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Abstract: The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen
(N) supply to the crop N demand is the subject of intense research due to the environmental and
economic impact of N fertilization. Excess N could seep into the water supplies around the field
and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include
poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use
Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2)
of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests,
and support vector regression (SVR) were established to predict the canopy nitrogen weight from
individual multispectral bands and associated vegetation indices (VI). Random Forests using the
current techniques/methodologies performed the best out of all the models tested on the validation
set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral
variables into the model provided a marginal improvement in the accuracy, while extending the
overall processing time. Random Forests provided marginally better results than SVR, but the
concepts and analysis are much easier to interpret on Random Forests. Both machine learning models
provided a much better accuracy than linear regression. The best model was then applied to the
UAV images acquired at different dates for producing maps that show the spatial variation of canopy
nitrogen weight within each field at that date.

Keywords: Unmanned Aerial Vehicle (UAV); precision agriculture; nitrogen management; machine
learning; Random Forests; canopy nitrogen weight; maize; Zea mays

1. Introduction

Precision agriculture (PA) is a farming management technique that requires detailed information
on crop status. One of the important crop status indicators is the crop nitrogen (N) weight because
nitrogen is the main plant nutrient needed for producing the chlorophyll, which has a direct impact on
the plant photosynthesis and thus on crop growth and yield [1]. Therefore, there is a need to understand
the spatial distribution of crop nitrogen for better use of fertilizers. Ultimately, this information leads
to a better yield among the crops and reduces costs for the farmer by matching the fertilizer supply to
its demand [2,3]. Traditionally, farmers used to rely on historical weather data, such as precipitation
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and temperature, and their past experiences, such as crop yields, to make decisions on their fertilizer
operations for the upcoming season [4]. Today, there have been many advances in technology, such
as remote sensing data and machine learning algorithms, that can potentially aid farmers’ decision
making on fertilizer application. Remote sensing-based methods used to measure crop nitrogen are
typically better than the traditional ground-based methods. Ground-based methods require intensive
field data collection, which can be time-consuming, destructive, and limited to a small spatial area,
making it impractical for fast and efficient results. Remote sensing-based methods are required for
most agricultural fields in Canada, given that they can reach up to hundreds of ha in size. Remote
sensing methods are non-destructive, can cover large spatial areas, and have been increasingly used
for crop monitoring in precision agriculture. Crop monitoring based on remote sensing data can use
spaceborne or airborne images, but these types of high-resolution imagery are either costly or difficult
to obtain [5]. Also, they have limited applicability in precision agriculture because of the too coarse
temporal and spatial resolutions of the imagery [6,7]. Alternatively, free-of-charge Sentinel-1 Synthetic
Aperture Radar (SAR) imagery could be used to monitor nitrogen status but does not provide enough
spatial resolution (10 m) for precise small-scaled applications [8]. Bagheri et al. [9] also found it difficult
to differentiate levels of nitrogen status in corn fields using a 15 m Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) multispectral satellite imagery. An alternative is to use
Unmanned Aerial Vehicle (UAV) imagery. The development and application of UAV imagery have
increased in the past decade, filling in gaps between satellite imagery, aerial photography, and field
samples [10,11]. Image acquisition with UAV can be deployed quickly and repeatedly, at a low cost,
and with greater flexibility [12,13]. The temporal resolution of UAVs is superior to the satellite and
aerial photography platforms, which is easily defined by the user [14,15]. The low cost of UAVs could
also be convinced without the use of purchasing ground control points (GCPs) [14].

The focus of this study is to test whether UAV multispectral imagery can be used to retrieve the
crop nitrogen status over corn fields from a perspective of precision nitrogen fertilization. The spatial
and temporal variations of the images we acquired were determined in order to match the crop
requirements of nitrogen as closely as possible. One common remote sensing technique to estimate
nitrogen content at the canopy level is the Radiative Transfer Model (RTM), which estimates the
chlorophyll or nitrogen content by describing the interaction between the sun’s light and the crop
canopy. An example of an RTM is the PROSAIL model, which uses various parameters at the leaf and
canopy level and can be mathematically inverted to retrieve both chlorophyll and nitrogen content
from spectral data [1,16–19]. Other sets of remote sensing methods are empirical methods, such
as machine learning algorithms, or simple/multiple-linear regression to retrieve crop nitrogen from
canopy spectral data [16]. This paper used the second set of methods because empirical estimation has
already been proven to be easier in estimating nitrogen than the PROSAIL model, given that an RTM
requires the calibration of numerous parameters [20]. In this study, we tested three empirical methods:
(1) linear regression, (2) Random Forests, and (3) support vector regression (SVR) to statistically relate
spectral measurements and canopy-level crop nitrogen weight in the case of two corn fields located
in southwest Ontario, Canada. Many studies on predicting nitrogen were conducted in a controlled
experimental condition and predicted nitrogen values at the leaf level [21–24], while few studies have
been performed on real field conditions [25]. As already shown in Liu et al. [3], it is better to use more
than one spectral variable for estimating crop nitrogen. Therefore, multiple linear regression, Random
Forests, and SVR was used in this paper to predict canopy nitrogen using a variety of spectral variables.

