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Abstract: Having updated knowledge of cropland extent is essential for crop monitoring and food
security early warning. Previous research has proposed different methods and adopted various
datasets for mapping cropland areas at regional to global scales. However, most approaches did not
consider the characteristics of farming systems and apply the same classification method in different
agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification
training remains challenging. To address these knowledge gaps and challenges, this study applied
a zone-specific classification by comparing four classifiers (random forest, the support vector machine
(SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping
over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived
indices were used and synthesized to generate thirty-five layers for classification on the Google Earth
Engine platform. Training samples were derived from three existing landcover datasets to minimize
the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m
resolution. The performance of the four classifiers and the viability of training samples were analysed.
All classifiers presented higher accuracy in cool AEZs than in warm AEZs, which may be attributed to
field size and lower confusion between cropland and grassland classes. This indicates that agricultural
landscape may impact classification results regardless of the classifiers. Random forest was found
to be the most stable and accurate classifier across different agricultural systems, with an overall
accuracy of 84% and a kappa coefficient of 0.67. Samples extracted over the full agreement areas
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among existing datasets reduced uncertainty and provided reliable calibration sets as a replacement
of costly in situ measurements. The methodology proposed by this study can be used to generate
periodical high-resolution cropland maps in ZRB, which is helpful for the analysis of cropland
extension and abandonment as well as intensity changes in response to the escalating population and
food insecurity.

Keywords: cropland mapping; agricultural diversity; Zambezi River basin; agroecological zones;
random forest

1. Introduction

Croplands are changing continuously and intensively at regional to global scales due to climate
change and human activities [1]. Cropland extent is an essential part of crop monitoring because it is
fundamental for the analysis of crop inventory and the assessment of crop status [2–5].

Approximately 90% of staple food production in sub-Saharan Africa is provided by rainfed
farming systems [6]. In the Zambezi River Basin (ZRB), variations in climate conditions have a direct
influence on crop outputs as they may turn into extreme rainfall or extended period of drought [6,7].
The effects of climate change [8] combined with filed sizes and cropping systems in the basin, contribute
to the reduced food production [9]. The reduced food production makes the ZRB one of the most
vulnerable regions in terms of food security in the continent. The expansion of cropland is a primary
way to increase crop production in sub-Saharan Africa. According to official statistics, the cropland
in the ZRB has experienced a considerable increase since the 1980s [10]. The driving force in the rise
was due to a major political and socio-economic transition which changed the agricultural landscape,
cropping practices, and productivity, and ultimately influenced the water cycle, water resources, and
energy generation. Accurate and timely analysis of cropland extent can provide objective information
for decision-making in agricultural management, food security early warning, and food allocation
in this region. Nevertheless, mapping cropland extent remains challenging in the ZRB, mainly because
of landscape heterogeneity, fragmented agricultural fields, and different cropping patterns [8,11,12],
which makes it difficult to discriminate cropland from other vegetation classes such as grassland.
To avoid these problems, different aspects, including the quality of input data, methodology to be
applied and land features, should be considered [13–15].

Various approaches have been developed and tested by researchers to obtain an accurate
and timely cropland extent. Compared to conventional methods such as field surveys, remote
sensing-based cropland identification is a more rapid and cost-effective method [13–15], and therefore
provides more frequently updated cropland information [15–17]. Numerous studies have utilized
supervised classification methodologies for cropland mapping using various satellite datasets [1,18–21].
Among those supervised classifiers, the random forest classifier [18,21], the classification and regression
tree (CART), the support vector machine (SVM) [20,22], maximum likelihood and minimum distance [23]
and the naive Bayes classifier [24] are commonly used [18]. Based on these approaches, several fine
resolution landcover and cropland products have become available in recent years, including the fine
resolution observation and monitoring of global land cover (FROM-GLC) dataset at 30 m resolution for
2010 [25], the Landsat-derived GLOBELAND30 (GLC30) dataset at 30 m resolution for 2000 and 2010 [26],
the Copernicus global land operations (CGLS) land cover product of Africa (CGLS-LC100 at a 100 m
resolution for 2015), the European Space Agency Climate Change Initiative Land Cover, Global Land
Cover map at 300 m for 2015 (ESACCL-LC-L4-300), the Sentinel-2 Prototype (ESACCI-LC_S2_Prototype)
map for Africa at a 20 m resolution for 2016 [27], and the Global Food Security support analysis data
over the continent of Africa for 2015 at a 30 m resolution (GFSAD30AFCE) [18]. The accuracies of these
landcover products depend on their input data sources.
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Recently, researches evaluated the accuracy of these datasets, and it was found that the
GLOBELAND30 (GLC30) had an overall accuracy of 78.6% for the year 2000 and 80% for the
year 2010 [26]. The overall accuracy of the ESACCI-LC_S2_Prototype dataset was approximately
65% [27], while ESACCL-LC-L4-300 had an overall accuracy of 71.5% [28]. GFSAD30AFCE [18],
FROM-GLC [25], and CGLS-LC100 [29] have as overall accuracies of 94.5%, 64.9% and 74.3%,
respectively. Independent validation shows that the overall accuracies of all four datasets
(CGLS-LC100 [29], ESACCL-LC-L4-300 [28], GFSAD30AFCE [18], and ESACCI-LC_S2_Prototype [27])
were below 65% [12]. Furthermore, results revealed an overestimation of crop area in most
countries when compared with the statistics from the Food and Agriculture Organization (FAO) [30].
Several studies have attempted to include more indicative spectral features to improve classification
accuracy [5,18]. For example, taking advantage of crop growth features derived from satellite data, the
GFSAD30AFCE obtained a relatively higher accuracy than that in other studies [12,19]. The use of
time-series data has been proven better than using a single date image [31]. Furthermore, the use of
remote sensing data with high spatial resolution is one of the primary factors to obtain high-quality
cropland maps [3,14,20]. However, studies have also indicated that a single factor, such as high
spatial resolution alone, may not be enough to yield the desired improvement in mapping accuracy.
For instance, even though there is an improved spatial resolution from using Sentinel-2 images, this
does not result in a significant improvement in the accuracy of cropland mapping [12]. Studies have
reported that although accuracy might be improved by spatial stratification [32], limited tests have
been carried out and are not publicly available. Despite the efforts to enhance input data for mapping,
the high cost of obtaining in situ samples and the lack of training samples when applied over a large
scale are other limiting factors to further improve cropland product accuracy [33].

According to [34], the ZRB is composed of four agroecological zones AEZs, namely, tropic cool
semiarid, tropic cool sub-humid, tropic warm semiarid, and tropic warm sub-humid zones. Each of
these AEZs represents diversified characteristics of cropping practices, field sizes and, heterogeneity of
landcover and climate variation [35]. For example, the tropic cool zones are characterized by large
field sizes compared to tropic warm zones. These characteristics influence the discrimination of
cropland from non-cropland areas. This study aims to investigate the stability of several parametric
and non-parametric classifiers for cropland mapping by addressing the diversity in landcover and
cropping systems over four different AEZs in the ZRB, taking advantage of multiple fine resolution
datasets (Landsat-8 and Sentinel-2), as well as cloud computing with Google Earth Engine (GEE)
(https://earthengine.google.com/) [36,37]. The objectives of the paper are (1) to evaluate the feasibility of
training samples derived from existing datasets for large-scale cropland mapping and (2) to investigate
the stability of four different classifiers (machine learning (random forest, support vector machine, and
classification and regression tree) and non-parametric (minimum distance) classifiers) over different
AEZs with diverse landscapes and cropping systems.

