in Section 3.2 and 3.3 (E4 – E6 and E8) were repeated with the current (2018/2019) and 
5-year historical (2013–2017) weather datasets from satellite products, as shown in Table 5. Current 
weather datasets were used until the recalibration of SIMRIW–RS was completed. The 5-year 
historical satellite-derived data were averaged and applied afterwards. Only experiments with 
homogenous LAI were conducted, as they showed superior performance. The results showed that 
SIMRIW–RS calibrated with the Sentinel–2 LAI product worked well with the historical weather 
dataset from the satellite, yielding an MAPE closed to 5% for both 2018 and 2019. In other words, 
SIMRIW–RS, once properly calibrated, can not only estimate rice yield at the harvest time but can 
also forecast the yield about two months before harvest with the historical weather dataset.  

Table 5. Performance of SIMRIW–RS based on a 5-year average historical satellite-derived weather 
dataset. 

Experiment No. Year LAI data source MAPE (%) 
E7 2018 LAI2200 1.99 
E8 2018 Drone 5.34 
E9 2018 Sentinel–2 5.08 

E10 2019 Sentinel–2 5.02 

3.5. Combining Drought Monitoring with SIMRIW–RS Crop Yield Estimation 

Since the same dataset of satellite products for drought monitoring systems is used as an input 
weather dataset for SIMRIW–RS, their outputs should show some consistency; i.e., drought may 
result in a rice yield deficit, whereas more water at certain rice stages may boost the rice yields. 
Figure 14 depicts the time-series DVI values at the test site during the 2018 and 2019 crop seasons. 
Since DVI values indicate more water in 2019 during the seedling and booting stages, SIMRIW–RS 
shows a similar trend with a higher simulated yield at 4.73 ton·ha–1 as compared with 4.13 ton·ha−1 
from the previous year. We can combine both functions to monitor areas with high values of 
drought vulnerability index and then automatically assess drought impact on their simulated yields. 
At present, the proposed satellite-based configuration can achieve MAPEs as good as 3.54% and 
5.02% for yield estimation and yield prediction, respectively. 
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(a) 

 
(b) 

Figure 14. Time series (seedling and booting stages) of drought vulnerability index of the test site in 
(a) the 2018 crop season (near normal) and (b) the 2019 crop season (extreme wet). Higher wetness in 
the 2019 crop season may be the reason for the 14.5% higher simulated yield (4.73 ton·ha−1) compared 
with the result from the previous year (4.13 ton·ha−1). For each figure, the top figures depict the site 
periphery whereas the bottom figures depict its location on the map.  

4. Discussion 

Simulation results show that SIMRIW–RS works well with satellite products. Sentinel–2 LAI 
can be used effectively to estimate actual LAI on the field and is important for recalibrating the field 
parameter in SIMRIW–RS. The recalibration process is key step in SIMRIW–RS simulation, which 
must be performed twice within 50 days after planting. Although there are many values of estimated 
LAI, we confirmed that only the average LAI value of the field can be used to optimize computation 
while retaining satisfactory results. 
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Weather datasets from satellite products, e.g., rainfall and LST, though updated every ten days, 
show results that are somewhat better than those of the weather station (about 1.5% less MAPE). 
Hence, SIMRIW–RS is not very sensitive to weather data. This characteristic is proven to be good for 
SIMRIW–RS to work with historical weather datasets for future yield forecasting. The cultivar 
parameters that were pre-optimized and embedded in SIMRIW–RS revealed themselves to be robust 
enough to be reused in 2019. Notably, SIMRIW–RS can capture farm-level characteristics through 
spatial data points in the field. Since these spatial data points can be provided by satellite products, 
SIMRIW–RS can also operate at a regional scale to serve thousands of users simultaneously. The 
abovementioned characteristics seem to address our research hypothesis that SIMRIW–RS is a 
potential crop simulation tool for drought impact assessment on rice yield at a regional scale. 

There are three challenges to be solved before SIMRIW–RS can operate nationwide. First, solar 
radiation input is currently retrieved from a weather station. One solution would be the solar 
radiation product from a geostationary satellite provided by Solcast7. This product is available in 
real time or as a 7-day forecast with 1-km spatial resolution and is updated every ten minutes. 
Second, cultivar parameters are currently pre-optimized by the SIMRIW–RS developer using 
various field and satellite products and embedded into the model. This simplifies employing 
SIMRIW−RS on the optimized field, with few inputs needed, whereas adaptation to other areas can 
be laborious. In Thailand, these field and cultivar parameters are available through respective 
government agency websites. For example, land uses and soil types are available from the Land 
Development Department, rice varieties from the Rice Department, farmer registration and crop 
activities from the Department of Agricultural Extension, crop yield and agricultural statistics from 
the Office of Agricultural Economics, agricultural pests and diseases from the Department of 
Agriculture, etc. The collection of these data in conjunction with machine learning tools may be a 
viable solution to automatically localize optimization of the cultivar parameters for the whole 
country. 