The first regression method is a traditional regression approach that has two major assumptions
(multicollinearity and linear relationship). Most studies using UAV imagery have used linear regressions
to estimate nitrogen status from vegetation indices (VIs) [13]. The latter two approaches are machine
learning techniques that have been advanced in recent years and are unaffected by the multicollinearity
and linear relationship assumptions. In addition, they can handle overfitting [13,26,27]. Overfitting is
a common problem in machine learning where the models produced perform poorly on unseen data.
Random Forests has become popular recently within the remote sensing research community for
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classification and regression purposes. The variable importance plot provided by the Random Forests
algorithm is very successful in identifying the most relevant input data in the model [27,28]. Therefore,
we used the Random Forests variable importance plots to identify the most important variables for
canopy nitrogen estimation and adjusted the model parameters accordingly. Random Forests modeling
has been found to perform very well out of all the non-parametric methods in various studies to
monitor nitrogen content in wheat [3], rice [13], and citrus trees [28]. Random Forests was also the
most accurate machine learning approach for monitoring corn yield, which is related to crop nitrogen
status [26]. Support vector modeling has also been popular in estimating nitrogen status due to its
strong ability to decorrelate the input variables and can work with non-linear relationships [29–31].
SVR modeling has been found to predict nitrogen concentration with high accuracy in bokchoy [29],
wheat [30], and corn [31].

Ideally, the relationship between the spectral data and the canopy nitrogen weight should be
linear because there should be only one canopy nitrogen weight estimation for each level of input
data, given that the relationship will be used to calibrate an N fertilizer sprayer that needs to have
an exact determination of the crop N fertilization level. However, when the canopy becomes dense,
the relationship can saturate and become non-linear. This is the case when using some VIs, such
as the standard normalized difference vegetation index (NDVI), green NDVI, red edge NDVI, and
modified transformed vegetation index 2 (MTVI2), which has been shown to saturate at high canopy
densities [32]. Therefore, this study tested the ability of Random Forests and SVR to work with
non-linear saturated data, particularly when combining datasets throughout the growing cycle.

The best performing model was applied to the UAV imagery for mapping crop nitrogen content
at the field level. Deng et al. [33] found that mounting narrowband multispectral cameras on UAVs
acquire images with far better quality than broadband multispectral cameras. Therefore, the objectives
of this study are to (i) generate machine learning models to predict crop nitrogen weight in corn fields
using UAV multispectral imagery, (ii) determine which individual MicaSense spectral bands and VIs
have the most influence on the Random Forests decision tree when predicting nitrogen, (iii) generate
nitrogen prediction maps by applying the best model to the entire UAV image and analyze whether the
UAV images are able to detect any spatial variation of nitrogen within the fields. The study evaluates
three different modeling approaches for predicting nitrogen in corn over different dates and growth
stages using UAV multispectral imagery. The best algorithm not only fills the research gap between
monitoring nitrogen and UAVs, but also has practical meaning for future modeling study designs.
Ultimately, these images should be given to farmers in highly accurate, quick, and timely manner field
information for their precision nitrogen fertilization management.

2. Materials and Methods

2.1. Study Area

The study site is located in Melbourne, Ontario, Canada (Figure 1). This region is in the humid
continental climate zone in Canada and the summers are typically hot and humid, with an average
temperature of 27 ◦C during the fieldwork month of July 2019. The study site is dominated by
agricultural land with very little urban use. The closest large urban center is London, Ontario, just
30 km east of the study site. Corn is generally planted in May just before the summer and typically
harvested in late October/early November once the crop is dried and the starch content is high.

We collected field data from two corn (Zea mays) fields (labelled as JJ and Susan) in the summer of
2019. Both fields are sown with cultivars “DKC48-56RIB”. A total of six sampling dates were collected
for corn, with at least a week in between each sampling date. Both corn fields together were roughly
60 ha in size and situated directly across from each other. The study fields are smaller than the average
agricultural field sizes in Ontario (100 ha) [34]. However, such field sizes are large enough to avoid
weak relationships in using spectral data and related VIs to predict nitrogen because smaller fields can
be more affected by bare soil surrounding the fields and the mixing effect of other nearby fields [35].
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Both fields were similar in topography and planted at the same time by the same grower, allowing the
field data collected to be used in a single model.
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Figure 1. Study area of the corn fields (JJ and Susan) shown using red green blue (RGB) sensor mosaic
imagery taken on 18 July 2019 in Southwest Ontario, Canada. One corner of JJ is missing on the
RGB image.

2.2. Field Data

In-situ data were collected over 16 points on each corn field in June and July 2019. Whiteboard
and red sticks were placed on each sample point, which was a ground control point to be identified on
the UAV imagery for orthomosaicking. In-situ data included destructive biomass collection at each
sampling point. Fresh biomass was measured in grams by gathering the fresh canopy in a 1 m2 block
around the sampling point and placed in large plastic bags for transport. Due to the intensive work
and heavy weight of the fresh corn canopy, only two plants were taken per sample point and upscaled
to the number of plants in the 1 m2 block. The average row distance for corn was 75 cm and the fields
typically had an average of 12–14 plants per 1 m2 area. Following the fieldwork, biomass was weighed
at a fresh stage in grams, then placed in an 80 ◦C oven for 36–48 hours. Dried biomass weight (scaled
at g/m2) was weighed then sent to A&L Canada Laboratories for plant tissue analysis. The oven-dried
samples were ground into a powder form and passed through a 1 mm sieve. The leaf nitrogen content
(expressed as a percentage) was then measured using the Laboratory Equipment Company (LECO)
FP628 nitrogen/protein analyzer that uses the total nitrogen combustion method [36].

