
  

Remote Sens. 2020, 12, 2082; doi:10.3390/rs12132082 www.mdpi.com/journal/remotesensing 

Article 

Quantifying Leaf Chlorophyll Concentration of 
Sorghum from Hyperspectral Data Using Derivative 
Calculus and Machine Learning 
Sourav Bhadra 1,2, Vasit Sagan 1,2,*, Maitiniyazi Maimaitijiang 1,2, Matthew Maimaitiyiming 1,2, 
Maria Newcomb 3, Nadia Shakoor 4 and Todd C. Mockler 4 

1 Geospatial Institute, Saint Louis University, Saint Louis, MO 63108, USA; sourav.bhadra@slu.edu (S.B.); 
mason.maimaitijiang@slu.edu (M.M.); matt.maimaitiyiming@slu.edu (M.M.) 

2 Department of Earth and Atmospheric Sciences, Saint Louis University, Saint Louis, MO 63108, USA 
3 The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; maria.newcomb2@usda.gov 
4 Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA; nshakoor@danforthcenter.org (N.S.); 

tmockler@danforthcenter.org (T.C.M.) 
* Correspondence: vasit.sagan@slu.edu 

Received: 24 May 2020; Accepted: 24 June 2020; Published: 29 June 2020 

Abstract: Leaf chlorophyll concentration (LCC) is an important indicator of plant health, vigor, 
physiological status, productivity, and nutrient deficiencies. Hyperspectral spectroscopy at leaf 
level has been widely used to estimate LCC accurately and non-destructively. This study utilized 
leaf-level hyperspectral data with derivative calculus and machine learning to estimate LCC of 
sorghum. We calculated fractional derivative (FD) orders starting from 0.2 to 2.0 with 0.2 order 
increments. Additionally, 43 common vegetation indices (VIs) were calculated from leaf spectral 
reflectance factor to make comparisons with reflectance-based data. Within the modeling pipeline, 
three feature selection methods were assessed: Pearson’s correlation coefficient (PCC), partial least 
squares based variable importance in the projection (VIP), and random forest-based mean decrease 
impurity (MDI). Finally, we used partial least squares regression (PLSR), random forest regression 
(RFR), support vector regression (SVR), and extreme learning regression (ELR) to estimate the LCC 
of sorghum. Results showed that: (1) increasing derivative order can show improved model 
performance until certain order for reflectance-based analysis; however, it is inconclusive to state 
that a particular order is optimal for estimating LCC of sorghum; (2) VI-based modeling 
outperformed derivative augmented reflectance factor-based modeling; (3) mean decrease impurity 
was found effective in selecting sensitive features from large feature space (reflectance-based 
analysis), whereas simple Pearson’s correlation coefficient worked better with smaller feature space 
(VI-based analysis); and (4) SVR outperformed all other models within reflectance-based analysis; 
alternatively, ELR with VIs from original reflectance yielded slightly better results compared to all 
other models. 

Keywords: chlorophyll concentration; fractional derivatives; hyperspectral spectroscopy; machine 
learning; extreme learning regression 

 

1. Introduction 

Demand for sustainable and high yield crops is continually increasing due to rapid population 
surge and climate change [1–3]. Cereal crops can play a significant role in meeting such demand [4]. 
Among many different cereals, sorghum (Sorghum bicolor) is an important crop in semi-arid 
environments due to its high drought, heat, and water tolerance [5,6]. However, accurate genomic 
selection is indispensable to increase the yield and stress tolerance [7,8], which heavily relies on 
different phenotypic traits collected at plant breeding stations [9–11]. Leaf chlorophyll concentration 
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(LCC) is one of the major leaf biochemical properties commonly evaluated in crop phenotyping. 
Other than genomics-assisted breeding, LCC can also indicate plant physiological status, health, 
productivity, and nutrient deficiencies in precision agriculture practices [12–14]. Laboratory-based 
chemical analysis of LCC can be accurate, but the process is destructive, labor-intensive, and not 
feasible for large-scale fields [14]. Therefore, predicting leaf biochemical properties non-destructively 
and efficiently is a priority in plant genetics, physiology, and breeding applications. 

Reflectance spectroscopy, or hyperspectral remote sensing, is a promising technique to estimate 
leaf physiological and chemical properties rapidly and non-destructively [15,16]. The principle 
behind this technique involves remote measurement of reflected solar radiation using imaging and/or 
non-imaging sensors [17]. The reflectance spectra can be divided into visible (VIS, 400–700 nm), near-
infrared (NIR, 700–1100 nm), and short wave infrared (SWIR, 1100–2500 nm) bands in terms of 
wavelengths, which can be used to model different leaf biochemical properties. Leaf reflectance data 
are often preferred for testing new algorithms or concepts because they are not influenced by 
atmospheric effects such as scattering and absorption. In general, the modeling approach for LCC 
can be divided into two broad categories: 1) empirical approach, and 2) inversion of radiative transfer 
models. Empirical modeling is the most widely used approach, where LCC can be estimated from 
either original reflectance or vegetation indices by developing linear or non-linear models [18–20]. 
However, empirical models may lack generalization capability across different plant species and field 
conditions [21]. Therefore, inversion of radiative transfer models (RTMs) has also been used to 
estimate LCC, where the assumption is that RTMs accurately describe the spectral variation of canopy 
reflectance as a function of canopy, leaf, and soil background characteristics [22]. However, the ill-
posed nature of model inversion can be problematic since various combinations of canopy 
parameters may yield almost similar spectra, and it requires a large number of input parameters from 
the field [23,24]. 

Numerous studies have demonstrated the potential of empirical modeling in LCC estimation 
from hyperspectral spectroscopy since the 1970s. However, the prediction accuracy of empirical 
models using reflectance spectra often suffers from signal noise, baseline effects, and overlapping 
problems [25,26]. Signal noise for handheld spectroradiometers is highly susceptible to the sun’s 
illumination, instrument quality, and environmental conditions [27]. To account for these issues, first-
order and second-order derivative techniques have been widely applied to reduce signal noise by 
capturing subtle details in the spectral curve [28–30]. First-order and second-order derivatives are 
functions of mathematical change, where they represent the slope and curvature of the spectral curve, 
respectively [31–33]. However, studies have also examined that integer derivative techniques (e.g., 
first-order and second-order) may result in spectral information loss or noise amplification, which 
could affect the model performance for LCC estimation [34,35]. 

Fractional derivative (FD) is a novel branch of derivative calculus, which is widely applied in 
the control systems, signal smoothing, biological engineering, and image processing [36–38]. Since 
integer-order derivative models may insufficiently represent the fractional order-based systems, the 
FD can better represent such issues [39]. The calculation of FD is similar to integer ordering, but the 
order is arbitrarily extended to fractions [40]. 

Several studies have utilized FD-augmented hyperspectral data for different chemometric 
applications: for example, Schmitt [41] found improved results in estimating hemoglobin 
concentration from scattering liquid by using FD-augmented spectra; Li et al. [42] designed a FD filter 
for resolving simulated overlapped Lorentzian peaks in spectral data; Tong et al. [43] applied FD 
transformation to Savitzk–Golay (SG) derivative that resulted in a better performing tobacco-diesel 
spectral inversion model. Additionally, few studies have found improved performance in estimating 
different soil properties from FD-augmented spectral data, such as desert soil carbon content [44], 
electrical conductivity of saline soil [45], soil chromium content [46], and soil organic matter content 
[35,39]. However, for vegetation or crop related studies, we found three studies that used FD 
treatment to hyperspectral data for estimating nitrogen (N) content from different crops (i.e., 
industrial rubber [47], cotton [48], and rice [49]). The results from these studies documented the better 
modeling capabilities from FD-augmented hyperspectral data in N-content estimation. However, to 
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our knowledge, we have not found any studies that utilized FD augmented hyperspectral data for 
estimating either LCC or any other biochemical properties from sorghum. 