The last challenge is to develop a cloud-based smart agriculture platform that incorporates all 
drought monitoring and SIMRIW–RS functions, including access to the relevant data (IoT/remote 
sensing/web-based/crowdsourcing), recalibration of the simulated LAI, optimization of the cultivar 
parameter, and simulation of the entire crop cycle. More importantly, a mobile app is required to 
provide an intuitive user experience/user interface (UX/UI). This app collects inputs from farmers 
(crowdsourcing) and displays simulation outputs as well as precautions for some scenarios. To 
illustrate the concept, Figure 15 shows a related project called “RiceSAP”—a mobile app for rice crop 
monitoring and management for farmers [21]. The app acts as a user interface to the cloud platform. 
It currently employs the drought monitoring system and a crop simulation model from the Food and 
Agriculture Organization of the United Nations (FAO) called AquaCrop8. SIMRIW–RS can also be 
integrated into this platform as another efficient crop simulation model to share the same 
framework, inputs, and outputs from other subsystems.  

 
7 Available at https://solcast.com/solar–radiation–data/ 
8 Available at http://www.fao.org/aquacrop/en/  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. The RiceSAP mobile app: (a) welcome screen, (b) farmland registration, field practice, 
crop variety and planting date inputs; (c) crop monitoring functions, including rice stage, crop 
health, soil moisture, yield forecast and drought vulnerability index; (d) crop suggestion and 
management functions including watering and fertilizer schedules, taking crop photos, recording 
crop stages and actual yield. 

5. Conclusions 

Drought monitoring has been well developed in recent years. Unfortunately, drought impact 
assessment on crop yields has not shared the same trend due to the complex set of inputs required 
by crop simulation models. This work presents a methodology to combine both a drought 
monitoring model and a crop simulation model called SIMRIW–RS using satellite products. We 
show that satellite rainfall, LST, and NDVI products can be used for drought monitoring to generate 
a drought vulnerability index that can capture the dynamic of drought severity and duration in a 
given agricultural area. The same satellite rainfall and LST products are also proved to be effective 
weather inputs for SIMRIW−RS. When recalibrated with the Sentinel−2 LAI product, SIMRIW−RS 
can attain MAPEs of 5.12% and 3.54% for the 2018 and 2019 crop seasons, respectively. In addition, 
with 5-year historical satellite-derived weather datasets applied to SIMRIW−RS after recalibration, it 
can predict the rice yields approximately two months in advance with MAPEs of 5.08% and 5.02%. 
By observing time-series DVI values from a drought monitoring system, we can assess the effect of 
drought situations on the rice yield using SIMRIW−RS for a specified farmland. The result of the test 
site, based on the 2018 and 2019 crop season, exhibits consistent trends between time-series DVI and 
crop yields. 

These promising results lead us to believe that, with big data in agriculture available from Thai 
government agencies together with machine learning techniques, SIMRIW–RS can be locally 
optimized for all regions of paddy fields. Since our approach is satellite-based, it can potentially be 
extended to operate nationwide, requiring very few inputs from farmers. Both drought monitoring 
and SIMRIW–RS models will become essential subsystems of a smart agriculture platform to be 
developed for crop monitoring and management. Once fully developed, the platform will be 
valuable to stakeholders in the rice supply chain, especially farmers and crop insurers to share the 
same information pertinent to a fair yield loss assessment. In addition, the ability to forecast rice 
yield two months in advance provides sufficient time for stakeholders to make informed decisions to 
carry out adaptation schemes for climate change. 

Author Contributions: M.R. and W.V. performed the conceptualization, methodology, data analysis and 
preparation of the manuscript. K.H. and M.M. developed and maintained the SIMRIW−RS code and validated 
the results. K.O. administered field data collection, leading group discussions and conceptualization for the 
drought monitoring model. All authors have read and agreed to the published version of the manuscript. 



Remote Sens. 2020, 12, 2099 19 of 20 

Funding: This research was funded by the Science and Technology Research Partnership for Sustainable 
Development (SATREPS), JST–JICA, under the project “Advancing Co-design of Integrated Strategies with 
Adaptation to Climate Change in Thailand (ADAP–T)”, sub-project “The Development of Drought Risk 
Analysis Platform using Multiple Satellite Sensors and Yield Estimation by AquaCrop/SIMRIW-RS Models 
with Satellite Drought Indices”. 

Acknowledgments: The authors acknowledge CSRS staff for their efforts in field data collection and handling 
the experiments. This work could not have been successful without their support. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. The impact of disasters on agriculture and food security. Available online: 
http://www.fao.org/publications/card/en/c/fa17f187–9b92–439f–9952–1d6c13d14782 (accessed on 10 April 
2020). 

2. The impact of disasters and crises on agriculture and food security 2017. Available online: 
http://www.fao.org/publications/card/en/c/I8656EN (accessed on 10 April 2020). 