2.3. UAV Imagery

UAV imagery collection is optimal when collected weekly and immediately before field data
collection as crop physiology and soil structure change over time (Figure 2). UAV flights were
performed before the field data collection to ensure that the biomass was present at the sampling
points in the imagery. UAV flights were performed on 26 June, 3 July, 10 July, 18 July, 31 and July
using a MicaSense RedEdge narrowband camera mounted on a Dà-Jiāng Innovations (DJI) Matrice 100
quadcopter (Table 1). The growth stages of the corn are also described in Table 1, where V(n) represents
the vegetation stage and the amount of leaves present, excluding the initial emergence leaf. Flights
were flown by pilots of A&L Canada Labs Inc. over the entire fields, flown in a zigzag route and 50 m
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in height, and 80–85% overlap. Our past studies [32] have indicated that a high overlap is required for
corn as the canopy becomes very dense in the middle-late growing season.
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Figure 2. Ground photos of corn (2019) taken on 26 June (left) and 31 July (right).

Table 1. Summary of Unmanned Aerial Vehicle (UAV) flight acquisition in the study (2019).

UAV Flight Date Weather Relative Humidity Corn Growth Stage

26 June 27 ◦C, Sunny 69% V1/V2
3 July 30.1 ◦C, Sunny 58% V3/V4

10 July 30.8 ◦C, Sunny 45% V5
18 July 29.3 ◦C, Sunny 70% V6
23 July 24.3 ◦C, Sunny 73% V7/V8
31 July 25.3 ◦C, Sunny 60% V9

2.4. UAV Image Processing

Figure 3 shows the flowchart of the methodology in this study. The UAV images gathered in the
summer of 2019 were processed using a photogrammetry software called Pix4Dmapper (Pix4D SA,
Lausanne, Switzerland) [37]. Pix4Dmapper was used to generate an orthomosaic image of each field
by stitching hundreds of different images captured during the same flight into one single 2D image and
corrected for perspective. Pix4D uses the technique called Structure from Motion (SfM) and has been
well-suited for UAV data as it combines images from multiple angles [15]. The mosaicked images were
then exported to individual (.tif) files. The mosaic images were automatically radiometrically corrected
in Pix4D with a spatial resolution of 5 cm/pixel. The mosaic images were scaled to 15 cm/pixel to
reduce the computing time given the high number of pixels for a single field. For example, the Susan
field scaled at 5 cm/pixel is approximately 529 million pixels per each layer.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 
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2.5. Vegetation Indices

Reflectance values of the sample points were extracted from the MicaSense mosaic images.
Five reflectance values of each sample point were acquired by the MicaSense RedEdge camera in the
following bands: (1) blue, (2) green, (3) red, (4) red edge, and (5) near-infrared (Table 2) (Figure 4).

Table 2. Spectral characteristics of the five MicaSense bands.

Band # Name Band Range (nm) Center Wavelength (nm) Bandwidth (nm)

1 Blue 465–485 475 20
2 Green 550–570 560 20
3 Red 663–673 668 10
4 Red edge 712–722 717 10
5 Near-infrared (NIR) 820–860 840 40
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These surface reflectance values were then used to compute 29 VIs that are commonly used to
estimate canopy nitrogen variables (Table 3). These indices are intended to enhance the contribution of
the optical properties of the vegetation on the total spectral response of the canopy. Therefore, VIs
attempt to correct any confounding factors such as reflectance of soil backgrounds in a crop, particularly
at the early stages of the growth cycle [16].

Table 3. Vegetation indices used in the study.

Index (1) Formula (2) Authors

BNDVI (NIR − BLUE)/(NIR + BLUE) Wang et al. [39]
CI_Green (NIR/GREEN) − 1 Gitelson et al. [40]

CI_RE (NIR/REDEDGE) − 1 Gitelson et al. [40]

EVI 2.5(NIR−RED)
(NIR+6RED−7.5BLUE)+1 Huete et al. [41]

GARI NIR−[GREEN−1.7(BLUE−RED)]
NIR+[GREEN−1.7(BLUE−RED)

Gitelson et al. [42]
GDVI NIR − GREEN Tucker et al. [43]

GNDVI (NIR−GREEN)/(NIR + GREEN) Gitelson; Merzlyak, [44]
GOSAVI (NIR − GREEN)/(NIR + GREEN + 0.16) Sripada et al. [45]

GRVI (GREEN − RED)/(GREEN + RED) Sripada et al. [46]
GSAVI 1.5[(NIR − GREEN)/NIR + GREEN + 0.5)] Sripada et al. [45]

ISR RED/NIR Fernandes et al. [47]
MCARI [(REDEDGE − RED) − 0.2(REDEDGE − GREEN)] *(REDEDGE/RED) Daughtry et al. [48]

MCARI1 1.2[2.5(NIR − RED) − 1.3(NIR − GREEN)] Haboudane et al. [49]
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Table 3. Cont.