Machine learning (ML) algorithms play an important role in estimating crop LCC and other 
phenotyping traits from either hyperspectral spectroscopy or multi-sensor imageries. For example, 
multiple linear regression (MLR) [50–53], partial least squares regression (PLSR) [49,54–57], random 
forest regression (RFR) [14,58,59], support vector machine based regression (SVR) [48,54,57,58], and 
back propagation neural networks (BPNNs) [14,35,50] have shown incredible performance in 
estimating LCC of different crops. Recently, extreme learning machine based regression (ELR) [60] 
has been found to be an efficient and rapid learning algorithm for regression, which outperformed 
some other ML algorithms for many practical applications [61–64]. In addition to model training, 
feature selection is a crucial step before starting any ML pipeline. For example, there could be varying 
results depending on what feature selection method and how the method is implemented with the 
training data. However, there has not been any comprehensive study that compares the performance 
of several ML algorithms in terms of derivative-augmented hyperspectral data for phenotypic trait 
estimation. 

The goal of this study is to investigate the influence of derivative calculus on hyperspectral 
reflectance data for estimating LCC of sorghum. We asked the following research questions to 
achieve this goal: 1) Can derivative analysis better quantify LCC of sorghum among reflectance-based 
and vegetation index (VI)-based spectral data? 2) Which combination of feature selection and ML 
algorithm has better prediction capability? 3) Can common VIs better estimate LCC compared to 
reflectance spectra? In this study, we analyzed different derivative orders (including both integer and 
fractional orders), three feature selection methods (i.e., Pearson’s correlation coefficient, variable 
importance in the projection, and mean decrease impurity), and four ML algorithms (i.e., PLSR, RFR, 
SVR, and ELR) for LCC estimation of sorghum. 

2. Materials and Methods  

2.1. Study Site and Plant Material 

The study area (Figure 1) is the Transportation Energy Resources from Renewable Agriculture 
Phenotyping Reference Platform (TERRA-REF) field scanner (Figure 1b) field site at the Maricopa 
Agricultural Center, Maricopa, Arizona, United States. The details of this field scanner system can be 
found in the research of Burnette et al. [65]. The experimental field site (33.070° N, 111.974° W, 
elevation 360 m) was planted on 3 August 2016 with two replicates of a Sorghum bicolor research 
population from Texas A&M (W Rooney) comprised of 173 recombinant inbred lines at the F-10 
generation plus the parental lines SC56 and Tx7000. The field layout included 32 rows by 54 ranges 
in total, with the two outer lateral rows and end ranges as border plots to reduce edge effects. Border 
plots were excluded from any quantitative analysis. Experimental design followed a two-replicate 
alpha design with row-column constraint. Plots were four-row plots, 3.5 m long and 0.76 m row 
spacing, such that sorghum lines were evaluated in the two inner row subplots while the two outer 
rows were plot borders to reduce plot-to-plot edge effects. There were 350 total plots, where each plot 
had two subplots and was given unique identifiers. The field trial was managed for optimal growth. 
Initial irrigation was from sprinklers for emergence followed by subsurface drip lines. 
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Figure 1. Location of test site and data collection. (a) Experimental field; (b) the field scanner operating 
in the field; (c) in-situ data collection of leaf chlorophyll concentration (LCC) using Dualex 4 Scientific 
(yellow box) and spectral data using PSR-3500 spectroradiometer (blue box); (d) location of study area 
in Pinal County, AZ; (e) a top view image of the field collected from ArcGIS Online. 

2.2. Data Collection 

2.2.1. Leaf Chlorophyll Concentration Measurements 

In-situ ground LCC was collected using Dualex 4 Scientific (Figure 1c in yellow box, Force-A, 
France) handheld sensor for 394 sample leaves from 349 plots. The Dualex 4 Scientific instrument 
measures leaf chlorophyll index by using a red-edge band (710 nm) and a NIR band (850 nm), and 
estimates LCC in µg/cm2 using a calibration coefficient [66]. Only sunlit representative leaves from 
each plot were selected for measurements. The LCC measurements were taken at noon on two days, 
(9 November 2016 and 11 November 2016) while the sorghum plants were at the grain development 
growth stage. 

2.2.2. Hyperspectral Reflectance Measurements 

Reflectance measures, or specifically, the hemispheric conical reflectance factor (HCRF, [67]) 
were collected using a Spectral Evolution portable spectroradiometer PSR-3500 (Figure 1c in blue 
box; Spectral Revolution, Inc., Lawrence, MA, USA) almost simultaneously with the Dualex 
measurements from the same sorghum leaves. Measurements were taken under clear-sky conditions 
near solar noon to minimize the disturbances from changes in sun angle and cloud or canopy shadow. 
The spectroradiometer has a spectral range of 350–2500 nm with a resolution of 3.5 nm in the 350–
1000 nm range, 10 nm in the 1000–1900 nm range, and 7 nm in the 1900–2500 nm range. A reference 
spectrum taken from a 99% Spectralon calibration panel (Labsphere, Inc., North Sutton, NH, USA) 
was used to normalize leaf spectral measurements to reflectance factor. Calibration panel readings 
were repeated for every 15 min to readjust the baseline to account for any changes in illumination 
condition. A leaf clip with a bifurcated fiber-optic and a 5-watt tungsten halogen lamp light source 
was used to record leaf reflectance factor with a black background. With pre-configured settings, the 
PSR-3500 spectroradiometer averaged 40 readings automatically for each sample. The spectral 
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reflectance factor, referred to as the reflectance hereafter, was interpolated to 1 nm, which resulted in 
2151 individual spectral bands. 

2.3. Fractional Derivative Calculation 

Fractional-order derivative has been utilized as a tool to extract useful and sensitive information 
in many fields of signal processing [68–70]. Although fractional derivative (FD) refers to derived 
integer-order derivative into any positive order, the calculation of FD is complex and several 
algorithms exist to calculate. However, Riemann–Liouville, Grunwald–Letnikov, and Caputo are the 
three most frequently used classic definitions [71–74]. We adopted the Grunwald–Letnikov (G-L) 
definition to calculate FD at different orders in this study due to its specifically simple formula and 
coefficients [75]. The G-L definition is generally expressed as Equation (1): 

𝑑ఈ𝑓(𝑥) = lim௛→଴ 1ℎఈ ෍ (−1)௠ Γ(𝛼 + 1)𝑚! Γ(𝛼 − 𝑚 + 1) 𝑓(𝑥 − 𝑚ℎ)(௧ି௔)/௛
௠ୀ଴  (1)

where 𝛼 is any order, ℎ is the step size, 𝑡 and 𝑎 are the upper and lower limits of the fractional 
order derivative, respectively. The G-L algorithm uses a Gamma function, which is expressed as Γ(𝛼) = ׬ exp(−𝑢) 𝑢ఈିଵ𝑑𝑢 = (𝛼 − 1)!ஶ଴ . Considering the resampling interval of spectral reflectance as 
1 nm and ℎ = 1, the derived difference in the fractional order derivative of single variable function 𝑓(𝑥) can be expressed as Equation (2): 

𝑑ఈ𝑓(𝑥)𝑑𝑥ఈ ≈ 𝑓(𝑥) + (−𝛼)𝑓(𝑥 − 1) + (−𝛼)(−𝛼 + 1)2 𝑓(𝑥 − 2) + ⋯+ Γ(−𝛼 + 1)𝑛! Γ(−𝛼 + 𝑛 + 1) 𝑓(𝑥 − 𝑛) 
(2)

We considered calculating FD orders from 0.2 to 2.0 with 0.2 order increments. Therefore, 10 different 
orders were calculated from the spectral data using the G-L algorithm. A Python package named 
“differint” [76] was used to calculate the FD augmented spectral data. 

