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Abstract: In the presented work, the spectral emissivity of basaltic melts at magmatic temperatures
was retrieved in a laboratory-controlled experiment by measuring their spectral radiance.
Granulated bombs of Etnean basalts were melted and the radiant energy from the melting surface
was recorded by a portable spectroradiometer in the short wavelength infrared (SWIR) spectral
range between 1500 and 2500 nm. The Draping algorithm, an improved algorithm for temperature
and emissivity separation, was applied for the first time to SWIR hyperspectral data in order to
take into account the non-uniform temperature distribution of the melt surface and, at the same
time, solving the two temperatures and the spectral emissivity. The results have been validated by
comparing our results with the emissivity measured at a "lava simulator". Basalt spectral emissivity
does not vary significantly at magmatic temperature, but shows an absorption feature in the range
2180–2290 nm, an atmospheric window pivotal for the IR remote sensing of active volcanoes.
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1. Introduction

Surface emissivity is a pivotal parameter for contactless remote temperature measurements [1,2].
The emissivity represents the material’s ability to absorb and radiate energy. The spectral radiance
emitted by a radiating surface R(λ, Ts) at a given temperature Ts is a function of the spectral radiance
emitted by a blackbody B(λ, Ts) and the emissivity of the material’s surface ε at the same temperature,
described by Equation (1):

R(λ, Ts) = ε(λ) × B(λ, Ts), (1)

where λ indicates the spectral dependence of these properties. Starting from the radiance measured
by a remote sensor in a given infrared band, it is possible to derive the brightness temperature at the
sensor. Brightness temperature is different from surface temperature due to two main reasons:

• the surface is not a blackbody, thus emissivity contribution is not negligible;
• part of the radiation emitted by the surface is absorbed, reflected and scattered by the atmosphere.

If the emissivity is known, the surface temperature can be retrieved from remotely sensed data.
Spectral radiance detected by spaceborne and airborne sensors must be corrected for the effects of solar
reflection and atmospheric contamination of the radiant signal [1]. Multispectral satellite data recorded
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in the short wave infrared (SWIR) region of the spectrum have been used to estimate the temperature
of hot volcanic features, such as basaltic lava flows, e.g., [3–6], domes and silicic lava flows, e.g., [7–10]
and lava lakes, e.g., [11–14]. The SWIR radiation emitted by volcanic features depends on both the
temperature and the material’s emissivity. Modelling the thermal structure of active flows [15] allows
for the determination of the total thermal flux related to the volume flow rate in an individual flow,
e.g., [4,5,12,13], which is crucial for timely lava flow hazard forecasts. The model proposed by Crisp and
Baloga [16] for active lava flows, and further adapted by many authors, e.g., [4,5,8,17–19], considers the
thermal flux as a function of the fractional area of two or more thermally distinct radiant surfaces: one
surface occupied by solid crusted lava and the other one, corresponding to molten lava radiating from
cracks in the crust, radiating at a higher temperature. Given thermal radiance in two or more SWIR
bands, the simultaneous solution of Planck equations allows the two-component thermal structure to
be estimated. Therefore, emissivity must be retrieved (or provided) for each SWIR band of the system of
equations. Non-weathered, cold basaltic surfaces have a uniformly high emissivity of 0.96–0.98 [20,21].
The application of these “cold” emissivity values to the analysis of active lavas has become common in
volcano remote sensing, e.g., [4,5,8,12,13,18,19,22,23]. Previous studies also investigated the emissivity
of molten basalt melts in the thermal infrared (TIR) spectral region, e.g., [24,25]. The TIR spectral
range is most commonly used for land surface estimation, thus, numerous studies have studied the
simultaneous estimation of temperatures and emissivity from hyperspectral data [26–37].

In this work, we investigated how well these “cold” measurements approximate the emissivity of
molten lavas. Section 2 describes the experiment and the implemented algorithm. The results of the
spectral emissivity of basaltic melts at eruptive temperatures in the SWIR range of 1300–2500 nm are
given in Section 3, followed by the discussion in Section 4 and conclusions.

2. Materials and Methods

2.1. Experimental Data Acquisition

We collected spectra from non-thermally homogenous sources using the field-portable
Spectroradiometer ASD FieldSpec Pro. The FieldSpec instrument is composed of three spectrometers
which measure the spectral radiation energy in three different portions of the wavelength spectrum
350–2500 nm with a spectral resolution of 2–12 nm [38].