Index (1) Formula (2) Authors

MCARI2 3.75(NIR−RED)−1.95(NIR−GREEN)
√
(2NIR+12)−(6NIR−5 √RED )−0.5

Haboudane et al. [49]

MSAVI
2NIR+1−

√
(2NIR+1)2

−8(NIR−RED)

2 Qi et al. [50]

MSR (NIR/RED)−1√
( NIR

RED )+1
Chen, [51]

MTVI1 1.2[1.2(NIR − GREEN) − 2.5(RED − GREEN) Haboudane et al. [49]

MTVI2 1.8(NIR−GREEN)−3.75(RED−GREEN)√
(2NIR+1)2

−6(NIR−5
√

RED)−0.5
Haboudane et al. [49]

NDVI (NIR − RED)/(NIR + RED) Rouse et al. [52]
OSAVI 1.6[(NIR − RED)/(NIR + RED + 0.16)] Rondeaux; Steven; Baret, [53]

RDVI (NIR−RED)
√
(NIR+RED)

Roujean; Breon, [54]

RE_NDVI (NIR − REDEDGE)/(NIR + REDEDGE) Gitelson; Merzyak, [55]
RGBVI (GREEN2

− BLUE * RED)/(GREEN2 + BLUE * RED) Bendig et al. [56]
RVI NIR/RED Jordan, [57]

SARVI (1+0.5)(NIR−y)
(NIR+y+0.5) Rondeaux; Steven; Baret, [53]

SAVI (NIR − RED)(1 + 0.5)/(NIR + RED + 0.5) Huete, [58]

TVI 120(NIR−GREEN)−200(RED−GREEN)
2 Broge; Leblanc, [59]

VARI (GREEN − RED)/(GREEN + RED − BLUE) Gitelson et al. [60]
WDRVI (0.2 * NIR − RED)/(0.2 * NIR + RED) Gitelson, [61]
1 BNDVI = blue normalized difference vegetation index; CI_Green = chlorophyll index green; CI_RE = chlorophyll
index red edge; EVI = enhanced vegetation index; GARI = green atmospherically resistant index; GDVI = green
difference vegetation index; GNDVI = green normalized difference vegetation index; GOSAVI = green optimized
soil adjusted vegetation index; GRVI = green ratio vegetation index; GSAVI = green soil adjusted vegetation index;
ISR = infrared simple ratio; MCARI = modified chlorophyll absorption ratio index; MSAVI = modified soil adjusted
vegetation index; MSR = modified simple ratio; MTVI = modified triangular vegetation index; NDVI = normalized
difference vegetation index; OSAVI = optimized soil adjusted vegetation index; RDVI = renormalized difference
vegetation index; RE_NDVI = red edge normalized difference vegetation index; RGBVI = red green blue vegetation
index; RVI = ratio vegetation index; SARVI = soil atmospherically resistant vegetation index; SAVI = soil adjusted
vegetation index; TVI = triangular vegetation index; VARI = visible atmospherically resistant index; WDRVI = wide
dynamic range vegetation index; 2 BLUE = blue reflectance; GREEN = green reflectance; RED = red reflectance;
REDEDGE = red edge reflectance; NIR = near-infrared reflectance; y = (RED − 1) * (BLUE − RED).

2.6. Canopy Nitrogen Weight Estimation

To describe the canopy nitrogen status, we used the canopy nitrogen weight that is defined by
Hansen and Schjoerring [18] as follows:

CNW =

(
Nplants×

Wd
2

)
× LNC (1)

where CNW is the canopy nitrogen weight (g/m2), Nplants is the number of plants in the 1m2 sampling
point, Wd is the dry biomass weight (g/m2) of two plants in the 1m2 sampling point, and LNC is the
leaf nitrogen content (%).

Equation (1) assumes that all the leaves from a sample gathered in the field contained the same
amount of nitrogen. Canopy nitrogen weight (g/m2) has the advantage of being a more absolute value,
compared to plant or leaf nitrogen content (%), which is a relative value. Absolute values allow the
ability to compare the results among fields and dates.

Previous studies have shown that estimating biochemical concentrations at the leaf level is difficult.
Therefore, focusing on the canopy level is optimal [16]. Li et al. [25] have also found that canopy
nitrogen weight is more strongly correlated with spectral data than the other agronomic variables, such
as Soil Plant Analysis Development (SPAD) readings, plant nitrogen concentration%, nitrate content,
and soil mineral N.
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2.7. Canopy Nitrogen Weight Modeling

All modeling was performed using R programming language in R Studio (R Version 3.6.1) [62].
The first modeling approach is the simple/multiple linear regression. We avoided using all the variables
in the multiple linear regression to predict nitrogen as VIs are known to be highly intercorrelated with
each other. Such multicollinearity between explanatory variables reduces the accuracy of the estimates
of the regression coefficients [63]. This makes the results of multiple linear regression difficult to
interpret and unreliable with an increased number of variable inputs. Therefore, the linear regression
model was established with the top six and top 12 most influential variables as determined by the
Random Forests variable importance plot.

The second modeling approach used Random Forests. This is a decision tree nonparametric
algorithm used for classification or regression. The algorithm selects a random number of samples
from the training dataset chosen by the analyst. Afterward, the randomly chosen samples are used to
develop a decision tree based on the most important variables. Trees are split at each node depending
on the most contributing xi (ith explanatory variable) to y (response variable). For each prediction of
ŷ (predicted value of the response variable), it constructs a multitude of decisions trees and outputs
the average value. Figure 5 shows an example of the decision tree modeling steps for the Random
Forests model using the dataset. Hyper-tuning the parameters of Random Forests was unnecessary
due to the results remaining unchanged after altering the number of trees of 500 and mtry parameter at
default. The parameter mtry is the number of variables used for splitting at each tree node for decision
tree learning. Random Forests in R defines the mtry by dividing the number of predictive variables
divided by 3.
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Figure 5. An example of a generalized decision tree model in Random Forests (R Studio) using all the
spectral variables.