2.4. Calculation of Vegetation Indices 

Hyperspectral narrow band vegetation indices (VIs) are commonly used to estimate different 
crop biophysical and biochemical properties. We selected 43 common VIs (Table 1) based on studies 
that estimated different plant biochemical traits.  
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Table 1. Vegetation indices (VIs) selected in this study for VI-based modeling. 

VI Equation Reference 
ARI1 1/𝑅ହହ଴ − 1/𝑅଻଴଴ [77] 
ARI2 𝑅଼଴଴(1/𝑅ହହ଴ − 1/𝑅଻଴଴) [77] 
Cart1 𝑅଺ଽହ/𝑅ସଶ଴ [78] 
Cart2 𝑅଺ଽହ/𝑅଻଺଴ [78] 
Cart3 𝑅଺଴ହ/𝑅଻଺଴ [78] 
Cart4 𝑅଻ଵ଴/𝑅଻଺଴ [78] 
Cart5 𝑅଺ଽହ/𝑅଺଻଴ [78] 
CCI (𝑅଻଻଻ − 𝑅଻ସ଻)/𝑅଺଻ଷ [79] 
Datt1 (𝑅଼ହ଴ − 𝑅଻ଵ଴)/(𝑅଼ହ଴ − 𝑅଺଼଴) [80] 
Datt2 𝑅଼ହ଴/𝑅଻ଵ଴ [80] 
Datt3 𝑅଻ହସ/𝑅଻଴ସ [80] 
EVI 2.5((𝑅଼଴଴ − 𝑅଺଻଴)/(𝑅଼଴଴ − 6𝑅଺଻଴ − 7.5𝑅ସ଻ହ + 1)) [81,82] 

GNDVI1 (𝑅଻ହ଴ − 𝑅ହହ଴)/(𝑅଻ହ଴ + 𝑅ହହ଴) [83] 
GNDVI2 (𝑅଼଴଴ − 𝑅ହହ଴)/(𝑅଼଴଴ + 𝑅ହହ଴) [83] 
MCARI1 ((𝑅଻଴଴ − 𝑅଺଻଴) − 0.2(𝑅଻଴଴ − 𝑅ହହ଴))(𝑅଻଴଴/𝑅଺଻଴) [84] 
MCARI2 1.2(2.5(𝑅଼଴଴ − 𝑅଺଻଴) − 1.3(𝑅଼଴଴ − 𝑅ହହ଴)) [85] 
mNDVI (𝑅଻ହ଴ − 𝑅଻଴ହ)/(𝑅଻ହ଴ + 𝑅଻଴ହ − 2𝑅ସସହ) [80,86] 

mSR (𝑅଻ହ଴ − 𝑅ସସହ)/(𝑅଻଴ହ − 𝑅ସସହ) [80,86] 
MTCI (𝑅଻ହସ − 𝑅଻଴ଽ)/(𝑅଻଴ଽ − 𝑅଺଼ଵ) [87] 
MTVI1 1.2(1.2(𝑅଼଴଴ − 𝑅ହହ଴) − 2.5(𝑅଺଻଴ − 𝑅ହହ଴)) [85] 
NDCI (𝑅଻଺ଶ − 𝑅ହଶ଻)/(𝑅଻଺ଶ + 𝑅ହଶ଻) [88] 
NDVI (𝑅଻ହ଴ − 𝑅଻଴ହ)/(𝑅଻ହ଴ + 𝑅଻଴ହ) [89] 

PRI (𝑅ହଷଵ − 𝑅ହ଻଴)/(𝑅ହଷଵ + 𝑅ହ଻଴) [90] 
PSRI (𝑅଺଻଼ − 𝑅ହ଴଴)/𝑅଻ହ଴ [91] 
REP 700 + 40((𝑅଺଻଴ − 𝑅଻଼଴)/2 − 𝑅଻଴଴))/(𝑅଻ସ଴ − 𝑅଻଴଴) [92] 
RIdb 𝑅଻ଷହ/𝑅଻ଶ଴ [93] 
SIPI (𝑅଼଴଴ − 𝑅ସସହ)/(𝑅଼଴଴ + 𝑅଺଼଴) [94] 

SPVI1 0.4 × 3.7(𝑅଼଴଴ − 𝑅଺଻଴) − 1.2|𝑅ହଷ଴ − 𝑅଺଻଴| [95,96] 
SPVI2 0.4 × 3.7(𝑅଼଴଴ − 𝑅଺଻଴) − 1.2|𝑅ହହ଴ − 𝑅଺଻଴| [95] 

SR440/690 𝑅ସସ଴/𝑅଺ଽ଴ [97] 
SR700/670 𝑅଻଴଴/𝑅଺଻଴ [98] 
SR750/550 𝑅଻ହ଴/𝑅ହହ଴ [98] 
SR750/700 𝑅଻ହ଴/𝑅଻଴଴ [99] 
SR750/710 𝑅଻ହ଴/𝑅଻ଵ଴ [100] 
SR752/690 𝑅଻ହଶ/𝑅଺ଽ଴ [100] 
SR800/680 𝑅଼଴଴/𝑅଺଼଴ [86] 

SRPI 𝑅ସଷ଴/𝑅଺଼଴ [101] 
TCARI 3((𝑅଻଴଴ − 𝑅଺଻଴) − 0.2(𝑅଻଴଴ − 𝑅ହହ଴)(𝑅଻଴଴/𝑅଺଻଴)) [18] 
TCARI2 3((𝑅଻ହ଴ − 𝑅଻଴ହ) − 0.2(𝑅଻ହ଴ − 𝑅ହହ଴)(𝑅଻ହ଴/𝑅଻଴ହ)) [20] 

TVI 0.5(120(𝑅଻ହ଴ − 𝑅ହହ଴) − 200(𝑅଺଻଴ − 𝑅ହହ଴)) [102] 
VOG1 𝑅଻ସ଴/𝑅଻ଶ଴ [103] 
VOG2 (𝑅଻ଷସ − 𝑅଻ସ଻)/(𝑅଻ଵହ + 𝑅଻ଶ଺) [103] 
VOG3 (𝑅଻ଷସ − 𝑅଻ସ଻)/(𝑅଻ଵହ + 𝑅଻ଶ଴) [103] 

2.5. Feature Selection Methods 

Feature selection is one of the most important pre-processing steps before performing any ML 
regression or classification pipeline [104–106]. Since hyperspectral data usually contain a large 
number of features (i.e., wavelengths), it is ideal to reduce the number of features by selecting the 
most sensitive features. Our spectral data contained reflectance values for wavelengths from 350–
2500 nm with 1 nm intervals, which resulted in 2151 features. Therefore, dimensionality reduction by 
selecting features that were sensitive to LCC was a necessary step. Other than assessing the impact 
of FD in estimating LCC using different ML algorithms, we also focused on the effect of different 
feature selection methods and number of features within the pipeline. We used three common feature 
selection methods: Pearson’s correlation coefficient (PCC), partial least square based variable 
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importance in the projection (VIP), and random forest based mean decrease impurity (MDI) to rank 
the importance of features. 