2. Materials and Methods

2.1. Study Region

The study focused on the Zambezi River basin (ZRB), located in Southern Africa (Figure 1).
The Zambezi is the fourth-longest river in Africa [38], and its basin covers an estimated area of
approximately 1.38 million km2 [39,40]. It stretches from the upper Zambezi in Zambia to the Zambezi
delta in Mozambique, with river discharge of approximately 2600 m3 s−1 of water into the Indian
Ocean [39,41]. This basin connects eight countries, namely, Angola, Botswana, Malawi, Mozambique,
Namibia, Tanzania, Zambia, and Zimbabwe. The largest section of the basin is in Zambia (approximately
40.7% of the total area of the basin), followed by Angola (18.3%). Zimbabwe, Mozambique, Malawi,
Botswana, Tanzania, and Namibia represent 15.9%, 11.4%, 7.7%, 2.8%, 2.0% and 1.2% of the total area
of the basin, respectively [41].

https://earthengine.google.com/
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The ZRB consists of three sections, namely, the Upper Zambezi, which stretches from the headwater
to Livingston in Zambia; the Middle Zambezi from Livingston to Cahora Bassa Dam in Tete province
in Mozambique; and the Lower Zambezi from the Cahora Bassa Dam to Beira (Zambezi delta) [38,42].
Agriculture is one of the major economic activities of all basin countries. About 70% of the basin
population depends on agriculture for subsistence [43]. Over the region, four categories of cropland
sizes have been identified, varying from very small field sizes (less than 2.5 ha) to large field sizes (more
than 60 ha) [8]. According to [44], the dominant cropping system over the ZRB is rainfed. As a result,
agriculture in this region is profoundly affected by rainfall variability [45,46]. Although little rainfall
is received during the dry season (April to September), there is a small fraction of the basin that is
equipped with irrigation systems to support some agricultural practices performed all year-round.
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Figure 1. Map of the Zambezi River basin showing the four different agroecological zones (AEZ) and
the test sites (with red boundaries) at each AEZ (Adapted from [34]).

The climatic conditions in the Zambezi basin follow the seasonal migration of the intertropical
convergence zone, hence resulting in distinct hot wet (October to March) and cool dry (April to
September) seasons. Specifically, the wet and dry season average precipitation is 137 mm and 14 mm,
respectively (Figure 2a), while the temperature averages are 24.2 ◦C and 20.3 ◦C, respectively (Figure 2b).
A study by [9] indicated that from 1998–2018, the mean annual precipitation recorded in the basin was
965 mm year−1, with the highest precipitation recorded in the northern (more tropical) region. Across
the basin, the rainy season coincides with the growing period of most crops. During this period, most
of the rainfed crops, such as maize, sorghum, millet, and rice, are planted. Additionally, [9] found that
over the period 1998–2017, the peak of precipitation (i.e., 227 mm month−1) occurs in January. In the
winter/cool season, the temperature in the basin is low (Figure 2b), making it possible for some farmers
to plant wheat and other crops under irrigation since evapotranspiration is low.

In this study, we assessed four different classification methods under various conditions of AEZs
within the ZRB. The four AEZs in the basin are, respectively, the tropic cool semiarid, tropic cool
sub-humid, tropic warm semiarid, and tropic warm sub-humid zones [34].
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Figure 2. Spatial distribution of (a) monthly rainfall and (b) monthly surface air temperature over the
ZRB from January to December, averaged over 1986–2015 (30-year period). The black boxes indicate
the ZRB. Gridded observational temperature and precipitation dataset [47] derived from East Anglia’s
Climate Research Unite was used to plot this figure.

2.2. Data and Processing

2.2.1. Remote Sensing Data and Processing

This study used the Landsat-8 and Sentinel-2 image collections covering three consecutive
agricultural years (December 2016/November 2017, December 2017/November 2018, and
December 2018/November 2019). Six comparable bands (blue, green, red, near infrared (NIR),
short wave infrared 1 (SWIR1), and quality band) from Landsat-8 and Sentinel-2 datasets were used.
Due to the frequent clouds, which usually occur in the study area, we used the quality bands (Sentinel-2:
Quality band at 60 m resolution (Q60) and Landsat-8: Band of Quality Assessment (BQA)) to mask out
clouds. Table 1 shows the characteristics of Sentinel-2 and Landsat-8 data used in this study [48].
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Table 1. Characteristic of the Sentinel-2 and Landsat-8 remote sensing data used in the study.

Sensor Provider Bands Description Wavelength (nm) Resolution (m)

Sentinel-2 MultiSpectral
Instrument (MSI)
Level-1C —Top of
Atmosphere (TOA)

European Space
Agency (ESA)

B2 Blue 458–523 10
B3 Green 543–578 10
B4 Red 650–680 10
B8 Near-infrared 785–900 10
B11 SWIR1 1565–1655 20

QA60 Cloud mask - 60

Landsat-8 Surface
Reflectance Tier 1 TOA

United States
Geological Survey

(USGS)

B2 Blue 452–512 30
B3 Green 533–590 30
B4 Red 636–673 30
B5 Near-infrared 851–879 30
B6 SWIR-1 1566–1651 30

BQA Quality band - -

The processing of the remote sensing data was carried out in the Google Earth Engine (GEE)
platform [36]. Five derived remote sensing indices, namely NDVI (normalized difference vegetation
index), LSWI (land surface water index), EVI (enhanced vegetation index), BI (bare soil index), SAVI
(soil adjusted vegetation index), and GCVI (green chlorophyll vegetation index) were also used as
complementary layers for each Landsat-8 and Sentinel-2 images. Table 2 shows the equations used to
calculate these derived indices. Although GVCI is not a commonly used index, it is good at reducing
the effect of saturation at high vegetation biomass conditions [49,50]. Researchers applied GCVI in the
estimation of leaf area index and green leaf biomass in maize canopies and found that it worked
well at both growing and flowering stages [49]. Nearest neighbour bilinear resampling was used to
resample the reflectance bands into 10 m, based on which the RS-based indices were derived at a 10 m
resolution. To take advantage of all available clear pixels of images and avoid the cloud contamination
problems during the rainy season, different integration methods were applied in this study for seasonal
composition. The percentile composites at 25%, 50%, 75%, and 95% percentiles were used to compose
the derived remote sensing indices (Table 2) during the rainy season while the median composite
was used for the dry season. The percentile was used because it can fully capture the spectrum of
satellite data and nature vegetation phenological information [51], whereas the median composite
reduces the image collection by calculating the median of all values at each pixel across the stack of all
matching bands. The yearly stack image used for the subsequent classification process was obtained
by combining the two merged images composed for each period (rainy and dry) with a total number
of 35 bands as inputs to classifiers (Table 3).

Table 2. Remote sensing derived indices used in this study.

Remote Sensing Indices Formula Ref.

Normalized Difference Vegetation Index NDVI = NIR−RED
NIR+RED [52]

Soil Adjusted Vegetation Index SAVI =
(

NIR−RED
NIR+RED+L

)
∗ (1 + L) [53]

Land Surface Water Index LSWI = NIR−SWIR
NIR+SWIR [54]

Green Chlorophyll Vegetation Index GCVI =
(

NIR
GREEN

)
− 1 [49]

Bare Soil Index BI =
(
(RED+SWIR)−(NIR+BLUE)
(RED+SWIR)+(NIR+BLUE)

)
[55]

Table 3. The two seasonal stack images that composed the yearly mosaic.