The third modeling approach is SVR which is also a form of nonparametric modeling that defines
boundaries in a high-dimensional space using a hyperplane. A hyperplane is a flat affine subspace
of a dimension p-1, where p is the number of dimensions. In two dimensions, the hyperplane is a
flat one-dimensional subspace (straight line) and splits the training data into different sections in a
two-dimensional plot. The notion of (p-1) applies for any number of dimensions, while anything
p > 3 is difficult to visualize [63]. If the relationships of the data are nonlinear, SVR uses a nonlinear
kernel function. We used the Radial Basis Kernel when performing SVR, which tricks the data into a
higher-dimensional space to separate the data into different sections using the radial distance between
the observations. Hyper-tuning the SVR model using a tune grid-search with the function tune() using
different combinations of cost and gamma found that the best performing combinations were 2 and 0.5
for our dataset, respectively.

Random Forest decision trees and support vectors can work with non-linear relationships, whereas
traditional linear regression models cannot. Most VIs on corn begin to saturate with nitrogen in the
middle stage of the growing cycle, making the relationship more non-linear. Relationships that are
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non-linear between the dependent and independent variable(s) are not practical because they can lead
to the prediction of multiple nitrogen values for the same VI value. The relationship between the VI to
the N status can be misleading if the best-fit function (R2) is not linear because the sensitivity between
the two will not be constant [61]. Therefore, the information derived from the linear model can cause
uncertainty to the growers to precisely spray fertilization due to the need of having unique nitrogen
value for each VI value. Therefore, Random Forests and SVR were used to mitigate the uncertainty of
non-linear VI values and canopy nitrogen weight, particularly with Random Forest’s robustness to
non-linear data [64] and low variance in model prediction [65].

Both Random Forest and SVR modeling were performed in R Studio using the “randomForest” [66]
and “e1071” [67] packages, respectively. Linear regression modeling was performed in R Studio using
the lm() function. The independent samples of 29 VIs and 5 individual MicaSense bands were then used
to generate the linear, Random Forests and SVR models. The canopy nitrogen weight and VI values of
3 July, 10 July, and 18 July were randomly split into a 70% calibration set and 30% for the validation set.
The dates of 3 July, 10 July, and 18 July were used for the modeling due to the availability of the entire
dataset of both UAV and in-situ ground measurements for those dates. The calibration dataset was
used to generate the models and the resulting models were compared with each other. The validation
set was not used in the modeling but was used to test each modeling approach by using new datasets
and avoiding overfitting. For both the calibration and validation datasets, the quality of the models
was assessed using the R2 and the Root Mean Square Error (RMSE). R2 is measured from 0–1 and
indicates how well the data fits the goodness of fit line and is calculated using the following equation:

R2 = 1−
∑
(yi − ŷi)

2∑
(yi − y)2 (2)

where yi is the associated observed value in the dataset or formed in a vector as y = [y1, . . . ., yn]T, ŷ is
the predicted value of the associated yi, and ȳ is the mean of the observed data.

RMSE measures how far on average the predicted values are from the measured ground truth
values and is calculated using the following equation:

RMSE =

∑n
i=1(Pi −Oi)

2

n
(3)

where Pi is the predicted canopy nitrogen weight value (g/m2), Oi is the observed canopy nitrogen
weight value (g/m2), n is the number of observations, and i is the index of summation in increment of 1.

The model providing the lowest RMSE on the validation set was applied to the whole UAV images
for predicting the spatial distribution of the canopy nitrogen weight in each field. To combine all the
VI and MicaSense individual band images into a single data frame, the “raster” package [68] was used
in R Studio. Individual VI and MicaSense band (.tif) files were imported into R Studio and combined
using the stack() function. Afterward, the raster:predict() function was used to predict each pixel in the
multi-layered (.tif) file using the best model. Finally, the writeRaster() function was used to generate
the prediction map in (.tif) format, while the map characteristics were visualized using ArcMap.

3. Results

3.1. MicaSense Spectral Profile

Figure 6 shows the spectral profile of the MicaSense center wavelengths for the dates of 3 July,
10 July, and 18 July that were used in the modeling. The reflectance values of each point were averaged
for both fields to represent the MicaSense band’s reflectance for each date.
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3.2. Nitrogen Statistics

The leaf nitrogen content (%) in corn ranged between 2.24% and 6.15% throughout the growing
season. The leaf nitrogen content had a decreasing trend in values, possibly due to the nitrogen
contribution to the crop changes throughout the growing season (Table 4). Crop biomass is the
cumulative production of plant photosynthesis throughout the growing season. Table 5 shows the
summary statistics of the dried biomass weight (g/m2).

Table 4. Summary statistics of calibration and validation set for leaf nitrogen content%.

Calibration Set Validation Set

Date Growth Stage Min. Max. Average Min. Max. Average

3 July V3/V4 3.97 5.93 5.15 4.39 6.15 5.41
10 July V5 2.57 4.51 3.61 2.29 4.29 3.48
18 July V6 2.24 4.05 3.64 2.97 4.31 3.60

Table 5. Summary statistics of calibration and validation set for dry biomass (g/m2).