2.5.1. Pearson’s Correlation Coefficient (PCC) 

Pearson’s correlation coefficient (PCC) is a measure of the linear dependence between two 
random variables, which is formally defined as the covariance of the variables divided by the product 
of their standard deviations. The calculation of PCC (𝑟௫௬) can be expressed as Equation (3): 

𝑟௫௬ = ∑ (𝑥௜ − 𝑥̅)௡௜ୀଵ ∑ (𝑦௜ − 𝑦ത)௡௜ୀଵඥ∑ (𝑥௜ − 𝑥̅)ଶ௡௜ୀଵ ඥ∑ (𝑦௜ − 𝑦ത)ଶ௡௜ୀଵ  (3)

where 𝑥̅ = ଵ௡ ∑ 𝑥௜௡௜ୀଵ  and 𝑦ത = ଵ௡ ∑ 𝑦௜௡௜ୀଵ  denote the mean of 𝑥  and 𝑦 , respectively, with 𝑛  sample 
size. The coefficient (𝑟௫௬) ranges from –1 to 1 and it is invariant to linear transformations of either 
variables. The feature importance scores were calculated based on the absolute value of PCC. 

2.5.2. Variable Importance in the Projection (VIP) 

Partial least squares (PLS) regression is a common regression technique which is based on 
explanatory variables that have maximal covariance with the target variable. However, a key feature 
of PLS regression is that the importance of explanatory variables in predicting the target variable can 
be quantified by a metric called variable importance in the projection (VIP). The VIP score measures 
the explicative power of explanatory variables with respect to the target variable which is based on 
the PLS regression. Feature selection using VIP has been utilized in several studies related to remote 
sensing of vegetation [107–110]. According to Eriksson and colleagues [111], the VIP score for the 𝑘th 
variable for target variable 𝑦 can be computed with Equation (4): 

𝑉𝐼𝑃௞ = ඨ𝐾 ∑ (𝑞௔ଶ𝑡௔் 𝑡௔)(𝑤௔௞/‖𝑤௞‖ଶ)஺௔ୀଵ ∑ (𝑞௔ଶ𝑡௔் 𝑡௔)஺௔ୀଵ  (4)

where 𝑎 = 1,2 … , 𝐴, which is the number of PLS components, 𝐾 is the number of columns of 𝑋 (i.e., 
features or wavelengths), 𝑤௔௞ is the loading weight of the 𝑘th variable in the 𝑎th component, and 𝑡௔, 𝑤௔, and 𝑞௔ are the 𝑎th column vectors of 𝑇, 𝑊, and 𝑄, respectively. Here, 𝑊 contains the 𝑋-
weights defining the common latent variable space 𝑇 relating 𝑋 and 𝑦, and 𝑄 holds the loading 
vectors that best represent the 𝑦 space. The variable with a higher VIP score shows the relevancy of 
using that variable to predict the target variable. 

2.5.3. Mean Decrease Impurity (MDI) 

Random forest is an ensemble learning technique based on randomized decision trees and 
impurity measurements [112] that can provide different feature importance measures. One such 
technique is known as Gini importance or mean decrease impurity (MDI), when the random forest 
uses Gini index as its impurity measurement. Breiman [112] proposed to evaluate the importance of 
a variable 𝑘 for predicting 𝑦 (i.e., LCC) by adding up the weighted impurity decreases (𝑝(𝑡)Δ𝑖(𝑠௧, 𝑡)) 
for all nodes 𝑡 where 𝑘 is used and averaged over all 𝑁் trees in the forest as in Equation (5): 

𝑀𝐷𝐼௞ = 1𝑁் ෍ ෍ 𝑝(𝑡)Δ𝑖(𝑠௧, 𝑡)௧∈்:௩(௦೟)ୀ௞்  (5)

where 𝑝(𝑡) is the proportion 𝑁௧/𝑁 of sample reaching 𝑡, and 𝑣(𝑠௧) is the variable used in split 𝑠௧. 
Few studies have implemented MDI scoring for feature selection in ML pipeline [108,113,114]. In our 
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study, the MDI score of a variable (i.e., wavelength or VI) represents the corresponding importance 
estimating LCC. 

2.6. Machine Learning Algorithms 

In the plant phenotyping community, several machine learning (ML) algorithms have become 
popular in terms of both accuracy and computational efficiency [115]. We investigated four 
commonly used ML regression techniques (i.e., PLSR, RFR, SVR, and ELR) for estimating LCC from 
reflectance and VI-based spectra with derivative analysis. PLSR is a multivariate calibration 
technique that uses component projection to reduce the full feature space to a smaller number of non-
correlated features (also known as latent variables) containing the most useful information [116]. 
Therefore, PLSR was found to be very effective when the feature space is large, and multicollinearity 
exists within different features [117]. RFR is an ensemble-learning algorithm that accumulates a large 
set of decision trees, which are a hierarchically organized set of conditions or restrictions [118]. The 
process starts with fitting decision tree to randomly drawn samples and for each tree node a subset 
of input features is selected. Due to random selection of features in each tree, RFR is tolerant to 
outliers and noise [119]. SVR is the regression implementation of support vector machine (SVM). 
SVM transforms the non-linear regression problem to a linear one by utilizing different kernel 
functions. These functions then map the original input space into a high-dimensional feature space 
to find unique global solutions that are not exploited by multiple local minima [120]. ELR is the 
regression version of extreme learning machine (ELM), which is a feed-forward neural network with 
one input layer, one hidden layer, and one output layer [60]. ELM can provide high computational 
efficiency because the hidden node parameters are generated randomly [8]. 

2.7. Modeling Pipeline and Evaluation 

An automated modeling pipeline was developd (Figure 2) to train different ML regression 
techniques. After creating both reflectance-based and VI-based derivative order datasets, the 
modeling pipeline started with dividing the dataset into training (n = 244) and validation (n = 105) 
sets by a 70%/30% split. The validation set was kept completely outside of the feature selection and 
model training parts, and only utilized during the final model evaluation step. Since different 
derivative orders had different ranges of reflectance values, the features were scaled from 0 to 1 
before any modeling steps. Feature importance scores were calculated using three feature selection 
methods (i.e., PCC, VIP, and MDI). Since both VIP and MDI were required to train PLSR and RFR 
models first, the training parameters were selected based on a grid search algorithm and 10-fold 
cross-validation. Based on different feature importance scores, different groups of features were 
extracted from different derivative orders. For reflectance-based analysis, 25, 50, 75, 100, 125, 150, 175, 
and 200 feature groups were created, whereas for VI-based analysis, 5, 10, 15, 20, 25, 30, 35, and 40 
feature groups were extracted. Each of these groups from different FD orders were input data for ML 
algorithms. 
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Figure 2. Overall workflow of the feature extraction, feature selection, and modeling pipeline. 