Rainy Season Stack Image Dry Season Stack Image

- Five merged bands from Landsat-8 and Sentinel-2 (blue,
green, red, NIR, SWIR).

- Twenty percentiles (Four percentiles extracted from the
merged Landsat-8-derived and Sentinel-2 derived
vegetation indices.

- Median composites of five original merged bands from
Landsat-8 and Sentinel-2 (blue, green, red, NIR, SWIR 1).

- Median composites of five vegetation indices derived from
Landsat-8 and Sentinel-2 (NDVI, LSWI, EVI, SAVI, GCVI).
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2.2.2. Samples

Three available land cover datasets were used to collect the training samples. These datasets
included the (i) GFSAD30AFCE at a 30 m spatial resolution, with an overall accuracy of 94.5% [18];
(ii) the ESA-CCI-LC_S2_Prototype land cover map at a 20 m resolution [27] with cropland accuracy
of 63%; and (iii) and the ESACCL-LC-L4-300 (ESA Climate Change Initiative—Land Cover project
2017) at 300 m resolution with an overall accuracy of 75.4%. Before generating the training samples,
these three datasets were harmonized into generalized land cover datasets with five categories, as
listed in Table 4. Table 4 shows the lookup table between the original and regrouped classes for each
dataset. The GFSAD30AFCE did not have to be modified since it only presents three classes (cropland,
non-cropland and water bodies). Both the ESA-CCI-LC_S2_Prototype and the ESACCL-LC-L4-300
were regrouped into five classes, including cropland, forest, grassland, urban areas, and water bodies.

A total of 25,000 random points were generated over different AEZs within the ZRB.
The distribution of these sample points considered the five class types as well as the area of each AEZ.
For example, the sampling density was higher for an AEZ with a larger area. The values from each
land cover dataset were extracted to the random points to examine the agreement among the three
datasets. Only the samples with full agreement among all three land cover datasets were kept as
training samples. This is based on the hypothesis that samples with full agreement among different
datasets are more reliable than partially agreement samples. In total, 7971 training samples (Figure A1)
were collected over the ZRB basin, in which 576 samples were from the tropic cool sub-humid zone,
1372 samples from the tropic cool semiarid zone, 1163 samples from the tropic warm sub-humid zone,
and 4866 samples from the tropic warm semiarid zone. The sample preparation process was performed
using ArcGIS.

Table 4. Summary of the harmonization process of the different datasets to the five defined land cover
classes used in the study.

Final Classes
Original Classes

GFSAD30AFCE ESA-CCI-LC_S2_Prototype ESACCL-LC-L4-300

Cropland Cropland Cropland Cropland, rainfed; Cropland, irrigated or post-flooding; Mosaic cropland
(>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%)

Forest Non-cropland

Trees cover areas
Shrubs cover areas

Lichen mosses/sparse
vegetation

Vegetation aquatic or
regularly flooded

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland
(<50%); Tree cover, broadleaved, evergreen, closed to open (>15%); Tree

cover, broadleaved, deciduous, closed to open (>15%); Tree cover,
needleleaved, evergreen, closed to open (>15%); Tree cover, needleleaved,
deciduous, closed to open (>15%); Tree cover, mixed leaf type (broadleaved
and needleleaved); Mosaic tree and shrub (>50%)/herbaceous cover (<50%);
Mosaic herbaceous cover (>50%)/tree and shrub (<50%); Shrubland; Sparse
vegetation (tree, shrub, herbaceous cover) (<15%); Tree cover, flooded, fresh

or brakish water; Tree cover, flooded, saline water; Shrub or herbaceous
cover, flooded, fresh/saline/brakish water;

Grassland Non-cropland Grassland Grassland

Urban areas Non-cropland Built up areas Urban areas

Water bodies Water Open water Water bodies

The validation samples (Figure A1b) were collected from multiple sources, including (1) visual
interpretation of Google Earth high-resolution images and Sentinel-2 images, (2) crowdsourced cropland
data from Geo-Wiki (global reference datasets on cropland) [56], and (3) field surveys. The field
survey samples were collected by using the GVG (GPS-Video-Geographic Information Systems) mobile
app [57] during the three years of 2017–2019. A total of 4639 samples were used as validation samples
(Figure A1b), in which 1573 samples were from the field surveys, 869 samples were from Geo-Wiki,
and the remaining 2197 samples were from visual interpretation.

2.3. Methods

A comprehensive overview of the methodology used in this study is summarized in Figure 3. A link
containing the Google Earth Engine script used in this study is presented in the Supplementary Materials.
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2.3.1. Definition of Cropland

We adopted the cropland definition of the Joint Experiment of Crop Assessment and Monitoring
(JECAM) network, which defines the annual cropland from a remote sensing perspective as a piece of
land of a minimum 0.25 ha (minimum width of 30 m) that is sowed/planted and harvestable at least
once within the 12 months after the sowing/planting date. The annual cropland produces an herbaceous
cover and is sometimes combined with some tree or woody vegetation [58]. Upon this definition, we
considered three consecutive years (2017–2019) in our research, and a site must have been classified as
cropland at least once over the three-year period to be considered as cropland.

2.3.2. Four Classifiers

To map the cropland area over the ZRB, four supervised classifiers were selected based on
the literature review and performed in GEE [36]. These methods included random forest (RF), the
support vector machine (SVM), minimum distance (MD), and the classification and regression tree
(CART). The tree-based RF classifier [59] is an ensemble supervised machine learning technique [60]
that produces multiple decision trees by using the randomly selected subset of training samples
and variables [61]. By considering a collection of tree-structure classifiers [59–61], the RF classifier
yields reliable classifications [62]. This classifier uses the Gini index (generalization of the binominal
variance) [63] to measure inequality [64]. The machine-learning SVM classifier [16] has been applied to
optical character recognition [65] as well as to produce improved classification results [66]. This method
is a supervised non-parametric statistical learning theory [66,67]. The SVM classifiers minimize the
classification error in the unseen dataset [67]. The tree-based framework, i.e., the CART classifier [68],
uses historical data and tree-building algorithms to construct the decision tree [22,69]. This classifier
consists primarily of three parts: (a) construction of the maximum tree; (b) choice of right tree size; and
(c) classification of the new data using a constructed tree [69]. Similar to RF classifiers, the classification
and regression trees use the Gini index [70]. By taking advantage of not being only a mathematically
simple and computationally efficient technique [71,72], the nonparametric classifier MD [73] has no
assumption of datasets regarding the features of interest and does not consider class variability [71,73].
This classifier is based on the MD rule that calculates the spectral distance between the measurement
vector for the candidate pixel and the primary vector for each assigned sample [74]. To perform the
classification, RF was optimized using the following parameters: number of trees = 100, and minimum
size of terminal node = 1. The SVM classifier was optimized with a kernel type of RBF (radial basis
function), cost = 10, and gamma = 0.5. Both CART and MD used default parameters.
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2.3.3. Assessment Indicators

To test the robustness of different classifiers over different AEZs, one test site in each AEZ (Figure 1)
in the ZRB was chosen. Each site corresponds to the intersection of one Landsat tile and AEZ boundary.
Over these test sites, we mapped the land cover by using different classification methods and evaluated
the accuracy of five different classes (cropland, grassland, forest, urban areas and water bodies).
The land cover maps were further reclassified into two classes, namely, cropland and non-cropland.
The binary cropland and non-cropland maps were also validated and assessed for accuracy.