Calibration Set Validation Set

Date Growth Stage Min. Max. Average Min. Max. Average

3 July V3/V4 2.3 14.27 5.31 1.29 19.7 4.64
10 July V5 23.8 140.3 50.75 21.4 75.11 37.63
18 July V6 30.0 210.6 89.32 35.0 148.9 80.9

The canopy nitrogen weights (derived from Equation (1)) in corn presented a gradual increase
of variation throughout the growing cycle (Figure 7). Figure 7 also shows that there is very little
variation in canopy nitrogen weight in the early growing stage of the corn crops. By contrast, there is a
larger variation in canopy nitrogen weights in the later growing season, due to the increase of biomass
weight. One outlier is shown in Figure 7 but was not removed as it remained consistent throughout
the growing cycle, indicating that this was not due to measurement error. Because the data collection
and processing are the same for each sample point, the chances of measurement errors occurring on
the same sample point three times are unlikely.
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Figure 7. Box plot showing the variation of canopy nitrogen weight (g/m2) as a function of the date of
field measurements in JJ and Susan corn field during the 2019 growing season. The dots on the graph
represent outliers.

3.3. Variable Importance Plot

Using the variable importance plot in R Studio, the best spectral variables that were important in
the decision tree modeling are shown in (Figure 8). A large value of IncNodePurity indicates that the
explanatory variables are an important predictor for canopy nitrogen. The red-edge band performed
the worst out of all the individual MicaSense bands with canopy nitrogen. MSR performed the best
out of all the VIs in the variable importance table, while GDVI and GARI had no weight.
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3.4. Calibration and Validation Models

Table 6 shows the statistics of the linear regression, Random Forests, and SVR applied to
the calibration dataset. All computational processing times were quick (<15 s), while computer
hardware and larger sample sizes may factor processing speeds. Linear regression with 12 variables
shows a great relationship with canopy nitrogen weight with (R2 = 0.87) and an RMSE of 4.03 g/m2.
Multiple regressions of all the variable inputs were produced using the calibration data but the results
are misleading due to the high degree of multicollinearity. None of the coefficients in the multiple
linear regression using all the VIs were significant at α = 0.05, indicating that the model was very
sensitive to the multicollinearity present. Therefore, the model generated using multiple regression
of all the variables was not applied to the validation dataset to avoid misleading/unreliable results.
SVR performed well on the calibration set, while the 12-variable input model performed better than the
34-input variable model from the importance plot. This may be due to the higher degree of dimensions
when adding more variables into the support vector model. Random Forests with all the variable
combinations performed the best on the calibration set compared to the other two regression methods.
An R2 of 0.95 and RMSE of 2.25 g/m2 were achieved (Figure 9a).

Table 6. Statistics for the calibration of the canopy nitrogen model using various modeling approaches
(n = 63) 1.

Input Variables Number of
Variables Model RMSE (g/m2) R2

All VIs and 5 MicaSense bands 34 RF 2.25 0.95
MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red 2,

OSAVI, RGBVI, CI_RE, Blue 2, RE_NDVI
12 RF 2.31 0.94

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 RF 2.63 0.93
MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red 2,

OSAVI, RGBVI, CI_RE, Blue 2, RE_NDVI
12 SVR 3.98 0.87
12 Linear 4.03 0.87

All VIs and 5 MicaSense bands 34 SVR 4.08 0.87

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 Linear 4.20 0.85
6 SVR 4.28 0.85

MSR 1 Linear 4.41 0.83
All VIs and 5 MicaSense bands 34 Linear 9.14 0.58

1 All models are significant at p-value < 0.001; 2 MicaSense individual band. RMSE, Root Mean Square Error.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 22 

 

Table 6. Statistics for the calibration of the canopy nitrogen model using various modeling approaches 

(n = 63)1. 

Input Variables 
Number of 

Variables 

Model RMSE 

(g/m2) 

R2 

All VIs and 5 MicaSense bands 34 RF 2.25 0.95 

MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red2, OSAVI, 

RGBVI, CI_RE, Blue2, RE_NDVI 

12 RF 2.31 0.94 

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 RF 2.63 0.93 

MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red2, OSAVI, 

RGBVI, CI_RE, Blue2, RE_NDVI 

12 SVR 3.98 0.87 

12 Linear 4.03 0.87 

All VIs and 5 MicaSense bands 34 SVR 4.08 0.87 

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 Linear 4.20 0.85 

6 SVR 4.28 0.85 

MSR 1 Linear 4.41 0.83 

All VIs and 5 MicaSense bands 34 Linear 9.14 0.58 

1 All models are significant at p-value < 0.001; 2 MicaSense individual band. RMSE, Root Mean Square Error. 

 

(a) Calibration 

 

(b) Validation 

Figure 8. Predicted versus measured canopy nitrogen weights when applying the Random Forests 

(RF) model to the top 12 variables for (a) the calibration dataset and (b) validation dataset. 

When applying the models on the validation dataset, Table 7 also shows that Random Forest’s 

top 12 and 34 variables performed the best out of all the other models. This is due to Random Forest’s 

strong ability to avoid overfitting. Table 7 also shows that linear regression did not perform as well 

as the non-parametric Random Forests and SVR. This may be due to the nature of the non-linear 

relationship of several VIs on canopy nitrogen. The difference in RMSE between Random Forests 

models in Table 7 was only 0.01 g/m2, making the model with 12 variables more realistic in terms of 

processing time. Figure 8b shows the predicted and measured canopy nitrogen weight on the 

validation dataset using the Random Forests model applied to the top 12 variables. The model with 

12 variables was able to predict lower values of canopy nitrogen weight with very high accuracy but 

struggled to provide a high accuracy on predicting the higher values of canopy nitrogen weight. This 

may be due to the large variation of canopy nitrogen values on July 18th. 