The feature groups from both reflectance-based and VI-based data were trained with different 
ML models. Since different models require different training parameters, we carefully selected 
different ranges of model parameters for PLSR, RFR, SVR, and ELR based on extensive literature 
survey, and applied a grid search algorithm to select the best combination of model parameters. The 
grid search was performed with a 10-fold cross-validation and mean squared error (MSE) was 
selected as the scoring criteria. Therefore, the combination of parameters resulting in the lowest MSE 
was considered as the optimal parameters for the model. Each feature group from different derivative 
orders was processed through this technique and the average MSE score for each input set was 
retained. Finally, the combination of feature selection method and number of features that showed 
the lowest MSE score within a particular derivative order and ML algorithm was used for model 
evaluation with the validation set. The modeling pipeline was implemented in Python and the ML 
algorithms were utilized from the “Scikit-learn” package [121].  

The evaluation of model performance was conducted by using the coefficient of determination 
(𝑅ଶ), root mean squared error (𝑅𝑀𝑆𝐸), and relative RMSE (𝑅𝑀𝑆𝐸%). The equations are as follows: 
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𝑅ଶ = 1 − ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ(𝑦௜ − 𝑦ത௜)ଶ  (6)

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ𝑛 − 1  (7)

𝑅𝑀𝑆𝐸% = 𝑅𝑀𝑆𝐸𝑦ത ∗ 100 (8)

where 𝑖 = 1,2,3, … … . . , 𝑛 is the validation sample, 𝑦ො௜ and 𝑦௜ represent the predicted and measured 
LCC values, respectively, and 𝑦ത is the average of each measurable variable. 

3. Results 

3.1. Descriptive Statistics of Collected Samples 

The descriptive statistics and distribution of sample LCC are presented in Table 2 and Figure 3a, 
respectively. The collected leaf samples showed a range of LCC values from 30.8 to 70.3 µg/cm2 with 
a mean value of 50.26 µg/cm2. The sample distribution had a standard deviation of 7.54 with a 
coefficient of variation (CV) of 15%. Figure 3a also shows normally distributed LCC sample values. 
The descriptive statistics for spectral features are visually represented in Figure 3b. The mean spectral 
curve (350–2500 nm) of corresponding LCC samples shows a typical reflectance pattern of healthy 
vegetation: moderately strong reflectance at green region (approximately 500–650 nm), very strong 
reflectance at NIR region (approximately 750–1000 nm), and two water absorption regions at around 
1500 nm and 2000 nm. This reveals that the sample leaves selected for this study were healthy and 
representative for the analysis. 

 

Figure 3. Distribution of collected LCC samples collected with Dualex 4 Scientific (a) and mean 
hyperspectral spectra with 1 and 2 standard deviations collected using Spectral Evolution PSR-3500 
(b). (a) The left axis represents the frequency of LCC samples, whereas the right axis represents the 
probability density; the target variable for this study (i.e., LCC) has a normal distribution. (b) The 
mean spectral curve of sorghum leaf samples exhibits a health vegetation reflectance curve. 

Table 2. Descriptive statistics of LCC samples (µg/cm2). 

 Sample Size Maximum Minimum Mean SD CV (%) 
LCC (µg/cm2) 349 70.30 30.80 50.26 7.54 15.00 

Notes: SD: standard deviation; CV: coefficient of variation. 
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3.2. Spectral Features After Fractional Derivative Analysis 

Fractional derivative-augmented spectra showed varying spectral patterns with increasing 
fractional orders. Figure 4 shows such pattern from the corresponding reflectance spectra of three 
LCC samples: the minimum (red line), maximum (green line), and median (blue line) LCC values. In 
the case of the original spectral reflectance factor (Figure 4a, from here on the reflectance factor will 
be denoted as original spectra), the maximum LCC spectra showed higher reflectance peaks at the 
NIR region (around 750–800 nm) compared to the other two spectra. However, the difference 
between these reflectance peaks at the NIR region started to diminish with fractional derivative 
analysis, specifically after 0.4 order (Figure 4c). Derivative treatment also led to increase in the 
reflectance value with increasing derivative orders exponentially, which allowed the derivative 
spectra to be sensitive to subtle changes in the reflectance factor. 

 
Figure 4. Varying spectral features of the minimum (red line), median (green line), and maximum 
(blue line) LCC samples after different fractional-order derivative treatment, i.e., original spectra in 
(a), order 0.2 in (b), and so on until order 2.0 in (k) with 0.2 order as increment. Each plot also 
demarcates the regions of visible (VIS), near-infrared (NIR), and short wave infrared (SWIR) bands 
with grey dashed lines. The wavelengths are shown from 450 to 1800 nm since typical vegetation 
spectra show noise at around 400 nm and 2500 nm. With increasing derivative order, the range of 
derivative reflectance factor starts increasing which can be observed in (b-k) 
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Based on Figure 4, the number of reflectance and absorption peaks increased with incremental 
derivative orders compared to original spectra. For example, a subtle reflectance peak in the original 
spectra of maximum LCC sample (green line in Figure 4a) at around 800–1000 nm is amplified in the 
0.2 derivative order spectra (Figure 4b). The FD treatment to reflectance spectra enabled sensitive 
features to become more significant by increasing the derivative reflectance value at certain bands 
(e.g., the derivative reflectance curve showed a sharp change at around 1000 nm in 0.4 order, Figure 
4c), whereas the less sensitive bands were found comparatively lower in their derivative reflectance 
values. 

3.3. Feature Importance Scores 

The relationship between different features and the target variable in this study (i.e., LCC) is a 
crucial step before performing model training. Figure 5 shows such a relationship between features 
from different derivative orders and LCC based on Pearson’s correlation coefficient (Pearson’s R). 
Pearson’s R ranges from –1 to +1, which represent the negative and positive relationships, 
respectively. All correlation coefficients from different features and LCC values were tested at the 
0.01 significance level (99% confidence); they are shown in Figure 5 for each derivative order. Overall, 
there were negative correlations between original reflectance spectra and LCC at around 750 nm, 
1400 nm, and 2000 nm wavelengths, where some features passed the significance test (Figure 5a). 
Very few features in original spectra showed a positive correlation and not a single feature with a 
positive correlation showed statistical significance (Figure 5a). However, with increasing derivative 
orders, both the correlation coefficient and number of features passing the significance test increased 
(Figure 5b–k). The highest correlation (both positive and negative) was found at around 700–750 nm 
range from 1.0 and 1.2 order derivatives. After 1.4 order, the overall correlation and number of 
significant features started dropping and the correlation curve became noisy (Figure 5i–k). 
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Figure 5. The correlation coefficient between LCC and original spectral data (a) and fractional 
derivative augmented spectra (b-k). The dashed lines in each plot represent the limit of statistical 
significance at 99% confidence. The data points located beyond these limits are significantly correlated 
with LCC. With increasing derivative order, several wavelengths showed increased and statistically 
significant correlation coefficients (c-h). However, from order 1.6 (i), the pattern of correlation 
becomes noisy and insignificant. 

Figures 6 and 7 show the feature importance scores from different feature selection methods for 
reflectance spectra and VIs, respectively. The PCC, VIP, and MDI scores were scaled in the range of 
0–1 to make uniform comparison of scores between each derivative orders and feature selection 
methods. An important consideration for this analysis was that the scores were calculated using only 
the training samples, whereas the validation set was set aside for further model evaluations. In terms 
of reflectance-based feature importance scores (Figure 6), the PCC tended to extract sensitive features 
from around 700 nm, 1400 nm, and 1800–2400 nm range (Figure 6a). With increasing derivative 
orders, the most important features were concentrated at around 700 nm and 1400 nm, and after 1.6 
order, the pattern of important features became noisy. The VIP scores (Figure 6b) showed a similar 
pattern of feature importance as the PCC, however, the values were slightly different. Alternatively, 
in terms of MDI (Figure 6c), the feature importance was more discrete than PCC and VIP. The MDI 
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resulted in important features at the 2000 nm region for original spectra (order 0.0), whereas with 
increasing derivative orders, the important features were found at around 700–800 nm region. 
Usually this region is considered as the NIR region and the correlation between features at this region 
and LCC was found significantly improving with increasing derivative orders (Figure 5). However, 
the MDI highlighted unique wavelengths as a result of very clear and sharper increase in feature 
importance. 

 
Figure 6. Feature importance scores for wavelengths of different derivative orders calculated from 
three feature selection methods: (a) Pearson’s correlation coefficient (PCC), (b) partial least squares 
regression based variable importance in the projection (VIP), and (c) random forest regression based 
mean decrease impurity (MDI). The 0.0 order in the x-axis represents the original spectra without any 
derivative treatment. The feature importance score was scaled from 0–1 for each method and 
derivative order. 

Feature importance scores from the VIs are shown in Figure 7. The scores are shown for all 43 
features with different feature selection methods, however, the order of the features in Figure 7 does 
not represent any logical meaning. Similar to the reflectance-based feature importance scores, the 
PCC and VIP showed similar patterns of feature importance with different derivative orders. The 
PCC tended to highlight several important features even with original spectral data (order 0.0), for 
example, Cart4, Datt1, MTCI, NDVI, REP, RIdb, SR750/710, VOG2, and VOG3 were found as showing 
higher scores. With increasing derivative orders, the scores for different features became noisier 
(Figure 7a,b). In terms of MDI (Figure 7c), very few features were highlighted in each derivative 
order, for example, only Vog2 and Vog3 were found highly important in original spectra, with order 
0.2 and order 0.4, respectively. After order 1.4, the number of important features increased abruptly. 
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Figure 7. Feature importance score for vegetation indices of different derivative orders calculated 
from three feature selection methods: (a) Pearson’s correlation coefficient (PCC), (b) partial least 
squares regression based variable importance in the projection (VIP), and (c) random forest regression 
based mean decrease impurity (MDI). The 0.0 order in the x-axis represents the original spectra 
without any derivative treatment. The y-axis represents different VIs analyzed in this study; however, 
VIs are not represented in any logical order. 

3.4. Model Results of LCC Estimation 

ML models (i.e., PLSR, RFR, SVR, and ELR) were trained with every possible combination of 
feature selection methods and number of feature groups. Model evaluation metrics (i.e., R2, RMSE, 
and RMSE%) were only calculated for the combination of feature selection method and number of 
features that yielded the lowest cross validation MSE score from the training set. These metrics were 
calculated with the validation dataset and all derivative orders of two different datasets: reflectance-
based and VI-based spectra. The validation metrics of LCC estimation are demonstrated in Table 3. 
In addition, the model R2 and RMSE are illustrated in Figure 8 with respect to different derivative 
order. 

In terms of reflectance-based analysis (Figure 8a,c), the derivative order of 1.0 showed superior 
performance with all four models (R2 ranging from 0.578 to 0.734 and RMSE% ranging from 8.125 to 
10.227). The predictive performance of all models showed improvement with increasing derivative 
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order up to a particular point. For instance, PLSR (R2 of 0.701 and RMSE% of 8.603) showed the 
highest result at order 0.2, RFR (R2 of 0.683 and RMSE% of 8.865) and SVR (R2 of 0.734 and RMSE% 
of 8.125) yielded peaks at order 1.0, and ELR (R2 of 0.704 and RMSE% of 8.567) performed the best at 
order 0.4. After the respective orders, each model started to decline in their performance (Figure 8a,c). 
Overall, the SVR showed consistently good performance until the derivative order reached 1.8 (R2 
ranging from 0.457 to 0.734 and RMSE% ranging from 8.125 to 11.605). Table 3 also shows the best 
combination of feature selection method and number of features for each model and derivative order. 
The best performing model within the reflectance-based analysis (i.e., SVR with order 1.0) used 75 
features selected by MDI. Overall, the MDI was found as the optimal feature selection method for 
most of the well performed models. 

Table 3. Validation results of partial least squares regression (PLSR), random forest regression (RFR), 
support vector regression (SVR), and extreme learning regression (ELR) for LCC with different 
derivative orders. 

Ord. Metrics 
Reflectance-based VI-based 

PLSR RFR SVR ELR PLSR RFR SVR ELR 

0.0 

R2 0.671 0.443 0.676 0.558 0.673 0.618 0.717 0.744 
RMSE 4.493 5.842 4.459 5.207 4.477 4.841 4.169 3.964 

RMSE% 9.035 11.747 8.966 10.471 9.002 9.734 8.382 7.971 
Features VIP-75 MDI-50 VIP-75 VIP-50 VIP-30 MDI-10 PCC-25 PCC-15 

0.2 

R2 0.701 0.509 0.706 0.548 0.714 0.625 0.708 0.698 
RMSE 4.279 5.486 4.249 5.265 4.187 4.794 4.231 4.306 

RMSE% 8.603 11.032 8.543 10.588 8.418 9.639 8.509 8.658 
Features VIP-75 MDI-75 VIP-175 VIP-50 PCC-10 VIP-30 PCC-15 PCC-10 

0.4 

R2 0.653 0.654 0.720 0.704 0.674 0.696 0.651 0.579 
RMSE 4.616 4.605 4.142 4.261 4.468 4.320 4.623 5.081 

RMSE% 9.281 9.259 8.330 8.567 8.984 8.686 9.295 10.217 
Features VIP-25 MDI-125 MDI-100 VIP-25 PCC-20 MDI-10 PCC-15 PCC-15 

0.6 

R2 0.653 0.661 0.680 0.608 0.672 0.675 0.678 0.650 
RMSE 4.614 4.560 4.427 4.901 4.482 4.464 4.445 4.624 

RMSE% 9.278 9.169 8.902 9.855 9.012 8.975 8.938 9.296 
Features VIP-50 MDI-50 MDI-175 MDI-25 PCC-15 MDI-20 VIP-15 VIP-15 

0.8 

R2 0.621 0.648 0.729 0.589 0.670 0.672 0.660 0.640 
RMSE 4.820 4.649 4.078 5.018 4.499 4.483 4.566 4.697 

RMSE% 9.692 9.347 8.201 10.090 9.047 9.014 9.182 9.445 
Features VIP-200 MDI-50 MDI-25 MDI-25 PCC-15 MDI-5 PCC-10 VIP-10 

1.0 

R2 0.632 0.683 0.734 0.578 0.655 0.616 0.555 0.644 
RMSE 4.747 4.409 4.041 5.086 4.596 4.850 5.226 4.673 

RMSE% 9.546 8.865 8.125 10.227 9.241 9.753 10.508 9.397 
Features VIP-200 MDI-75 MDI-75 PCC-25 PCC-10 MDI-20 PCC-20 VIP-10 

1.2 

R2 0.528 0.673 0.708 0.573 0.526 0.514 0.543 0.494 
RMSE 5.380 4.480 4.235 5.119 5.393 5.461 5.296 5.572 

RMSE% 10.818 9.009 8.515 10.294 10.844 10.981 10.649 11.203 
Features VIP-175 VIP-75 VIP-150 VIP-50 MDI-5 MDI-15 MDI-5 MDI-5 

1.4 

R2 0.536 0.602 0.662 0.492 0.056 0.286 0.282 0.249 
RMSE 5.332 4.937 4.550 5.579 7.607 6.614 6.633 6.786 

RMSE% 10.721 9.927 9.149 11.219 15.295 13.299 13.337 13.645 
Features VIP-200 MDI-25 PCC-150 MDI-25 VIP-15 MDI-15 MDI-5 PCC-5 

1.6 

R2 0.446 0.588 0.573 0.420 -0.020 0.066 -0.023 0.075 
RMSE 5.830 5.028 5.119 5.962 7.906 7.567 7.919 7.530 

RMSE% 11.724 10.110 10.294 11.988 15.898 15.215 15.924 15.141 
Features VIP-175 PCC-25 VIP-150 PCC-50 MDI-10 MDI-10 MDI-5 MDI-5 

1.8 

R2 0.281 0.339 0.457 0.109 -0.065 -0.028 -0.087 -0.296 
RMSE 6.637 6.368 5.771 7.393 8.082 7.940 8.164 8.915 

RMSE% 13.347 12.805 11.605 14.865 16.251 15.966 16.417 17.926 
Features PCC-200 MDI-25 VIP-150 MDI-25 PCC-5 MDI-25 PCC-10 VIP-10 

2.0 

R2 0.128 0.035 0.116 0.166 -0.280 -0.239 -0.089 -0.040 
RMSE 7.311 7.691 7.361 7.151 8.860 8.715 8.173 7.986 

RMSE% 14.701 15.465 14.802 14.380 17.816 17.525 16.434 16.058 
Features VIP-150 MDI-75 VIP-100 VIP-50 MDI-5 MDI-10 MDI-5 VIP-30 
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Notes: Ord. represents derivative order; Features represent the optimum feature selection method and number 
of features found for corresponding model and derivative order. R2: coefficient of determination; RMSE: root 
mean squared error; RMSE%: relative RMSE. 

 

Figure 8. Model R2 and RMSE for reflectance-based analysis (left side, i.e., a, c), and VI-based analysis 
(right side, i.e., b, d). The 0.0 order in the x-axis represents the original spectra without any derivative 
treatment. For reflectance-based modeling, model performance increases; however, the performance 
starts decreasing after certain derivative order. For VI-based modeling, the model performance was 
found better with original spectra (order 0.0). With increasing derivative order, model performance 
starts declining. 

Alternatively, when VIs were used as input features instead of reflectance spectra for different 
derivative orders, the highest performance was observed at original spectra (R2 ranging from 0.618 
to 0.744 and RMSE% ranging from 7.971 to 9.734). The best performing model was found with ELR 
at original spectra (R2 of 0.744 and RMSE% of 7.971), which was even higher than the best model 
found with reflectance-based analysis (i.e., SVR at order 1.0 resulting in R2 of 0.734 and RMSE% of 
8.125). The ELR with original spectra used 15 features as input which were selected by PCC. Overall, 
most of the well-performing models at lower derivative orders showed PCC as an optimal feature 
selection method. However, according to Figure 8b, the model performance decreased with 
increasing derivative orders within the VI-based analysis. Therefore, the LCC estimation worked 
better with derivative spectra at 1.0 order when direct reflectance from wavelengths was used, 
whereas the original spectra showed good performance when the model inputs were VIs. 

The distributions of predicted LCC values using different models, derivative orders, and feature 
types (i.e., reflectance-based or VI-based) with validation dataset are illustrated in Figure 9. The 
boxplots with different models show how different the distribution of predicted LCC values is with 
measured LCC values. Results showed that the reflectance-based analysis yielded good performance 
with increasing derivative order until approximately 1.2 order, whereas the VI-based analysis 
showed decreasing performance (distribution of predicted LCC values showed outliers and 
skewness) of models with increasing derivative order. 
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Figure 9. Boxplot for measured (M) and predicted LCC from different derivative orders and original 
spectra (order 0.0) using all models (i.e., the x-axis). The figures on the left side (a–d) contain boxplots 
from reflectance-based analysis, whereas the figures on the right side (e–h) show the boxplots 
generated from VI-based analysis. 

4. Discussion 

4.1. Performance Analysis of Derivative Spectra and VIs in LCC Estimation 

The derivative calculus including both integer-orders and fractional-orders, has proven to be an 
effective tool for analyzing spectra in many fields. Although many studies have utilized first-order 
and second-order derivatives in estimating vegetation spectra, very few studies have utilized 
fractional derivative in analyzing hyperspectral reflectance of crop leaves. To our knowledge, only 
one study from Chen, Li, and Tang [47] found 0.6 order spectra that resulted in superior performance 
in estimating nitrogen concentration of natural rubber (Hevea brasiliensis). Additionally, Wang, 
Zhang, Kung, and Johnson [35] reported that 1.2 order fractional derivative of hyperspectral data 
yielded the best results for estimating soil organic matter content. Fu, Xiong, and Tian [39] conducted 
a similar investigation and showed that FD analysis can increase the correlation coefficient between 
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FD-augmented spectra and soil organic matter content. However, Fu, Xiong, and Tian [39] did not 
conclude with any single order that provided the best result in predictive analytics. The results from 
our study also dictate that when reflectance spectra are used in modeling LCC, derivative calculus 
can significantly increase the correlation between LCC until a certain order (Figure 5). However, 
different models yielded their best performance at different orders. For example, both SVR and RFR 
had higher model performance at order 1.0, but PLSR showed its best performance at order 0.2. We 
also found that the best performance was retrieved from 1.0 order (i.e., first order) with SVR model 
when reflectance spectra were used as model input. However, the second highest model performance 
from 0.8 order with SVR (R2 of 0.729 and RMSE% of 8.201) used fewer features (n = 25) compared to 
the highest performing model that used more features (n = 75), yet the results were only slightly less 
than the best model. Therefore, we find it inconclusive to state that either fractional derivative or 
integer-order derivative is better in estimating LCC from sorghum. 

Derivative calculus augmented spectra have the capability to extract more useful information 
from hyperspectral data since the order is extended arbitrarily to non-integers as well as integers 
[29,30,34]. This process increases the possibility of highlighting more detailed features within the 
limits of integer derivatives. For example, Figure 10 shows reflectance spectra of a sample leaf (i.e., 
from the median LCC value of 50.5 µg/cm2) without any derivative analysis (i.e., original spectrum, 
Figure 10a) and derivative spectrum from order 0.2 to 2.0 with a smaller spectral window (i.e., the 
NIR region of 700–1000 nm). The selected features with the best models found at each derivative 
order are also highlighted. Figure 10 is a close-up version of Figure 4 that highlights how the 
increasing derivative order amplify certain information in the spectral curve and how important 
features are then selected by different feature selection methods. According to Figure 10a, the original 
spectra show an increasing slope until around 760 nm and start to flatten out until 1000 nm. With 
increasing derivative order, the flatten curve starts to show abrupt peaks on it and the important 
features start to appear in a distributed manner. For example, with order 0.6 (Figure 10d), important 
features are seen all over the spectrum instead of clustering at the lower end of the spectrum as in the 
case of original spectra (Figure 10a). This is the reason that the correlation coefficient between LCC 
and derivative spectra significantly increased with increasing derivative orders (Figure 5). 
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Figure 10. Original spectral curve of a leaf sample (a), and corresponding fractional derivative (FD)-
transformed spectra (b–k). The spectra only show the NIR region (700–1000 nm) since it is considered 
the most important region for feature selection. The red circles show the position of features which 
were selected as input for the best performing model of corresponding order. The n represents the 
number of features found within the NIR range. 