The confusion matrix, kappa coefficient, analysis of variance, and Tukey HSD (Honestly Significant
Difference) were used to assess the accuracy of the resulting maps as well as to assess the
differences between the four classifiers across AEZs. The confusion (error) matrix [75] consisted
of a cross-tabulation [13] that compares the mapped class labels with the observed class labels on the
ground [13,75,76]. By definition, the kappa coefficient (k) reflects the difference between the actual
agreement and the agreement expected by chance [77,78]. As in many statistical tests, the kappa
coefficient ranges from −1 to +1. Values situated below zero indicate that there is no agreement
between the observed and expected data, a value of zero indicates an agreement that can be obtained
by random choices, and a value of 1 represents perfect agreement between the data [77]. As indicated
by [77], most of the available documentation about the kappa coefficient cites [79] as the source of the
following kappa coefficient (Equation (1)):

K =

∑k
i=1 xii −

∑k
i=1(Xi+xX+i)

N2 −
∑k

i=1(Xi+xX+i)
(1)

where k = number of rows and columns in error matrix; N = total number of observations;
Xii = observation in row i and column i; Xi+ = marginal total of row i; and X+i = marginal total of
column i.

We assessed the results obtained by the different classifiers by using the analysis of variance
(ANOVA) test. ANOVA is a statistical method that uses F-tests [80] to assess differences between several
means [80,81]. The study used a two-factor ANOVA without replication [81], i.e., 4 × 4 (four AEZS
and four classification methods). In addition to ANOVA, the obtained results were submitted to the
Tukey honestly significant difference (HSD) test [82]. The Tukey HSD test is a statistical tool used to
determine if the relationship between two sets of data is statistically significant—that is, whether there
is a strong chance that an observed numerical change in one value is causally related to an observed
change in another value [82]. This test allows the computation of the honestly significant difference
between two or more means by using statistical distributions [83]. This test was used to compare the
level of differences between the different results. The formula used to compute Tukey’s analysis is
shown in Equation (2):

HSD = qαA

√
MSw

nk
(2)

where qαA represents the relevant critical value of the studentized range statistics, nk represents
the number of scores used in calculating the group means of interest and MSw represent the mean
square width.

Both ANOVA and Tukey’s HSD tests were computed by using the statistic package SISVAR. Based
on the validation, the most reliable and stable classifiers were chosen to map the cropland areas over
the ZRB.

3. Results

3.1. The Feasibility of Derived Training Samples

In this study, we relied on the full agreement among land cover (LC) datasets to build our
training set. To evaluate the feasibility of this approach, we validated the different areas of agreement
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(full agreement: three datasets agree on the existing or absence of cropland; medium agreement: two
out of the three datasets agrees on the existence of cropland; no-agreement: only one dataset confirmed
the existence of cropland) using our validation set, as shown in Table 5. The area of the full agreement
was more accurate in distinguishing the cropped from non-cropland areas with an overall accuracy of
89%. This means that the training samples we produced, based on the full agreement, could obtain
11% errors. Nevertheless, this error is less than the tolerance range of sample errors (20%), which could
significantly decrease the classification accuracy [84]. Overall, despite the inevitable errors associated
with this approach in deriving the training sets, it still a convenient approach to build the training
samples for large-scale cropland mapping case studies like the current one, when the field surveys are
not an economic or a practical option.

Table 5. Assessing the accuracy of mapping cropland in the three agreement levels among land cover
(LC) datasets.

Agreement Class Nc C Total OA %

C 131 763 894 85.4
Full agreement Nc 1865 194 2059 90.6

Total 1996 957 2953 89.0
Median agreement C 235 748 983 76.1

No-agreement C 365 338 703 48.1

C: cropland, Nc: non-cropland, and OA: overall accuracy.

3.2. Performance of Different Classifiers

Figure 4 and Table A1 show the overall accuracy (OA) and kappa coefficient (k) for the cropland
classification over four AEZs based on the four classification methods. Overall, the results indicated
the performance of classification methods varied with AEZs, but RF performed best among the
four methods.
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The OA from RF in each AEZ was 94%, 87%, 86%, and 83% in the tropic cool sub-humid, tropic cool
semiarid regions, tropic warm sub-humid, and tropic warm semiarid regions, respectively. In addition,
RF had the highest average OA (87.4%) and averaged k (0.72) among the four classifiers. CART had
the lowest average OA (76.9%), while SVM had the lowest average k (0.48) among the four classifiers.

Table 6 summarizes the confusion matrix for the land cover maps. According to Table 6, the forest
and grassland were the main classes incorrectly mixed with cropland in all AEZs. Another interesting
finding is that all classifiers performed better in cool zones (tropic cool sub-humid/semiarid) than the
warm zones (tropic warm sub-humid/semiarid). This may due to the higher confusion of the three
vegetation classes (cropland, forest, and grassland) in the warm zones (Table 6). Nevertheless, the
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highest separation between cropland and the other two vegetation classes (forest and grassland) was
observed when applying the RF classifier. Meanwhile, when compared to the other classifiers, the
MD classifier underestimated the cropland in all four AEZs. This was most visible in the tropic warm
sub-humid zone, where cropland area was underestimated by 7%. In the tropic cool sub-humid zone,
all classifiers tended to underestimate cropland, with approximately 6%, 3.1%, 20%, and 14% for the
RF, SVM, CART, and MD classifiers, respectively. Due to clearly distinct spectral features and temporal
patterns of urban and water bodies, these two classes were rarely mixed with cropland. The only
exception was found in the tropic cool semiarid zone, where the urban and cropland types were mixed.
This zone includes large cities in Zimbabwe (e.g., Harare and Chitungwiza) where urban areas usually
have a high proportion of green areas that could be mistakenly classified as a cropland.

Table 6. Summary of the confusion matrix of land cover maps.

Random Forest Support V. Machine CART Minimum Distance
Reference Data

C F G U W UA C F G U W UA C F G U W UA C F G U W UA

Tropical
Cool

Sub-humid

Classified
data

C 45 0 0 0 0 100 42 0 4 0 0 91.3 37 0 1 0 0 97 39 0 2 0 0 95
F 2 42 6 0 0 84 4 42 8 0 0 77.8 5 42 12 0 0 71 2 42 4 0 0 88
G 1 0 25 0 0 96 2 0 19 0 0 90.5 6 0 18 0 0 75 7 0 25 0 0 78
U 0 0 0 7 3 70 0 0 0 6 1 85.7 0 0 0 4 1 80 0 0 0 8 2 80
W 0 0 1 1 12 86 0 0 1 2 14 82.4 0 0 1 4 14 74 0 0 1 0 13 93
PA 94 100 78 88 80 * 90.3 88 100 59 75 93 * 84.8 77 100 56 50 93 * 87.6 81 100 78 100 87 * 71.3

Tropical
Warm

Sub-humid

C 52 3 27 4 2 59 38 14 14 3 0 55 42 5 22 2 1 58 38 0 18 0 0 68
F 5 47 8 0 0 78 6 30 5 0 0 73 8 40 7 0 0 73 5 46 6 0 0 81
G 5 1 7 0 0 54 16 7 20 1 1 44 12 6 13 3 1 37 10 5 15 0 2 47
U 0 0 0 4 0 100 0 0 0 4 1 80 0 0 0 3 0 100 9 0 3 8 1 38
W 0 0 0 0 21 100 2 0 3 0 21 81 0 0 0 0 21 100 0 0 0 0 20 100
PA 84 92 17 50 91 * 70.4 61 59 48 50 91 * 60.8 68 78 31 38 91 * 68.3 61 90 36 100 87 * 64

Tropical
Warm

Semiarid

C 56 2 15 3 1 73 53 14 25 2 0 56 40 5 13 0 1 68 50 1 10 0 1 81
F 5 46 8 0 0 78 4 44 5 0 0 83 5 42 6 0 0 79 6 46 13 0 0 71
G 7 11 24 2 0 55 11 1 17 0 1 57 23 12 27 3 0 42 11 12 23 1 0 49
U 0 0 0 9 0 100 0 0 0 12 0 100 0 0 1 11 0 92 1 0 1 13 0 87
W 0 0 0 0 30 100 0 0 0 0 30 100 0 0 0 0 30 100 0 0 0 0 30 100
PA 82 78 51 64 97 * 75.3 78 75 36 86 97 * 71.2 59 71 57 79 97 * 74 74 78 49 93 97 * 68.5

Tropical
Cool

Semiarid

C 112 2 28 2 0 78 107 11 24 6 0 72 90 2 14 2 0 83 90 0 8 0 0 92
F 4 90 22 0 0 78 1 80 10 1 0 87 6 86 24 0 0 74 8 82 21 0 0 74
G 0 0 22 1 0 96 8 5 37 0 0 74 9 5 22 1 0 59 15 15 42 2 0 57
U 5 0 2 38 0 84 5 1 3 34 0 79 8 4 14 38 0 59 8 0 3 39 0 78
W 0 0 0 0 16 100 0 0 0 0 16 100 1 0 0 0 16 94 0 0 0 0 16 100
PA 93 98 30 93 100 * 80.8 88 82 50 83 100 * 78.5 79 89 30 93 100 * 77.1 74 85 57 95 100 * 73.7

* Overall accuracy (%); C—cropland; F—forest; G—grassland; U—urban area; W—water bodies; UA—user accuracy
(%); PA—producer accuracy (%).

The significance level (F-ration>F-critic) obtained in the analysis of variance (ANOVA) test showed
that the agroecological zones, as well as the image classification methods, had a significant effect on
the obtained results, with a p-value < 0.05. Tables A2 and A3 summarize the analysis of variance
computed for both OA and kappa coefficients, respectively. Tukey’s HSD test (Table 7) indicated
that for the OA, there were no significant differences between the means obtained by the RF and MD
classifiers and the means obtained by the SVM and CART classifiers. Concerning the kappa coefficient,
significant differences in the means were recorded by the RF and CART classifiers, with corresponding
kappa values of 0.72 and 0.47, respectively. In addition, Tukey’s HSD test, calculated using the
average OA (0.0881) and kappa coefficient (HSD=0.2382), confirmed the significant differences found
by the ANOVA.

3.3. Cropland Extent over the Zambezi River Basin

We mapped the cropland by using the random forest classifier for each AEZ over the ZRB.
This classifier was chosen because it showed higher overall accuracy and user accuracy for cropland
class than other classifiers (Tables 6 and A1 and, Figure 4). Figure 5 shows the extracted cropland
extent at 10 m over the ZRB, and Figure 6 compares the cropland map from this study with the
GFSAD30AFCE. By using independent samples, most from field surveys and high-resolution Google
Earth images, we assessed the overall accuracy and kappa coefficient for our binary cropland map.
Our overall accuracy was 84%, and the kappa coefficient was 0.67. Table 8 summarizes the confusion
matrix for this assessment.



Remote Sens. 2020, 12, 2096 12 of 20

Table 7. Summary of the Tukey honestly significant difference (HSD) test computed for the overall
accuracy and kappa coefficient.

Classifier
Overall Accuracy Kappa Coefficient

Mean Test Results Mean Test Results

Random Forest 0.8739 a 0.7202 a
Minimum Distance 0.7938 ab 0.5603 ab

Support Vector Machine 0.7816 b 0.5195 ab
Classification and Regression Tree 0.7687 b 0.4734 b

Honestly Significant Difference (HSD) 0.0881 0.2382
Minimal Level of Significance 5% (0.05)

Note: Means followed by the same letter (a, b) do not differ at the 5% minimum level of significance based on
Tukey’s HSD test.

Table 8. Confusion matrix for the accuracy assessment of cropland maps in the ZRB.

Reference Data

Classes Non-Cropland Cropland Raw Sum User Accuracy

Classified Data

Non-cropland 2284 312 2596 88.0
Cropland 439 1604 2043 78.5

Column sum 2723 1916 4639
Producer accuracy 83.9 83.7

Overall Accuracy: 84%
Kappa: 0.67
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4. Discussion

Suggested by previous studies, field size [8], spatial extent, and landscape patterns [85] are the
major factors impacting the accuracy of cropland classification [12]. According to [8], field size can be
of great importance in agricultural land monitoring, referring to the fact that, for example, a small field
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size will require the use of high-resolution images when compared with larger fields. Over the ZRB, the
dominant field size is labelled “very small” (0.64–2.56 ha and < 0.64 ha). To handle this issue, different
aspects must be taken into consideration, including the methodology to be applied, the characteristics
of the land features, and the quality of the input data for classification. The results obtained from this
study indicate that with an average OA of 87.4%, the RF classifier outperformed all other classifiers,
including MD (79.4%), SVM (78.2%), and CART (76.9%) in all studied AEZs. The good performance of
RF classifier over different AEZs indicates it has substantial potential in mapping cropland features
under different conditions. Similar findings were reported by [18,21], who used RF to map not only
the cropland extent but also the different features on the Earth’s surface. Although RF performed
best in all AEZs, this classifier still needs to be trained in each region considering the dynamics of
agricultural conditions.

In this study, we found that by training in each region, the accuracies of this classifier varied with
the AEZS (Figure 4), with the highest accuracy observed in the tropic cool sub-humid region (93.8%),
and the lowest accuracy observed in the tropic warm semiarid region (82.6%). The differences presented
here might be attributed to landscape patterns, field sizes, and different cropping systems at different
AEZs [86]. For example, the tropic cool zones (semiarid and sub-humid) have different cropping
systems and field sizes compared with those of the tropic warm zones (semiarid and sub-humid).
In the tropic cool zones, a high percentage of the area is mostly characterized by commercial farms
with relatively large field size [8], making it easy to identify the croplands with higher accuracy.
In contrast, over the tropic warm (semiarid and sub-humid) zones, the high phenological similarity
between vegetation classes, particularly grassland, with rainfed cropland areas could be the main
source of confusion. The zone-dependent variations in cropland classification accuracies were also
reported by [87] when mapping cropland area over southeast and northeast Asia using multi-year
time-series Landsat 30 m data and a random forest classifier. In the process of cropland mapping,
one of the biggest challenges is the separation of cropland from grassland. Grassland has, in some
growing periods, spectral features similar to those of cropland, which often confuse discrimination
from cropland [88]. Some fields have crops in some years while in other years, they are left idle (bare
or as grassland), which also leads to spectral variability and confusion in the multi-temporal analysis.
This phenomenon may have led to the higher misclassification among cropland, grassland, and forest
in the two tropical warm (semiarid and sub-humid) zones than in the two tropical cool (semiarid and
sub-humid) zones, leading to the higher accuracy of all four classifiers in cool AEZs (Figure 4).

It is noteworthy that our research paid special efforts in collecting and processing the input data
to improve the cropland classification thanks to the cloud computing techniques. The cropland extent
was finally mapped at a 10 m spatial resolution over the ZRB by considering three years, 2017–2019.
We obtained an overall accuracy of 84%, which was 2% higher than the GFSAD30AFCE for the
years 2015/2016 over the ZRB [18]. The differences between these two studies are the input datasets.
This study enhanced mapping by combining reflective bands with multiple derived indices, thereby
increasing spectral discriminability between the different classes. In addition, our 10 m cropland map
was also compared to the FROM-GLC 30 m cropland map developed by [84] over the ZRB. It was
found that not only did we improve the spatial resolution of cropland map (from 30 m to 10 m), but
also the accuracy of our cropland map was 15% higher than that of the FROM-GLC product.

This study also proved the importance of the integration of different types of datasets (Landsat-8
and Sentinel-2) for accurate cropland mapping. In this study, these two different datasets were chosen
because most of the study region is characterized by rainfed croplands, and the growing period
(an essential element in the identification of cropland areas) coincides with the rainy season, thus,
obtaining cloud-free time-series images becomes a challenge. Hence, the use of multiple sensors
enhanced the acquisition of cloud-free images, which in turn contributed to more accurate results.
Apart from the RF classifier and the usage of the different datasets, another essential element that
contributed to the improvement in mapping accuracy was the technique used to collect samples for
classifier training/calibration. In this study, the samples used were collected from locations where there
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was agreement between different existing land cover datasets on the class value at a given point. By
using different datasets for sampling, we have reduced the uncertainty and therefore provided more
reliable calibration sets. Apart from the RF classifier and the usage of the different datasets, another
essential element that contributed to the improvement in mapping accuracy was the technique used to
collect samples for classifier training/calibration. In this study, the samples used were collected from
locations where there was an agreement between different existing land cover datasets on the class
value at a given point. Furthermore, a comparison of spatial agreement of the four different land cover
datasets (including GFSAD30AFCE, CGLS-LC100, ESACCILC_S2_Prototype, and ESACCL-LC-L4-300)
based on standard deviation [12] revealed high spatial agreement on cropland maps over the ZRB,
suggesting that these datasets are reliable over the region. By using different datasets for sampling, we
have reduced the uncertainty and therefore provided more reliable calibration sets.

In terms of limitations of this study, the present of cloud is a big issue for RS observations in study
area, particularly over the rainy season (October to March). Although a yearly mosaic is used to reduce
the impact of clouds, the impact cannot be eliminated. The use of Synthetic Aperture Radar (SAR) data
may result in better separation between cropland and grassland, especially in areas close to rives or
wetlands which might be another limitation of this research. Fortunately, cloud computing on the GEE
platform efficiently processed and composited thousands of imageries for each year. As a consequence,
the number of cloudless observations for the rainy season (October 2018 to March 2019) was 64 on
average by integrating Landsat-8 and Sentinel-2 imageries (Figure A2). Moreover, 64.9% of the ZRB
had 34 to 64 valid observations during the rainy season. Thus, the uncertainty of cloud impacts is
limited to some extent. Furthermore, more validation samples based on field surveys are needed for
better quality assessment. Given that only a small number of validation samples are available, we
relied on a freely available validation dataset, which could also introduce some uncertainty in the
final assessment.

5. Conclusions

In this study, we assessed the accuracy of four classifiers for cropland mapping in four different
AEZs in the ZRB. Two types of remote sensing data (Landsat-8 and Sentinel-2) and their derived
vegetation indices were adopted to improve cropland classification. The results proved the robustness
of random forests in obtaining accurate cropland extent through all AEZs. The random forest method
outperformed other classifiers and had an average overall accuracy of 87.4% across the four AEZs.
Although the other classifiers had lower accuracy than RF, they still performed better than previous
research conducted in the basin. The accuracy obtained in this study is higher than various available
cropland maps over the ZRB, and this is attributed to the high quality of remote sensing and training
data used in this study, as well as the consideration of agriculture diversity, including agro-ecosystems
and field sizes (from small farms to commercial farms). The use of high resolution and multi-temporal
data improves the discrimination of croplands from other vegetation classes, and also contributes to
high accuracy, even in sub-basins with small field sizes. Based on the methodology proposed by this
study, cropland maps with a resolution of 10 m could be generated periodically, which would be helpful
for the rapid crop monitoring and cropland change analysis in response to the escalating population
and food insecurity. The applicability of this method over other areas with similar agroecological
conditions (e.g., the Congo River basin in central Africa and the Mekong River basin in southeast Asia)
still need to be further investigated.

Supplementary Materials: The following link contains the Google Earth Engine script used in this study:
https://code.earthengine.google.com/2bbd0d138dc672d8ba9ecfc8583a059b.
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Table A1. Results of overall accuracy (OA) and kappa Coefficient over the different AEZs based on the
applied image classification methods.

Overall Accuracy

Agroecological zones RF SVM MD CART

Tropic Cool Sub-humid 93.8 91.8 84.5 83.5
Tropic Cool Semiarid 87.2 82.9 79.4 82.9

Tropic Warm Sub-humid 85.9 68.5 76.5 68.5
Tropic Warm Semiarid 82.6 69.6 77 72.7
Average of Four AEZs 87.4 78.2 79.4 76.9

Kappa Coefficient

Agroecological zones RF SVM MD CART

Tropic Cool Sub-humid 0.88 0.83 0.85 0.67
Tropic Cool Semiarid 0.72 0.63 0.53 0.62

Tropic Warm Sub-humid 0.68 0.17 0.42 0.46
Tropic Warm Semiarid 0.6 0.27 0.45 0.33
Average of Four AEZs 0.72 0.48 0.56 0.52

Table A2. Summary of the analysis of variance computed for the OA.

Source of Variation SS df MS F p-Value F crit

Classification methods 0.0269 3 0.0090 5.6318 0.0188 3.8625
Agroecological zones 0.0507 3 0.0169 10.5938 0.0026 3.8625

Error 0.0143 9 0.0016
Total corrected 0.0919 15

CV (%) = 4.96
Overall mean: 0.8045 The number of observations: 16

SS: Sum of the squares; MS: Mean Square; df: degree of freedom; F: ratio of two variances; p-value: probability
value; F critic: Hypothesis acceptance level; CV: Coefficient of Variation.

Table A3. Summary of the analysis of variance computed for the k.

Source of Variation SS df MS F p-Value F crit

Classification methods 0.1380 3 0.0460 3.9544 0.0473 3.8625
Agroecological zones 0.4117 3 0.1372 11.7954 0.0018 3.8625

Error 0.1047 9 0.0116
Total corrected 0.6545 15

CV (4%) = 18.98
Overall mean: 0.5683 The number of observations: 16
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4. Phalke, A.R.; Özdoğan, M. Large area cropland extent mapping with Landsat data and a generalized classifier.
Remote Sens. Environ. 2018, 219, 180–195. [CrossRef]

5. Waldner, F.; Hansen, M.C.; Potapov, P.V.; Löw, F.; Newby, T.; Ferreira, S.; Defourny, P. National-scale cropland
mapping based on spectral-temporal features and outdated land cover information. PLoS ONE 2017, 12,
1–24. [CrossRef] [PubMed]

6. Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919.
[CrossRef] [PubMed]

7. Matyas, C.J.; Silva, J.A. Extreme weather and economic well-being in rural Mozambique. Nat. Hazards 2013,
66, 31–49. [CrossRef]

http://dx.doi.org/10.1080/01431161.2016.1194545
http://dx.doi.org/10.3390/rs8030232
http://dx.doi.org/10.1029/2007JD009175
http://dx.doi.org/10.1016/j.rse.2018.09.025
http://dx.doi.org/10.1371/journal.pone.0181911
http://www.ncbi.nlm.nih.gov/pubmed/28817618
http://dx.doi.org/10.1126/science.1092958
http://www.ncbi.nlm.nih.gov/pubmed/14671289
http://dx.doi.org/10.1007/s11069-011-0064-6


Remote Sens. 2020, 12, 2096 17 of 20

8. Fritz, S.; See, L.; Mccallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.;
Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [CrossRef]
[PubMed]

9. Zeng, H.; Wu, B.; Zhang, N.; Tian, F.; Phiri, E.; Musakwa, W.; Zhang, M.; Zhu, L.; Mashonjowa, E.
Spatiotemporal analysis of precipitation in the sparsely gauged Zambezi River Basin using remote sensing
and google Earth engine. Remote Sens. 2019, 11, 2977. [CrossRef]

10. Marklund, L.G.; Batello, C. FAO Datasets on Land Use, Land Use Change, Agriculture and Forestry and
Their Applicability for National Greenhouse Gas Reporting A Background Paper for the IPCC Expert
Meeting on Guidance on Greenhouse Gas Inventories of Land Uses such as Agriculture a. 2008. Available
online: http://www.fao.org/climatechange/15534-03bd24352e5f95a54c039491c08ca2325.pdf (accessed on
13 June 2020).

11. Wei, Y.; Lu, M.; Wu, W.; Ru, Y. Multiple factors influence the consistency of cropland datasets in Africa. Int. J.
Appl. Earth Obs. Geoinf. 2020, 89, 102087. [CrossRef]

12. Nabil, M.; Zhang, M.; Bofana, J.; Wu, B.; Stein, A.; Dong, T. Assessing factors impacting the spatial discrepancy
of remote sensing based cropland products: A case study in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020,
85, 102010. [CrossRef]

13. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.
[CrossRef]

14. Tucker, C.J.; Townshend, J.R.G. Goff African Land-cover classification using satellite data. Science 1985, 227,
369–374. [CrossRef] [PubMed]

15. Ustuner, M.; Sanli, F.B.; Abdikan, S.; Esetlili, M.T.; Kurucu, Y. Crop type classification using vegetation
indices of rapideye imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 195–198.
[CrossRef]

16. Ingmar, N.; Schulthess, U.; Asche, H. Comparison of Machine Learning Algorithms Random Forest,
Artificial Neural Network and Support Vector Machine To Maximum Likelihood for Supervised Crop Type
Classification. In Proceedings of the 4th GEOBIA, Rio Janeiro, Brazil, 7–9 May 2012; pp. 35–40. Available
online: https://www.researchgate.net/publication/275641579_COMPARISON_OF_MACHINE_LEARNING_
ALGORITHMS_RANDOM_FOREST_ARTIFICIAL_NEURAL_NETWORK_AND_SUPPORT_VECTOR_
MACHINE_TO_MAXIMUM_LIKELIHOOD_FOR_SUPERVISED_CROP_TYPE_CLASSIFICATION
(accessed on 13 June 2020).

17. Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens.
Environ. 2004, 93, 412–422. [CrossRef]

18. Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.;
Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and
object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sens. 2017,
9, 1065. [CrossRef]

19. Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D.
Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J.
Photogramm. Remote Sens. 2017, 126, 225–244. [CrossRef]

20. Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal
features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [CrossRef]

21. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. In Proceedings
of the Pattern Recognition Letters; 2006; Volume 27, pp. 294–300. Available online: https://www.sciencedirect.
com/science/article/abs/pii/S0167865505002242 (accessed on 13 June 2020).

22. Razi, M.A.; Athappilly, K. A comparative predictive analysis of neural networks (NNs), nonlinear regression
and classification and regression tree (CART) models. Expert Syst. Appl. 2005, 29, 65–74. [CrossRef]

23. Zhang, D.; Chen, S.; Zhou, Z.H. Learning the kernel parameters in kernel minimum distance classifier.
Pattern Recognit. 2006, 39, 133–135. [CrossRef]

24. Ramesh, V.; Ramar, K. Classification of Agricultural Land Soils: A Data Mining Approach. Agric. J. 2011, 6,
82–86. [CrossRef]

25. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer
resolution observation and monitoring of global land cover: First mapping results with Landsat TM and
ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [CrossRef]

http://dx.doi.org/10.1111/gcb.12838
http://www.ncbi.nlm.nih.gov/pubmed/25640302
http://dx.doi.org/10.3390/rs11242977
http://www.fao.org/climatechange/15534-03bd24352e5f95a54c039491c08ca2325.pdf
http://dx.doi.org/10.1016/j.jag.2020.102087
http://dx.doi.org/10.1016/j.jag.2019.102010
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1126/science.227.4685.369
http://www.ncbi.nlm.nih.gov/pubmed/17815712
http://dx.doi.org/10.5194/isprsarchives-XL-7-195-2014
https://www.researchgate.net/publication/275641579_COMPARISON_OF_MACHINE_LEARNING_ALGORITHMS_RANDOM_FOREST_ARTIFICIAL_NEURAL_NETWORK_AND_SUPPORT_VECTOR_MACHINE_TO_MAXIMUM_LIKELIHOOD_FOR_SUPERVISED_CROP_TYPE_CLASSIFICATION
https://www.researchgate.net/publication/275641579_COMPARISON_OF_MACHINE_LEARNING_ALGORITHMS_RANDOM_FOREST_ARTIFICIAL_NEURAL_NETWORK_AND_SUPPORT_VECTOR_MACHINE_TO_MAXIMUM_LIKELIHOOD_FOR_SUPERVISED_CROP_TYPE_CLASSIFICATION
https://www.researchgate.net/publication/275641579_COMPARISON_OF_MACHINE_LEARNING_ALGORITHMS_RANDOM_FOREST_ARTIFICIAL_NEURAL_NETWORK_AND_SUPPORT_VECTOR_MACHINE_TO_MAXIMUM_LIKELIHOOD_FOR_SUPERVISED_CROP_TYPE_CLASSIFICATION
http://dx.doi.org/10.1016/j.rse.2004.08.002
http://dx.doi.org/10.3390/rs9101065
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.019
http://dx.doi.org/10.1016/j.isprsjprs.2015.09.013
https://www.sciencedirect.com/science/article/abs/pii/S0167865505002242
https://www.sciencedirect.com/science/article/abs/pii/S0167865505002242
http://dx.doi.org/10.1016/j.eswa.2005.01.006
http://dx.doi.org/10.1016/j.patcog.2005.08.001
http://dx.doi.org/10.3923/aj.2011.82.86
http://dx.doi.org/10.1080/01431161.2012.748992


Remote Sens. 2020, 12, 2096 18 of 20

26. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land
cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens.
2015, 103, 7–27. [CrossRef]

27. CCI Land Cover S2 Prototype Land Cover 20 m map of Africa. ESA. 2017. Available online: https:
//maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 13 June 2020).