Linear regression performed the worst on the validation set compared to Random Forests and 

SVR, indicating that the calibration model showed some degree of overfitting and cannot work well 

compared to Random Forests. Interestingly, Table 7 shows that using all the variables performed 

marginally better than using all the top 12 variables in both the Random Forest and SVR models. The 

Figure 9. Predicted versus measured canopy nitrogen weights when applying the Random Forests (RF)
model to the top 12 variables for (a) the calibration dataset and (b) validation dataset.



Remote Sens. 2020, 12, 2071 13 of 20

When applying the models on the validation dataset, Table 7 also shows that Random Forest’s top
12 and 34 variables performed the best out of all the other models. This is due to Random Forest’s
strong ability to avoid overfitting. Table 7 also shows that linear regression did not perform as well
as the non-parametric Random Forests and SVR. This may be due to the nature of the non-linear
relationship of several VIs on canopy nitrogen. The difference in RMSE between Random Forests
models in Table 7 was only 0.01 g/m2, making the model with 12 variables more realistic in terms
of processing time. Figure 9b shows the predicted and measured canopy nitrogen weight on the
validation dataset using the Random Forests model applied to the top 12 variables. The model with
12 variables was able to predict lower values of canopy nitrogen weight with very high accuracy
but struggled to provide a high accuracy on predicting the higher values of canopy nitrogen weight.
This may be due to the large variation of canopy nitrogen values on 18 July.

Table 7. Statistics when applying various modeling approaches to the validation dataset (n = 28) 1.

Input Variables Number of
Variables Model RMSE (g/m2) R2

All VIs and 5 MicaSense bands 34 RF 4.51 0.85
MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red 2

OSAVI, RGBVI, CI_RE, Blue 2, RE_NDVI
12 RF 4.52 0.85

All VIs and 5 MicaSense bands 34 SVR 4.58 0.84
MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red 2,

OSAVI, RGBVI, CI_RE, Blue 2, RE_NDVI
12 SVR 4.74 0.84

MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red 2,
OSAVI, RGBVI, CI_RE, Blue 2, RE_NDVI

12 Linear 4.78 0.85

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 RF 5.21 0.83
MSR 1 Linear 5.47 0.82

1 All models are significant at p-value < 0.001; 2 MicaSense individual band.

Linear regression performed the worst on the validation set compared to Random Forests and
SVR, indicating that the calibration model showed some degree of overfitting and cannot work well
compared to Random Forests. Interestingly, Table 7 shows that using all the variables performed
marginally better than using all the top 12 variables in both the Random Forest and SVR models.
The Random Forests importance plot was able to identify the variables with no or little effect on
the model, reducing the processing time significantly when removing them. Removing the unused
variables could also mitigate the errors caused in a higher dimensionality dataset. These results show
that adding more independent variables does not necessarily mean that this will produce higher
accuracy, and in fact might hurt the modeling performance.

3.5. Crop Nitrogen Weight Predictive Map

As already shown in Figure 9b, there is a good agreement between the predicted and measured
canopy nitrogen weight, particularly in the lower value ranges. Using our best model (Random Forests
with 12 variables), we computed the canopy nitrogen weight for each image pixel with the 12 layers
of VI and individual MicaSense bands in R Studio. Figure 10 shows the resulting canopy nitrogen
prediction map of the UAV images of 3 July, 10 July, and 18 July 2019. The low and high canopy
nitrogen weight zones are displayed in red and green, respectively. This color scheme allows the
nitrogen level to be distinguished easily between the two colors, particularly on 18 July, in which the
canopy nitrogen weight has a large variation. Given that all the images were downscaled to 15 cm
per pixel, the images can still easily detect bare soil areas and can separate the crop from the soil in
the corn fields. Most of the red pixels in the 3 July image are mostly dominated by the soil, instead
of the corn canopy (Figure 10a). However, as the plant height and density increases, it is harder to
detect between the soil and the corn on 10 July, while showing variation in the canopy nitrogen level
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(Figure 10b). Both the low and high areas of canopy nitrogen weight on the field are also consistent
throughout the three prediction images.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 22 
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Figure 10. Canopy nitrogen prediction map derived when applying the RF model to the top 12 variable
images for (a) 3 July, (b) 10 July, and (c) 18 July for the JJ and Susan fields. The locations of the ground
sampling points are also given with a black dot.
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4. Discussion

Our study used five different MicaSense multispectral bands to derive various VIs to predict
canopy nitrogen weight. Values of the in-situ canopy nitrogen weight saw an increase in variation
on 10 July and 18 July. This is due to the rapid increase in biomass between the dates. This could be
explained by the crop biomass variation increasing due to the factors that contribute to the crop’s growth,
such as the absorption, utilization, and transformation of solar energy; climate; and nutrient/water
management [69,70].