Volcanic bombs erupted from Mt. Etna during the 2002–03 eruption, trachybasaltic in composition [39],
provided the starting material for the experiments. Post-experiment petrologic investigation confirmed
that the experimental products, which we measured, and the starting material shared similar chemical
compositions and mineral assemblages. In the Physical Volcanology Laboratory of the University of
Würzburg (Figure 1), Germany, we melted about 0.3kg of granulate starting material in a 10 cm inner
diameter steel crucible (Figure 2) inductively heated above magmatic temperature (>1500K) using a radio
frequency generator [40]. Once the desired temperature was reached, the lid of the crucible was removed
to expose the molten basalt to air, and its surface was remotely probed while cooling down over time until
it reached a constant temperature, which was set by adjusting the power of the generator. The surface
temperature of the basalt in the crucible was measured using an infrared pyrometer (Wintronics KT19.01
model, spectral range 2.0–2.7 µm, temperature range 520–2300 ±0.1 K, emissivity setting 0.1–1 in 0.001
increments, c-type sensor) and an S-type thermocouple (Pt/PtRh, temperature range 220–2000 K, tolerance
0.5%). In a darkroom environment, we collected spectra from the free surface of the melt using the
field-portable FieldSpec.
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Figure 1.Experimental setup: basaltic rocks are melted in a steel crucible inductively heated using a 
radio frequency generator. In the background: the high spectral resolution portable spectrometer 
FieldSpec Pro for acquiring radiance spectra. To the left: thermocouple, pyrometer, and a thermal 
camera for providing punctual and spatially independent temperature measurements of the molten 
material. In the foreground: a portable meteo-station for continuously recording atmospheric 
ambient parameters to remove the effects of the atmosphere on acquired radiance spectra. 

 

Figure 2.The steel crucible (10 cm inner diameter) with its lid during the melting phase of an 
experiment. 

2.2. Field of View and Data Saturation 

The electromagnetic radiation emitted by the surface is collected by the instrument entry optics 
and projected into a holographic diffraction grating. The FieldSpec uses a bare fiber optic with a 
conical field of view (FOV) of 35°. However, the bare fibre FOV was further reduced using foreoptic 
tubes of 1° (Opt1) and 3° (Opt3), respectively. Foreoptics allow FieldSpec to focus on a smaller area 
than the entire melt surface. The diameter of the target area is a function of the distance between the 
FieldSpec and the lava surface. At a distance of 40 cm, as adopted during the experiments, the 

Figure 1. Experimental setup: basaltic rocks are melted in a steel crucible inductively heated using
a radio frequency generator. In the background: the high spectral resolution portable spectrometer
FieldSpec Pro for acquiring radiance spectra. To the left: thermocouple, pyrometer, and a thermal
camera for providing punctual and spatially independent temperature measurements of the molten
material. In the foreground: a portable meteo-station for continuously recording atmospheric ambient
parameters to remove the effects of the atmosphere on acquired radiance spectra.
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Figure 2. The steel crucible (10 cm inner diameter) with its lid during the melting phase of an experiment.

2.2. Field of View and Data Saturation

The electromagnetic radiation emitted by the surface is collected by the instrument entry optics
and projected into a holographic diffraction grating. The FieldSpec uses a bare fiber optic with a conical
field of view (FOV) of 35◦. However, the bare fibre FOV was further reduced using foreoptic tubes of
1◦ (Opt1) and 3◦ (Opt3), respectively. Foreoptics allow FieldSpec to focus on a smaller area than the
entire melt surface. The diameter of the target area is a function of the distance between the FieldSpec
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and the lava surface. At a distance of 40 cm, as adopted during the experiments, the diameter of the
target area measures 1.4cm and 4.0cm for foreoptics Opt1 and Opt3, respectively. Foreoptics also
reduce detection errors caused by radiating energy in the FOV coming from the background outside of
the melt. In this publication, we indicate with the term “pixel” the whole FOV of the used foreoptics.

In order to avoid instrumental saturation, we used two neutral density filters (F2 and F5; Table 1) to
reduce the amount of radiation coming through the instrument in the SWIR region with an attenuation
factor of 2 and 5, respectively. The higher attenuation filter (F5) guarantees unsaturated data and
allows the inspection of higher ranges of lava temperature. The lower attenuation filter (F2) improves
the radiometric measure, resolving smaller temperature variations. We acquired radiance spectra
measurements of molten lava in four different setups, as summarised in Table 1.

Table 1. List of instrumental setups.