28. CCI-LC-PUGV2 Land Cover CCI. Product User Guide Version 2. 2017. Available online: https://maps.elie.ucl.ac.
be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 13 June 2020).

29. CGLOPS-1 Validation Report: Moderate Dynamic Land Cover Collection 100m, Version 1. Copernicus Global Land
Operations—Lot 1; Paris, France, 2018; Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/

files/products/CGLOPS1_VR_LC100m-V1_I1.20.pdf (accessed on 13 June 2020).
30. Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Gong, P. Comparisons of three recent moderate resolution

African land cover datasets: CGLS-LC100, ESA-S2-. Int. J. Remote Sens. ISSN 2019, 1161. [CrossRef]
31. Belgiu, M.; Csillik, O. Remote Sensing of Environment Sentinel-2 cropland mapping using pixel-based and

object-based time- weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523.
[CrossRef]

32. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover
Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [CrossRef]

33. Bey, A.; Jetimane, J.; Lisboa, S.N.; Ribeiro, N.; Sitoe, A.; Meyfroidt, P. Mapping smallholder and large-scale
cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier
of Mozambique. Remote Sens. Environ. 2020, 239, 111611. [CrossRef]

34. HarvestChoice AEZ (16-class, 2009). Available online: http://harvestchoice.org/data/aez16_clas (accessed on
19 June 2018).

35. Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al.
Global crop monitoring: A satellite-based hierarchical approach. Remote Sens. 2015, 7, 3907–3933. [CrossRef]

36. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

37. Jacobson, A.; Dhanota, J.; Godfrey, J.; Jacobson, H.; Rossman, Z.; Stanish, A.; Walker, H.; Riggio, J. A novel
approach to mapping land conversion using Google Earth with an application to East Africa. Environ. Model.
Softw. 2015, 72, 1–9. [CrossRef]

38. Vörösmarty, C.J.; Moore, B. Modelling basins-scale hydrology in support of physical climate and global
biogeochemical studies: An example using the Zambezi River. Surv. Geophys. 1991, 12, 271–311. [CrossRef]

39. Beck, L.; Bernauer, T. How will combined changes in water demand and climate affect water availability
in the Zambezi river basin? Glob. Environ. Chang. 2011, 21, 1061–1072. [CrossRef]

40. Timberlake, J. Biodiversity of the Zambezi Basin; Occasional Publications in Biodiversity: Bulawayo, Zimbabwe,
2000; Volume 9.

41. Cohen Liechti, T.; Matos, J.P.; Boillat, J.L.; Schleiss, A.J. Comparison and evaluation of satellite derived
precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012,
16, 489–500. [CrossRef]

42. Moore, A.E.; Cotterill, F.P.D.; Main, M.P.L.; Williams, H.B. The Zambezi River. Large Rivers Geomorphol.
Manag. 2008, 311–332. [CrossRef]

43. The World Bank. Zambezi River Basin Sustainable Agriculture Water Development Angola, Botswana,
Malawi, Mozambique, Namibia, Tanzania, Zambia, Zimbabwe; The International Bank for Reconstruction
and Development/The World Bank: Washington, DC, USA, 2008.

44. Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M. Rainfall characteristics and their
implications for rain-fed agriculture: A case study in the Upper Zambezi River Basin. Hydrol. Sci. J. 2016, 61,
321–343. [CrossRef]

45. Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.J.; Ringler, C. Economywide impacts of climate change on
agriculture in Sub-Saharan Africa. Ecol. Econ. 2013, 93, 150–165. [CrossRef]

46. Milgroom, J.; Giller, K.E. Courting the rain: Rethinking seasonality and adaptation to recurrent drought
in semi-arid southern africa. Agric. Syst. 2013, 118, 91–104. [CrossRef]

47. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic
observations—The CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-V1_I1.20.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-V1_I1.20.pdf
http://dx.doi.org/10.1080/01431161.2019.1587207
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.3390/rs9010095
http://dx.doi.org/10.1016/j.rse.2019.111611
http://harvestchoice.org/data/aez16_clas
http://dx.doi.org/10.3390/rs70403907
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.envsoft.2015.06.011
http://dx.doi.org/10.1007/BF01903422
http://dx.doi.org/10.1016/j.gloenvcha.2011.04.001
http://dx.doi.org/10.5194/hess-16-489-2012
http://dx.doi.org/10.1002/9780470723722.ch15
http://dx.doi.org/10.1080/02626667.2014.983519
http://dx.doi.org/10.1016/j.ecolecon.2013.05.006
http://dx.doi.org/10.1016/j.agsy.2013.03.002
http://dx.doi.org/10.1002/joc.3711


Remote Sens. 2020, 12, 2096 19 of 20

48. Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J. Remote Sensing of
Environment Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF
adjusted re fl ectance and NDVI di ff erences. Remote Sens. Environ. 2018, 215, 482–494. [CrossRef]

49. Gitelson, A.A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index
and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 4–7. [CrossRef]

50. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season
classification system of field-level crop types using time-series Landsat data and a machine learning approach.
Remote Sens. Environ. 2018, 210, 35–47. [CrossRef]

51. Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient Identification of Corn Cultivation Area with Multitemporal
Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sens. 2019,
11, 629. [CrossRef]

52. Tucker, C.J. Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation. Remote Sens.
Environ. 1979, 8, 127–150. [CrossRef]

53. Huete, A. A Soil-Adjusted Vegetation Index ( SAVI ). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
54. Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling

of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534.
[CrossRef]

55. Chen, W.; Liu, L.; Zhang, C.; Wang, J.; Wang, J.; Pan, Y. Monitoring the seasonal bare soil areas in Beijing
using multi-temporal TM images. Int. Geosci. Remote Sens. Symp. 2004, 5, 3379–3382. [CrossRef]

56. Laso Bayas, J.C.; Lesiv, M.; Waldner, F.; Schucknecht, A.; Duerauer, M.; See, L.; Fritz, S.; Fraisl, D.; Moorthy, I.;
McCallum, I.; et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki
platform. Sci. Data 2017, 4, 222222. [CrossRef] [PubMed]

57. Wu, B.; Tian, Y.; Li, Q. GVG, a Crop Type Proportion Sampling Instrument. J. Remote Sens. 2004, 8, 570–580.
58. Waldner, F.; Fritz, S.; Di Gregorio, A.; Plotnikov, D.; Bartalev, S.; Kussul, N.; Gong, P.; Thenkabail, P.; Hazeu, G.;

Klein, I.; et al. A unified cropland layer at 250 m for global agriculture monitoring. Data 2016, 1, 3. [CrossRef]
59. Dubath, P.; Rimoldini, L.; Süveges, M.; Blomme, J.; López, M.; Sarro, L.M.; de Ridder, J.; Cuypers, J.; Guy, L.;

Lecoeur, I.; et al. Random forest automated supervised classification of Hipparcos periodic variable stars.
Mon. Not. R. Astron. Soc. 2011, 414, 2602–2617. [CrossRef]

60. Kullarni, V.Y.; Sinha, P.K. Random Forest Classifier: A Survey and Future Research Directions. Int. J. Adv.
Comput. 2013, 36, 1144–1156.
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