Individual bands were tested to predict canopy nitrogen in all the models along with the VIs.
Both the MicaSense green band and red-edge band performed poorly in the model compared to
the other bands. The green wavelength is closely related to the leaf chlorophyll a and b contents
(Zhao et al. [71]) in which nitrogen is used for plant photosynthesis. The poor performance in the
model may be due to the chlorophyll saturating in the middle to the late growth stages, causing the
crops to reflect the same amount of green wavelength. However, our results are not in agreement
with Schlemmer et al. [72] and Li et al. [73], who observed a good relationship between the green
reflectance and corn nitrogen weight. The red-edge spectral region is an interesting region, in which
the position of the sharp change in reflectance (known as the red-edge position) is particularly known
to be a sensitive indicator of leaf chlorophyll content [74–76]. The red-edge position changes in the
wavelength of 680–800 nm depending on the strength of the absorption of chlorophyll [77]. Therefore,
the narrowband of 10nm in the MicaSense red-edge band may have not fully captured the red-edge
position throughout the growing season, whereas another sensor with different band ranges could
have captured it. A possible consideration in the future would be to fly two cameras simultaneously
and compare the results. Furthermore, the red-edge reflectance has been also found to be significantly
related to corn nitrogen weight in Schlemmer et al. [72] and Li et al. [73]. Such difference in both green
and red-edge reflectance can be explained by the fact that their study focused more on predicting
nitrogen at individual growth stages, while our study considered all the growth stages in the model.
All the top six VIs in the variable importance table use the near-infrared and red bands, indicating that
they are both critical to the prediction of nitrogen. This is probably due to the chlorophyll absorption
present in the red region and high reflectance of near-infrared energy for leaf development of healthy
vegetation. However, the near-infrared band alone does not have a good relationship with canopy
nitrogen weight, and therefore it must be included with other bands under the form of VIs. Interestingly,
NDVI (the most commonly used VI in literature) did not perform as well as the top VIs in the variable
importance plot. This is because NDVI is known to saturate with canopy nitrogen weight once the
canopy of the crop becomes dense [32].

The use of the variable importance plot in Random Forests to eliminate spectral variable inputs
was also performed in Osco et al. [28] on predicting canopy nitrogen in citrus trees. The authors used
the top five and ten variables of 33 spectral variables and found there was a slight decrease in the model
performance. Similar to our results, Osco et al. [28] found a decrease in performance relatively small,
and the trade-off between the number of spectral indices used and obtained accuracy is something that
should be considered. However, Osco et al. [28] used a different list of VIs, but the application of the
variable importance plot was the same. Random Forests performed poorly on corn in Fan et al. [24]
(R2 = 0.60) compared to partial least squares regression (R2 = 0.80) on the validation dataset. However,
the authors used nitrogen content percentage at the leaf level and found weak correlation with most of
the spectral variables, while our study incorporated our nitrogen values at the canopy level (g/m2).
Random Forests with spectral variables on the validation set performed much better at the canopy
level (R2 = 0.85), probably due to the spectral variables having a good correlation with nitrogen at the
canopy level.

Our study on SVR modeling lines up with the results of Karimi et al. [31]. The authors found
that SVR performed better and more consistent than its multiple linear regression counterpart in their
study. The difference in results of Random Forests and SVR in our study are not too far apart in model
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performance. However, the concepts and outputs of Random Forests are a lot easier to interpret than
the concepts and outputs of support vector machines.

Zha et al. [13] found Random Forests performed better than SVR, multiple linear regression
and artificial neural networks on predicting nitrogen content in rice using spectral indices. A model
comparison study using spectral indices in Liu et al. [3] also found Random Forests to perform
better than the other non-parametric machine learning models in wheat. This could mean that the
performance of Random Forests on nitrogen using spectral indices could be consistent on other
types of crops and possibly give consistent results in different regions of Canada. Since different
regions provide different climates, a comparison of the soil and nitrogen status in the crops could be
studied. A consideration of future study could involve comparing Random Forests to other machine
learning models or deep learning using spectral indices on other types of crops. However, delving
into deep learning requires a huge training dataset in order to be effective. Another drawback is the
computational cost such as memory and processing power in order to tackle the datasets effectively
with deep learning.

5. Conclusions

In this study, different regression methods were used to predict canopy nitrogen weight of corn
using UAV MicaSense multispectral images. These models were established using the individual
MicaSense bands and their associated VIs derived from the UAV reflectance values. Using the top
12 variables (in order: MSR, WDRVI, RVI, NDVI, ISR, BNDVI, Red band, OSAVI, RGBVI, CI Red edge,
Blue band, and Red edge NDVI) derived with the Random Forests, the importance plot performed
the best on estimating canopy nitrogen weight throughout the three dates in corn crops. Using the
Random Forests model applied to the top 12 variables (RMSE = 4.52 g/m2) on the validation performed
marginally worse than the Random Forests model using all the variables (RMSE = 4.51 g/m2), indicating
that adding more variables into the model does not always improve its accuracy. However, because
the difference of the accuracy is marginally different, this removes the unnecessary processing time of
generating the 22 other VI images.

The UAV nitrogen prediction map can also detect spatial nitrogen variations within the field,
especially in the 18 July image where the canopy nitrogen weight showed a large variation with the
field data. In practice, these results could be useful for farmers in retrieving fast information about a
field’s nitrogen status, as they will know exactly which parts of their fields are in excess or deficient in
the amount of nitrogen present. Practically, these results could be obtained on the day of the UAV
flight, depending on the size of the field and the number of images acquired. Ultimately, this will lead
to a much more efficient fertilizer application program for the farmers as they will know precisely how
much nitrogen is needed in a particular spot with their GPS-enabled fertilizer spreader.

This study used data acquired over southwest Ontario fields in 2019 and there is the need to test the
method over other datasets, such as different zones in Canada or a different crop. This will give an idea
of how the developed method can be generalized and applied to different parts of Canada and whether
it can be used on different crops. The study used MicaSense images with five spectral bands and there
is a need to test different cameras that capture different wavelengths to understand which multispectral
bands perform the best on predicting nitrogen using empirical regression techniques. Finally, another
future consideration of this study can involve comparing the canopy nitrogen prediction map with
other field spatial information, such as drainage and soil. This information can give a better idea on
the contributions of nitrogen content that occur below the canopy.
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