Setup Foreoptic Filter Target Area
Diameter

Max Unsaturated
Temperature

Acquired Number
of spectra

#1 Opt1 F2 1.4 cm ~1100 ◦C 40

#2 Opt1 F5 1.4 cm ~1300 ◦C 210

#3 Opt2 F2 4.0 cm ~1100 ◦C 50

#4 Opt2 F5 4.0 cm ~1300 ◦C 220

2.3. Atmospheric Corrections

Atmospheric correction is the process of removing the effects of the atmosphere on radiance
measured by remote sensors. The effect of atmospheric water vapour was investigated in our
experiments by calculating the transmittance of the air column. We adopted the following water
vapour transmittance expression Tw [41]:

Tw = EXP [−0.2385 × aw ×W ×M/(1 + 20.07× aw ×W ×M)0.45], (2)

where W is the precipitable water vapour in a vertical path; aw is the water vapour absorption coefficient
as a function of wavelength [42]; M is the air mass [43]. The water vapour amount W is not temperature-
or pressure-corrected because this was accounted for in the form of Equation (2).

The coefficients aw were calculated using precise laboratory air temperature, humidity and
pressure values simultaneously recorded by a portable meteo-station. Figure 3 shows the difference
between atmospherically corrected (black plot) and uncorrected (red plot) radiance spectra. As expected,
the atmospheric column of 40 cm does not affect the spectra, except for the relatively slight differences
of 1% that occur in the ranges 1350–1420 nm and 1770–2020 nm, which correspond to two main water
vapour absorptions.

At a distance of 40cm from the crucible, in a ventilated confined environment,
simulated atmospheric effects are negligible. However, the warm air column rising from the melt
surface may cause absorption features in radiance spectra, due to water vapour heat-up. Such
features cannot be fully predicted because our model does not allow changing gas temperatures in the
simulation [44,45]. Therefore, our spectra will still show slight absorption due to water vapour.
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2.4. Normalised Emissivity Method Applied to Molten Lava

Assuming a multispectral remote sensor recording SWIR spectral radiance from the surface in its
field of view, the normalised emissivity method (NEM) is used to iteratively retrieve surface emissivity
and temperature by assuming a maximum emissivity value. In the NEM algorithm, the maximum
emissivity, εmax, is assumed to be 0.99 [46]. The surface-emitted radiance R(λ), is related by the following
equation to the reflected downwelling radiance Rd(λ) and the surface-leaving radiance Rsurf (λ):

R(λ) = Rsurf (λ)−(1−εmax) × Rd(λ). (3)

The NEM temperature TN is defined as the maximum brightness temperature over all band
wavelengths. The NEM temperature is used to calculate the apparent NEM emissivity (εN) by dividing
the surface-leaving radiance by the blackbody radiance at temperature TN:

εN(λ) = R(λ)/B(λ,TN). (4)

Replacing the maximum assumed emissivity with the apparent NEM emissivity the surface-emitted
radiance R(λ) is:

R(λ) = Rsurf (λ)-[1−εN(λ)] × Rd(λ). (5)

The NEM algorithm iteratively removes the reflected downwelling radiance by refining its
estimates of emissivity and temperature. In case of spaceborne sensors, the atmosphere interacts
with the SWIR recorded spectral radiance, so its correction is critical for the temperature–emissivity
algorithms. Atmospheric transmittances and radiances depend on the wavelength, so errors in the
atmospheric correction are different in magnitude for each channel, which in turns implies that the
derived emissivity spectra are inaccurate both in terms of amplitude and spectral variation. This is
the case for the NEM method, where residual atmospheric effects could dictate the selection of TN.
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Small variations in the input atmospheric profiles (10% in relative humidity) may lead to emissivity
variations of 0.01–0.02 [47]. Following the approach described above, we attempt to retrieve the surface
lava temperature Ts and the spectral emissivity ε(λ) from our DN spectra. However, our approach
differs from that of Gillespie et al. [46] in two important ways.

First, SWIR data are used instead of TIR data. At magmatic temperatures, the peak wavelength
of the radiation curve shifts towards the SWIR region and becomes evident in the measured spectral
range 1300–2300 nm. Thus, we use the peak position to constrain Ts and reduce uncertainty in the
emissivity estimation. Second, our corrected data clearly indicate that there is a negligible contribution
of the atmospheric reflected downwelling radiance. This is due to the higher contribution of emitted
radiance than the contribution of downwelling radiance that leaves the melt surface under laboratory
conditions (e.g., dark environment and only 40cm of atmospheric path from sample surface to sensor).
Starting from these assumptions, the emitted surface radiance equals the surface-leaving radiance:

R(λ) = ε(λ) × B(λ, