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Abstract: Adversarial training has demonstrated advanced capabilities for generating image models.
In this paper, we propose a deep neural network, named a classified adversarial network (CAN),
for multi-spectral image change detection. This network is based on generative adversarial networks
(GANs). The generator captures the distribution of the bitemporal multi-spectral image data and
transforms it into change detection results, and these change detection results (as the fake data) are
input into the discriminator to train the discriminator. The results obtained by pre-classification
are also input into the discriminator as the real data. The adversarial training can facilitate the
generator learning the transformation from a bitemporal image to a change map. When the generator
is trained well, the generator has the ability to generate the final result. The bitemporal multi-spectral
images are input into the generator, and then the final change detection results are obtained from
the generator. The proposed method is completely unsupervised, and we only need to input the
preprocessed data that were obtained from the pre-classification and training sample selection.
Through adversarial training, the generator can better learn the relationship between the bitemporal
multi-spectral image data and the corresponding labels. Finally, the well-trained generator can be
applied to process the raw bitemporal multi-spectral images to obtain the final change map (CM).
The effectiveness and robustness of the proposed method were verified by the experimental results
on the real high-resolution multi-spectral image data sets.

Keywords: change detection; generative adversarial networks (GANs); multi-spectral remote
sensing image

1. Introduction

With the advances of science and technology, the ability of human beings to develop resources
and transform nature has been continuously enhanced. Changes in the natural world and various
human activities are changing the surface landscape and its land use forms every day. The rapid
growth of the world’s population and the continuous acceleration of urbanization have accelerated
the speed of this change. Land cover change research has become the focus of researchers [1–3].
Due to the characteristics of remote sensing technology, including real-time, fast, wide coverage,
multi-spectral, periodicity, etc. [4], this technology has become the main technical means of change
detection [5,6]. Remote sensing image change detection has become an important branch in remote
sensing applications.
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In recent years, remote sensing change detection has become a research hotspot, and has been
widely applied in many fields, including disaster assessment [7], environmental monitoring [8], and
urban expansion [9]. Remote sensing change detection could identify differences between images
acquired at different times in identical geographic areas [10,11]. A multi-spectral image has abundant
spectral information. With developed earth observation technology, we could obtain more and more
multi-spectral images for remote sensing change detection; thus, we introduce a novel change detection
method in multi-spectral remote sensing imagery.

Traditional change detection methods can be divided into three steps [7]. The first step is image
pre-processing, which makes the images as comparable as possible. In this step, co-registration [12]
and denoising [13] are widely used for image pre-processing. The second step is the generation of the
difference image (DI). In this step, change vector analysis (CVA) [14], based on the Euclidean distance
between the pixels, is widely used to generate the difference image. As this method must take all
the spectral data into account and the multi-spectral image has many spectra, this could cause many
calculations. Therefore, principal component analysis (PCA) is typically used for the feature selection
of multi-spectral images [15–17], and the most representative features are selected for change detection.
However, there are some shortcomings in this method, such as the unbalanced data, which could
influence this method. The third step is classification, which is able to distinguish pixels into changed
and unchanged. In this step, classification problems can be divided into unsupervised methods and
supervised methods. As the unsupervised methods do not need to collect and label the ground
truth [18,19] , this is widely applied in remote sensing change detection, such as thresholding [20,21]
and clustering strategies [22,23].

In recent years, many traditional methods were proposed for remote sensing image change
detection and have achieved great performance. Lv et al. [24] combined k-means clustering and
adaptive majority voting techniques [25] for remote sensing image change detection, and this
method demonstrated better detection accuracy. Zhong et al. [26] proposed a multifeature
probabilistic ensemble conditional random field model, which comprehensively considers the spectral
characteristics of single pixels and the interactions between domain pixels. Liu et al. [27] proposed
an unsupervised change detection method based on a histogram threshold using a Gaussian mixture
model. Wan et al. [28] proposed a change detection method based on sorted histograms.

Although these methods have achieved great performance, they have some disadvantages;
the unsupervised methods cannot identify the detailed change information, especially when
changed and unchanged features overlap or inaccurately model their statistical distributions, or
the unsupervised methods could produce poor results. This situation would become worse as the
spatial resolution increases. Supervised methods [29,30] mainly use prior information to train the
classifier that can classify pixels into changed and unchanged. However, there is great difficulty in
labeling the training data. Supervised and unsupervised methods mainly rely on the hand-crafted
feature representation; thereby, the performance of modeling complex high-level change information
is poor. Multi-spectral images have much spectral information, which means that these traditional
methods face many challenges [31]. Thus, it is necessary to explore new methods for multi-spectral
image change detection.

Deep learning has been widely applied in remote sensing image processing tasks and has achieved
excellent performance [32–34]. With the continuous development of deep neural networks, such as
AlexNet [35], VGGNet [36], and GoogleNet [37], remote sensing image change detection methods
based on deep learning have achieved great success. The change detection methods based on deep
learning could be divided into two steps. First, the bitemporal images are handled by traditional
methods, like CVA-based [38] and PCA-based [39] approaches, to obtain the initial change detection
results. Then, suitable samples are selected from the initial results as the training set, and these samples
are fed into the deep neural network to train the network. When the network is trained well, the test
images are input into the neural network to obtain the final change detection results [40,41].
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Lin et al. [42] adopted an end-to-end bilinear convolutional neural network to detect changes.
Liu et al. [43] proposed a deep siamese convolutional network model with dual task constraints that
contained three subnets for change detection. Zhang et al. [44] proposed a two-stage object-based
deep learning method for multi-temporal Synthetic Aperture Radar (SAR) image change detection.
Lu et al. [45] proposed a spectral–spatial joint learning network considering both spectral and spatial
information. Although the change detection methods based on deep learning achieved considerable
detection results, it is very difficult to produce labeled data; thus, unsupervised methods typically
perform better than supervised methods [46].

As it is difficult to obtain sufficiently reliable labeled samples to train a network,
the deep-learning-based methods using a single deep neural network cannot adequately learn the
concept of changed and unchanged pixels. The generative adversarial networks (GANs) have become
a research hotspot and have demonstrated advanced results for image generation models [47,48].
The specific network structure for GANs can be set according to the actual application, rather than
a fixed structure. M. Gong et al. explored the GAN-based change detection method (GAND) as
multi-spectral change detection [49]. In the method, a better difference image (DI) can be obtained
by a generator and, then, can be analyzed with a clustering algorithm to obtain the change detection
result. However, the performance of this approach is still affected by the clustering algorithm.

Thus, we developed a new classified adversarial network (CAN) based on GANs for multi-spectral
change detection. By adversarial training, a generator can better learn the relationship between the
bitemporal multi-spectral image data and the corresponding labels. Finally, the well-trained generator
can be applied to process the raw bitemporal multi-spectral images, and the final change map (CM)
can be generated. For the whole process, this change detection method is completely unsupervised
and can meet specific application needs.

In this paper, we propose a classified adversarial network for multi-spectral remote sensing image
change detection. First, the method based CVA was used to generate the initial CM, and then the
training sample selection method was used to select the training sample. Secondly, the selected sample
was input into the classified adversarial network to train this network. When the discriminator is
unable to identify the generated fake data, the data generated by the generator is very similar to the
real data. Finally, the generator can output the final change detection result. The contributions of this
paper are summarized as follows:

(1) This paper proposed the method named CAN to solve change detection in multi-spectral
remote sensing images. Experimental results on the real multi-spectral remote sensing images
demonstrated that the proposed CAN trained by unlabeled data and a small amount of labeled
data can achieve better performance.

(2) We used a sample selection method based on neighborhood information to select training
samples, which made the selected training samples more reliable.

(3) The performance of the classified adversarial network was not affected by the clustering
algorithm. The data generated by the generator can be directly used as the final result, and does not
need to be processed by the clustering algorithm.

The remainder of this paper is organized as follows. The relevant theory of GANs and the
proposed method are described in detail in Section 2. The experimental results are reported in
Section 3, and Section 4 draws our conclusions.

2. Methodology

In this section, we will introduce the procedure of CAN, which includes generative adversarial
networks, training sample selection, network establishment, and network training. Figure 1 shows the
framework of classified adversarial networks for multi-spectral remote sensing image change detection.
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Figure 1. Flowchart of the classified adversarial network (CAN)-based method for remote sensing
image change detection. First, the initial change detection result is obtained using a change vector
analysis (CVA)-based method. Then, the reliable, labeled data can be selected according the initial
result. Adding noise into the labeled data is regarded as fake data. Labeled data and fake data are used
to train the CAN, and the discriminator is used to judge whether the output of the classifier is reliable.
Finally, bitemporal multi-spectral remote sensing images are fed into the classifier when it is trained
well to obtain the final change map (CM).

2.1. Generative Adversarial Networks

The GANs were proposed by Goodfellow et al. in 2014 [50]. The main structure of GANs includes
a G (Generator) and a D (Discriminator). During the training process, the generator gradually becomes
stronger in generating realistic images, and the discriminator gradually becomes stronger in the ability
to distinguish these images. When the discriminator is no longer able to distinguish between real and
fake pictures, the training process is balanced. GANs training is in a state of confrontation, and follows
the objective function:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1− D(G(z)))]
(1)

In Equation (1), the x represents real data, z represents the additional noise, and E represents
the empirical estimate of the expected value of the probability. After continuous adversarial
training, the skills of the G (Generator) continue to improve, and finally deceive the discriminator D
(Discriminator) . Discriminator D improves its own discrimination ability, and finally can accurately
judge the fake data. When D cannot identify the fake data generated by G, the data generated by G is
very similar to the target data.

2.2. Pre-Classification

Before the selection of training samples, we obtained the initial results using a traditional method.
The method based on change vector analysis (CVA) is widely used in change detection, and was used
to obtain the initial result for the selection. The two multi-spectral images, registered as X1 and X2,
correspond to different times, t1 and t2, over the same area. The DI between these two images was
obtained by the CVA. The Otsu algorithm is a widely used thresholding approach that is easy to
apply and performs well [51]. The Otsu algorithm processes the difference image (DI) obtained by
CVA, which gains the initial change map (CM) by classifying the pixels of the DI into changed and
unchanged classes. Figure 2 shows the flowchart of generating the initial change map.
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Figures 3–5 show the change maps obtained with the CVA-based method and the real results.
In Figure 3, compared with the real results, the change maps obtained with the CVA-based method
have many white noise points, and some unchanged regions that are incorrectly classified into changed
areas. In Figures 4 and 5, due to the geographical environment being more complicated and the pixel
value of the area where the image changes not being obvious, the change map obtained with the
CVA-based method has a great deal of false detection. Compared with reference images, the change
maps obtained with the CVA-based method were not satisfactory. Therefore, the sample selection
approach was used to select samples to obtain better results.

Image preprocessing
Initial multi-spectral 

images 

Change vector 

analysis

Otsu threshold 

classification
Initial change map

Figure 2. Flowchart of the CVA-based method for generating the initial change map.

(a) (b)

Figure 3. (a) The change map obtained with the CVA-based method in the Yandu Village data set.
(b) The reference image of the Yandu Village data set.

(a) (b)

Figure 4. (a) The change map obtained with the CVA-based method in the Minfeng data set. (b) The
reference image of the Minfeng data set.
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(a) (b)

Figure 5. (a) The change map obtained with the CVA-based method in the Hongqi Canal data set.
(b) The reference image of the Hongqi Canal data set.

2.3. Training Samples Selection

The results obtained by the CVA-based method cannot be directly used to train the network.
From the pre-processed results, we selected the sample with the highest probability of being classified
correctly. For the initial change detection result, we used neighborhood-based criteria to choose the
training samples [40].

N(pab ∈ Mij ∧ Lab = Lij)

n× n
= 1 (2)

where the neighborhood of the pixel pab is in the Mij. In the initial change map, the pixel pij is at
position (i, j), and the Mij is a neighborhood centered on pij. N(pab ∈ Mij ∧ Lab = Lij) is the number
of pixels in the neighborhood where the label is the same as Lij. n× n is the size of the neighborhood.
If the pixel pij satisfies the condition in Equation (2), it will be selected as the training sample. Figure 6
shows the impact of the threshold on the accuracy of the selected samples. When the threshold is set
to 1, the accuracy of selected samples is the highest. Therefore, in this paper, the threshold was set to
1. Figure 7 shows the examples of training samples selected under different thresholds in the Yandu
Village data set. When the threshold was set to 1, the size of training sample was the smallest.
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Figure 6. The impact of the threshold on the accuracy of the selected samples.
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(a) (b)

(c) (d)

Figure 7. Examples of the training samples selected under different thresholds in the Yandu Village
data set. The white region is the selected changed pixels, the black region is the selected unchanged
pixels, and the gray region is the not-selected pixels. (a) The threshold is 1. (b) The threshold is 0.9.
(c) The threshold is 0.8. (d) The reference image of the Yandu Village data set.

2.4. Network Establishment

The CAN includes a G and a D, in which G is not only a generator, but also a classifier.
The multi-spectral image data of different phases are fed into G, and their corresponding outputs are
the categories of the pixels, which are changed or unchanged. The results of G are fed into D as the
fake data. In addition, the results obtained by pre-classification are entered into D as the real data.
In the CAN, the neighborhood features of the image pixels are fed into G to make use of the spatial
information and robust local features of the pixels [41]. The CAN can be built by G and D above, where
G and D are composed of multi-layer perceptrons. G is composed of ω×ω×N× 2− 100− 50− 25− 1,
and D consists of 1− 2− 1 in the proposed framework. The ω indicates the neighborhood size of
pixels and N indicates the number of spectrums. For each pixel location, the neighborhood features of
the two phases are connected to the final feature, so the input dimension of G is ω×ω× N × 2.

2.5. Network Training

All the training samples obtained from the pre-classification are used for training the CAN,
and the training process follows the objective function below:

LD = max
D
Ex∼px(x)[log(D(x))]+

Ey∼py(y)[log(1− D(G(y)))]
(3)

LG = min
G
Ey∼py(y)[log(1− D(G(y)))] + λL1(G(y)) (4)
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where
L1(G(y)) = ||x− G(y)||1. (5)

x is the “real” change map, named as the initial change detction result by pre-classification, and y
is the bitemporal multi-spectral pixel data and noise-added pixel data. The first term of LD aims to
increase the probability that pixels belong to the real class, and the second term of LD aims to force D
to distinguish between the real data and fake data generated by G, to increase the probability that the
generated data belongs to the fake class. G converts the bitemporal multi-spectral data into the data
that are similar to the “real” CM. The first term of LG aims to decrease the probability that generated
data belongs to the fake class. The second term of LG aims to decrease the distance between the
generated data and real data to generate data that are closer to the real data. The previous methods
have demonstrated the advantages of L1 and L2 distance for the GANs. We applied the L1 distance
instead of L2 because L1 brings less blurs [47,48]. The λ controls the weight of L1 in the objective
function in Equation (4).

The specific training process of the CAN is stated as follows. First, the parameters of G and D
that contain weights and biases are randomly initialized. Then, G and D are trained with the random
gradient descent algorithm. D is trained by optimizing Equation (3) with training samples when G
is fixed. This is followed by optimizing Equation (4) to train G when D is fixed. Thus, G and D are
alternately trained like this until Equation (3) is convergent. Through the adversarial training between
G and D, G can learn the transformation from bitemporal images to the CM.

The output layer of G is a sigmoid function, whose value represents the probability that the pixel
belongs to the changed or unchanged class. We can obtain the final change detection result according
to the output of G. The behavior of the change map over the evolution of the training process is shown
in Figure 8. In Figure 8, we chose four representative change maps generated by G in the Minfeng
data set, from which we found that the data generated by G was increasingly similar to the real
data. Figure 9 shows the losses of the Generator and Discriminator during the training in the Minfeng
data set. With the continuous alternating training of G and D, the ability of D to distinguish the fake
and real data becomes stronger and stronger, and the ability of G to capture the data distribution also
becomes stronger.

As the selected pixels and the not-selected pixels are from the same data set, there is similarity
between the features. Therefore, the classifier is used to process the not-selected pixels and classify
them as changed and unchanged. The entire network can not only be applied to the not-selected
pixels but can also reduce the interference of the error information in the training samples to the
network performance. The training procedure of the CAN is summarized in Algorithm 1.

Algorithm 1 The procedure of the CAN.
Input: A pair of initial images
Output: Final change map (CM)

1. Obtain the difference image (DI) by change vector analysis (CVA).
2. Use Otsu to divide the pixels in the differential image into changed and unchanged, and obtain

the initial change map (CM).
3. Use the sample selection algorithm to select training samples in the initial change map.
4. The parameters of G and D randomly initialize.
5. Fix network G, and update the parameters of D by optimizing Equation (3).
6. Fix network D, update the parameters of G by optimizing Equation (4).
7. Alternately perform step 5 and step 6 until Equation (3) is convergent.

Return: The final classification result (changed or unchanged)
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(a) (b)

(c) (d)

Figure 8. The behavior of the change map over the evolution of the training process. (a) The output
of G in the first iteration (FP:44389; FN:4893; OE:49282; KC:0.3617; F1:0.4355). (b) The output of G
in the tenth iteration (FP:35905; FN:4945; OE:40850; KC:0.4167; F1:0.4814). (c) The output of G in the
twentieth iteration (FP:22824; FN:6182; OE:29006; KC:0.4998; F1:0.5499). (d) The output of G in the final
iteration (FP:9772; FN:7381; OE:17153; KC:0.6272; F1:0.6583).

(a) (b)

Figure 9. The losses of the Generator and Discriminator during training. (a) The loss of G. (b) The loss of D.

3. Experimental Study

In order to verify the effectiveness of our proposed method from multiple aspects, we selected
five contrast algorithms to experiment on three multi-spectral remote sensing data sets. The first
was the CVA-based method. This method first used change vector analysis (CVA) to obtain the
difference images (DI), and then Otsu was used to obtain the final result. The second was a PCA-based
method [52]. Principal component analysis (PCA) is typically used for feature selection of multi-spectral
images, and the most representative features are selected for change detection. The third was a deep
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neural network (DNN)-based method, the network structure of the DNN-based method was the same
as the G (Generator), and we used labeled data to train this network. The forth was a GAN-based
method (GAND) [53]. For the GAN-based method, we selected the best combination in the GAND
as a comparative method by training the network with the same data set. The fifth was based on
iterative reweighted multivariate change detection (IR-MAD) and GAN [53]. IR-MAD repeatedly
assigns different weights to observations until they converge and are more stable.

3.1. Data Sets Description

We selected three representative data sets to verify the proposed method. These three data
sets were the Yandu Village data set, Minfeng data set, and Hongqi Canal data set, as shown in
Figures 10–12. The images on the three data sets had four bands (R, G, B, and NIR). The details of
the data sets we used are introduced in Table 1. The false negative (FN) indicates that changed pixels
are mistakenly detected as unchanged pixels. The false positive (FP) indicates that unchanged pixels
are incorrectly detected as changed pixels. The true positive (TP) indicates the changed pixels that
are correctly detected. The true negative indicates the unchanged pixels that are correctly detected.
The false positive (FP), false negative (FN), overall error (OE), kappa coefficient (KC), and first error
measure F1 can be used to assess the change detection method [54]. Where

OE = FP + FN (6)

KC =
OA− PRE

1− PRE
. (7)

In Equation (7), OA represents the percentage of the overall accuracy, and PRE represents the
ratio of expected agreement, as follows:

OA =
TP + TN

TP + TN + FP + FN
(8)

PRE =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 +
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 (9)

F1 =
2TP

2TP + FP + FN
. (10)

(a) (b) (c)

Figure 10. The Yandu Village data set. (a) Image acquired on 19 September 2012. (b) Image acquired
on 10 February 2015. (c) Reference image.
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(a) (b) (c)

Figure 11. The Minfeng data set. (a) Image acquired on 9 December 2013. (b) Image acquired on
16 October 2015. (c) Reference image.

(a) (b) (c)

Figure 12. The Hongqi Canal data set. (a) Image acquired on 9 December 2013. (b) Image acquired on
16 October 2015. (c) Reference image.

Table 1. Details of the data sets we used.

Data Set Minfeng Yandu Village Hongqi Canal

Image Size 651× 461 322× 266 539× 543
Spatial Resolution (unit: m) 2.0 0.5 2.0

Satellite GF-1 WorldView-2 GF-1
The percentage of selected training samples 31.2% 58.8% 44.7%

3.2. Parameter Setting

3.2.1. Effects of Parameter ω

In this paper, the ω represents the size of the neighborhood. The value of ω determines how
much neighborhood information is included: a larger ω means richer neighborhood information.
Less neighborhood information will make it more difficult to learn the inherent features of the image.
Conversely, sufficient feature information can give the network sufficient feature information for
training but could generate redundant information. We set ω as 3, 5, 7, and 9 to obtain change
detection results with the proposed method. Figure 13 shows the relationship between KC and
F1 and the ω in the three data sets. According to the line chart, when ω was set to 5, the change
detection results were satisfactory, and the best performance was obtained on three real image data
sets. The choice of the size of the neighborhood depends on the type of observed scene; the optimal
sizes of the neighborhood will be different. In practical applications, ω should be set accordingly for
the different observed scenes.
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(a) (b)

Figure 13. The impact of ω on the change detection results. (a) The impact of ω on KC. (b) The impact
of ω on F1.

3.2.2. Effects of Parameter λ

In this paper, the λ was set from 0 to 100 to obtain the change detection results with the proposed
method. The KC and OE became stable when λ was greater than 15. Figure 14 shows the relationship
between KC and OE and the λ. When λ was 0, the CM generated by G was different from the real
data, and CAN had poor performance on all three data sets. When the λ was 1, CAN achieved the
best performance on the Minfeng and Hongqi Canal data sets. This is because L1 facilitates G to
generate data similar to the real data so that more image data are correctly classified into the changed
or unchanged classes. When λ was greater than 1, the KC started to drop, OE started to increase
and gradually stabilize when λ was greater than 7 for these two data sets. The CAN was affected by
the noise information in multi-spectral images when λ was too large so that G could not effectively
transform the bitemporal image data into the CM. CAN maintained good performance on the Yandu
Village data set when λ was equal to or greater than 1. Therefore, it was reliable for the three data
sets to set λ to 1 through the above analysis. In practical applications, we should set the value of λ

according to the different observed scenes.

(a) (b)

Figure 14. The impact of λ on the change detection results. (a) The impact of λ on KC. (b) The impact
of λ on OE.

3.2.3. Results on the Yandu Village Data Set

Figure 15 shows the final change map of the Yandu Village data set by various change detection
methods. As shown in Figure 15a, the change map obtained with the CVA-based method contains a
great deal of noise, and there are a large number of pixels that were erroneously detected in the results
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obtained by the CVA-based method. Therefore, the change map obtained by CVA-based method still
requires improvement. Figure 15b shows the change map gained with the PCA-based method. There
is also a greta deal of noise, and some unchanged regions are incorrectly classified into changed areas,
which is still unsatisfactory. Figure 15c shows the results obtained by the DNN-based method. All
of the selected samples were used to train the DNN. Compared with the CVA-based method and
PCA-based method, the results of change detection were greatly improved.

This result demonstrates the powerful learning ability of the DNN. Figure 15d,e shows the results
obtained by GAND and IR-MAD+GAN. When there were less noise points in the changed area,
this method demonstrated good performance. However, when there were many noise points in the
changed area, GAND incorrectly detected some of the changed areas into unchanged areas. CAN
could better learn the distribution of the image and transform it into a CM. Thus, CAN could detect
more changed areas in comparison with GAND; the CM is shown in Figure 15f. Quantitative analysis
for various methods is listed in Table 2. Compared with other methods, the CAN we proposed had the
best performance (i.e., the KC was 0.7813, and the F1 was 0.8102).

(a) (b)

(c) (d)

(e) (f)

Figure 15. CMs for the Yandu Village data set produced by various methods. (a) CVA. (b) Principal
component analysis (PCA). (c) Deep neural network (DNN). (d) Generative adversarial network (GAN)-based
method (GAND). (e) Iterative reweighted multivariate change detection (IR-MAD)+GAN. (f) CAN.
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Table 2. Evaluation of the experimental results on the Yandu Village data set. False positive (FP), false
negative (FN), overall error (OE), kappa coefficient (KC), and first error measure F1.

Method FP FN OE KC F1

CVA 5967 3169 9136 0.6205 0.6839
PCA 5290 3132 8422 0.6358 0.6940
DNN 1242 3501 4743 0.7693 0.8011

GAND 338 4381 4719 0.7538 0.7845
IR-MAD+GAN 595 4091 4686 0.7621 0.7927

CAN 672 3706 4378 0.7813 0.8102

3.2.4. Results on the Minfeng Data Set

Changes in the MinFeng data set were mainly changes in buildings in the process of urbanization,
and it was more difficult to detect changes in this complex geographic environment. As shown in
Figure 16a,b, the CMs generated by the CVA-based method and the CVA-based method had many
white noise points and some changed areas were not accurately detected. DNN had poor performance
on the Minfeng data set because the training data of the Minfeng data set included many inaccurate
datapoints; its CM is shown in Figure 16c. For these two images, as shown in Figure 16d, GAND was
able to obtain a more accurate DI, and was able to identify most of the changed areas. Figure 16e shows
the results obtained by IR-MAD+GAN. IR-MAD+GNN had poor performance on the Minfeng data
set because the IR-MAD incorrectly classified residential areas (upper left corner) as changed areas.
Figure 16f shows the CM obtained by CAN, CAN could gain good performance because the G could
better learn the relationship between the image data and the CM. Furthermore, according to Table 3,
the CAN we proposed had the best performance (i.e., the KC was 0.6272, and the F1 was 0.6583).

Table 3. Evaluation of the experimental results on the Minfeng data set.

Method FP FN OE KC F1

CVA 56,199 7403 63,602 0.2519 0.3416
PCA 36,172 4395 40,567 0.3943 0.4559
DNN 30,971 4744 35,715 0.4531 0.5111

GAND 5287 8728 14,015 0.6151 0.6390
IR-MAD+GAN 22,727 7299 30,026 0.4729 0.5252

CAN 9772 7381 17,153 0.6272 0.6583

3.2.5. Results on the Hongqi Canal Data Set

Changes in the Hongqi Canal data set were mainly changes in the river and land near Xijiu
Village. Figure 17a shows the results obtained with the CVA-based method. The CM generated by the
CVA-based method had many unchanged regions that were incorrectly detected as changed regions.
As shown in Figure 17b, the CM generated by the PCA-based method had some white noise points.
Some small changed areas could not be recognized. For example, changes in the lower left corner were
not detected. Figure 17c shows the results obtained with the DNN-based method. Compared with the
CVA-based method and PCA-based method, the results obtained by the DNN-based method had less
noise points, and the small changed area was detected.

Figure 17d represents the change detection result of the GAND-based method on this data
set. The GAND-based method detected a number of changed areas with some white noise points.
Although it achieved a better DI, The performance of the clustering algorithm limited the performance
of the GAND-based method. As shown in Figure 17e, the CM generated by IR-MAD+GAN had more
pixels that were erroneously detected. The CM obtained by CAN with less noise points is shown in
Figure 17f, and could detect major changed areas. The quantitative analysis for various methods is
listed in Table 4. Compared with other methods, the CAN we proposed had the best performance
(i.e., the KC was 0.7366, and the F1 was 0.7572).
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(a) (b)

(c) (d)

(e) (f)

Figure 16. CMs for the Minfeng data set produced by various methods. (a) CVA. (b) PCA. (c) DNN.
(d) GAND. (e) IR-MAD+GAN. (f) CAN.

Table 4. Evaluation of the experimental results on the Hongqi Canal data set.

Method FP FN OE KC F1

CVA 19,141 15,888 35,029 0.3418 0.4082
PCA 7906 10,422 18,328 0.6092 0.6434
DNN 7142 6546 13,688 0.7231 0.7489

GAND 3236 12,100 15,336 0.7252 0.7539
IR-MAD+GAN 11,443 4472 14915 0.7285 0.7466

CAN 1472 10,030 11,502 0.7366 0.7572
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(a) (b)

(c) (d)

(e) (f)

Figure 17. CMs for the Hongqi data set produced by various methods. (a) CVA. (b) PCA. (c) DNN.
(d) GAND. (e) IR-MAD+GAN. (f) CAN.

4. Conclusions

In this paper, a classified adversarial network (CAN) was established for multi-spectral
image change detection. The initial change detection results were obtained by pre-classification.
Multi-spectral image data were input into the generator and then converted into data similar to the
initial change detection results. By adversarial training, the generator could classify the changed pixels
and unchanged pixels. When the generator was trained well, the generator had the ability to divide
the pixels into two categories: changed and unchanged, and the generator could output the final
change map. Although the CAN requires trained samples to be provided through pre-classification,
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pre-classification only needs to filter the samples by adding constraints, and there is no manual
intervention in this process. Therefore, the proposed method is completely unsupervised in the
whole process. From the experiments on real multi-spectral image data sets with high resolution,
our qualitative and quantitative analysis demonstrated the effectiveness and advantages of the
proposed method for multi-spectral image change detection.
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