Alternatively, use of VIs has been considered as a convenient and powerful feature for 
estimating different plant characteristics from spectral data. Many studies have reported the good 
predictive capabilities of using VIs in predicting leaf biochemical properties [122–128]. We have also 
found superior results with VIs instead of performing any derivative augmentation (i.e., the best 
performing model was from 15 VIs). Figure 11 shows those VIs that resulted in the best performing 
model using ELR and original spectra. These VIs were selected by PCC as the feature selection 
method. One possible reason behind VIs showing the best performance could be that VIs were 
developed to enhance certain vegetation information. LCC is considered as one of the major leaf 
pigments that reflects the photosynthetic ability and overall health status of a plant [129]. Although 
the VIs selected for this study were based on a wide literature survey, most of the VIs were found 
highly sensitive to LCC. For example, the highest correlation was found for the Red-Edge Position 
(REP) index (Figure 11, equation in Table 1) developed by Clevers [92]. This index highlights 
reflectance from the red-edge position of the spectrum and simplifies the spectral curve to a straight 
line between 700 nm and 740 nm. The reflectance of the REP was then estimated as being half of the 
reflectance in the NIR at about 780 nm and the reflectance minimum of the chlorophyll absorption 
feature at around 670 nm. By highlighting the chlorophyll absorption band, this index provided the 
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best score and can be used as a potential feature. Other VIs were also closely related to LCC and other 
leaf biochemical parameters which helped different models to estimate LCC using the original 
spectra instead of using VIs from derivative transformed spectra. An advantage of using VIs instead 
of reflectance is that they reduce the feature space and increase model computational efficiency. 
However, the selection of VIs is very important for estimating certain plant characteristics. 

 
Figure 11. Scatterplots showing the relationship between different VIs and LCC values. The entire 
sample (n = 349) is shown in these plots. The VI values are scaled from 0 to 1 for visual enhancement 
in the figure. The scale transformation did not change the pattern of relationship between LCC and 
VIs. 

4.2. Impact of Feature Selection Methods in Modeling Pipeline 

Selecting sensitive features for modeling any biochemical properties is crucial, especially when 
the input feature space is large. Use of PCC (or absolute value of Pearson’s correlation coefficient) is 
very common for sensitive feature selection in the plant science community. However, we also 
explored the effectiveness of the VIP score from PLSR and MDI score from RFR. Results suggested 
that in terms of reflectance-based analysis, MDI worked better since the scores were not saturated 
over the spectrum for different derivative orders. MDI score is calculated based on node impurity, 
which is a measure of homogeneity of the variable. With increasing order, the difference between 
each feature range increases a lot with abrupt changes which increases the impurity in the feature 
space. That is why MDI can unilaterally pick important features from the spectrum at large distances 
with increasing orders. With PCC, there exists the chance of multicollinearity (correlation among 
features) which results in similar feature importance score for adjacent bands in our analysis. On the 
other hand, since MDI is a tree-based scoring measure, the multicollinearity problem was avoided. 

On the other hand, in terms of VI-based analysis, PCC tends to pick up sensitive features 
distributed over all the available VIs. Since some of the individual VIs showed higher correlation 
compared to individual original spectra or derivative augmented spectra, PCC was able to pick up 
important features for modeling. An advantage of PCC is that it does not need to train any model, 
whereas both VIP and MDI scores were calculated after training PLSR and RFR models, respectively. 

4.3. Performance of Machine Learning Models in LCC Estimation 

In plant science and remote sensing communities, the PLSR, RFR, and SVR have proven to be 
effective machine learning models for estimating biochemical properties. Recently, ELR has been 
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utilized as a potential machine learning method in regression problems due to its enhanced 
computational efficiency [58,63]. Our study reveals that within reflectance-based analysis, SVR 
consistently outperformed all other models in every FD order. Many studies have also reported the 
superior predictive capability of SVR in estimating crop phenotypic traits [130–132]. This can be 
attributed to the high generalization ability of SVR by providing a global minimum solution [131,133]. 
ELR also performed well at 0.4 order derivatives but started to decrease its performance with 
increasing derivative order. Although the difference between model evaluation metrics of different 
orders is small in some cases (e.g., SVR at order 1.0 and SVR at order 0.8), it has to be noted that the 
model training was performed with a 10-fold cross validation and the evaluation metrics were 
calculated using a validation dataset which was completely independent of the training dataset and 
only used for model evaluation. This showed the robustness of the trained models. Arguably, our 
study concluded that SVR from order 1.0 is better than SVR from order 0.8. However, for future 
studies with other crops or other study areas, the result may vary, so careful design of the modeling 
pipeline is required before making such an inference. 

In terms of VI-based analysis, most of the model performed well with original spectra. The best 
performing model within both VI-based and reflectance-based analysis was found with ELR from 
reflectance. However, the ML models in terms of VI-based analysis did not perform well with 
increasing derivative orders. The reason behind this is that VIs were developed to amplify certain 
information from vegetation spectra rather than derivative-augmented spectra. Therefore, the 
derivative-augmented spectra were already amplified with different orders and when VIs were 
calculated from these derivative-augmented spectra, more noise was introduced to the feature space. 
This resulted in continuous poor performance of models over increasing FD orders. Therefore, it is 
not advisable to calculate VIs from derivative-augmented spectra. 

5. Conclusions 

Accurate and non-destructive measures for estimating LCC for sorghum is an important step to 
support plant breeders and genetic selection studies. This study investigates the effectiveness of 
derivative calculus and machine learning models in estimating LCC of sorghum from hyperspectral 
spectroscopy. Major conclusions include: 
1. In terms of reflectance-based analysis, increasing derivative order can show improved model 

performance until a certain order; however, it is inconclusive to state that a particular derivative 
order is optimal for estimating LCC of sorghum. Further assessment with data from multiple 
study sites and growth stages is required to make such an inference. 

2. VI-based modeling with original spectra outperformed reflectance-based modeling with 
derivative-augmented spectra. 

3. Sensitive feature selection is a crucial step in any machine learning pipeline. MDI score was 
found effective in selecting sensitive features from a large feature space (reflectance-based 
analysis), whereas PCC worked better with a smaller feature space (VI-based analysis). 

4. When single wavelengths were used in the analysis from different FD orders, SVR outperformed 
all other models. However, PLSR and ELR required fewer model parameters and computational 
time, which can be advantageous in model training. Alternatively, ELR with VIs from original 
spectra yielded slightly better results compared to all other models. Therefore, ELR worked 
better when hand-crafted features (VIs) were used. 
The findings from this study will help plant breeders and scientists in estimating LCC for 

sorghum non-destructively and efficiently. It also demonstrates a potential framework for how to 
prepare a semi-automated machine learning pipeline that highlights robust data processing, feature 
selection, model training, and model evaluation techniques, which can be adopted to other plant 
phenotypic estimation studies as well. Our next steps and future work will include data 
augmentation and transferring the pipeline to hyperspectral imagery collected from unmanned aerial 
vehicle platforms to estimate LCC and other biochemical properties of sorghum. 
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