3. Attavanich, W.; Chantarat, S.; Chenphuengpawn, J.; Mahasuweerachai, P.; Thampanishvong, K. Farms, 
Farmers and Farming: A Perspective through Data and Behavioral Insights; Puey Ungphaforn Institute for 
Economic Research: Bangkok, Thailand, 2019. 

4. Agricultural Weather Index Insurance in Thailand. Available online:  
https://www.scribd.com/document/34089088/Agricultural–Weather–Index–Insurance–in–Thailand#down
load (accessed on 10 April 2020). 

5. Development of Agricultural Insurance in Thailand: Existing and Proposed Products. Available online: 
https://www.tbs.tu.ac.th/wp–content/uploads/2016/12/Dec–2016–Sommarat–Chantarat.pdf (accessed on 
April 10, 2020). 

6. Revolutionizing Agricultural Insurance. Available online:  
https://www.oic.or.th/sites/default/files/institute/course/89369/public/4–9–62_swiss_re_–_revolutionizing
_agriculture_insurance.pdf (accessed on 10 April 2020). 

7. Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and 
prospects. J. Geogr. Sci. 2016, 26, 750–767. 

8. AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.; Wardlow, B.D.; Hain, C.R. 
Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. 

9. West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, 
past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. 

10. Su, B.; He, Y.; Dong, X.; Wang, L. Drought Monitoring and Assessment Using Remote Sensing. In Remote 
Sensing of Hydrological Extremes; Lakshmi, V., Ed.; Springer: Cham, Switzerland, 2017; pp. 151–172. 

11. Son, N.-T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Chiang, S.H. Rice yield estimation through assimilating 
satellite data into a crop simumlation model. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 
XLI–B8, 993–996. 

12. Zhou, G.; Liu, X.; Liu, M. Assimilating Remote Sensing Phenological Information into the WOFOST Model 
for Rice Growth Simulation. Remote Sens. 2019, 11, 268. 

13. Singh, A.K.; Goyal, V.; Mishra, A.K.; Parihar, S.S. Validation of CropSyst simulation model for direct 
seeded rice–wheat cropping system. Curr. Sci. 2013, 104, 1324–1331. 

14. Prathumchai, K.; Nagai, M.; Tripathi, N.K.; Sasaki, N. Forecasting Transplanted Rice Yield at the Farm 
Scale Using Moderate-Resolution Satellite Imagery and the AquaCrop Model: A Case Study of a Rice Seed 
Production Community in Thailand. ISPRS Int. J. Geo Inf. 2018, 7, 73. 

15. Homma, K.; Maki, M.; Hirooka, Y. Development of a rice simulation model for remote-sensing 
(SIMRIW-RS). J. Agric. Meteorol. 2017, 73, 9–15. 

16. Raksapatcharawong, M. Development of drought risk analysis platform using multiple satellite sensors. 
Int. J. Geomate 2019, 17, 62–69. 

17. The Importance of Leaf Area Index (LAI) in Environmental and Crop Research. Available online: 
https://cid-inc.com/blog/the-importance-of-leaf-area-index-in-environmental-and-crop-research/#:~:text=L
eaf%20Area%20Index%20(LAI)%2C,)%20and%20is%20unit%2Dless (accessed on 13 June 2020). 



Remote Sens. 2020, 12, 2099 20 of 20 

18. Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; 
Colombo, R.; Miglietta, F.; Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface 
Reflectance and Vegetation Indices in Operational Conditions. Remote Sens. 2020, 12, 514. 

19. Veerakachen, W.; Raksapatcharawong, M. Rainfall estimation for real time flood monitoring using 
geostationary meteorological satellite data. Adv. Space Res. 2015, 56, 1139–1145. 

20. Cammalleri, C.; Vogt, J. On the Role of Land Surface Temperature as Proxy of Soil Moisture Status for 
Drought Monitoring in Europe. Remote. Sens. 2015, 7, 16849–16864. 

21. Veerakachen, W.; Raksapatcharawong, M. RiceSAP: An Efficient Satellite-Based AquaCrop Platform for 
Rice Crop Monitoring and Yield Prediction on a Farm- to Regional-Scale. Agronomy 2020, 10, 858,  
doi:10.3390/agronomy10060858. 

22. Maki, M.; Sekiguchi, K.; Homma, K.; Hirooka, Y.; Oki, K. Estimation of rice yield by SIMRIW-RS, a model 
that integrates remote sensing data into a crop growth model. J. Agric. Meteorol. 2017, 73, 2–8. 

23. Raksapatcharawong, M.; Watcharee, V.; Prompitakporn, P.; Wongsripisant, C.; Homma, K.; Maki, M.; Oki, 
K. Calibrating LAI Parameter with Remote Sensing Data for SIMRIW–RS in Thailand, In Proceedings of 
the THA 2019 International Conference on Water Management and Climate Change towards Asia’s 
Water–Energy–Food Nexus and SDGs, Bangkok, Thailand, 23–25 January 2019;pp. 66–71. 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


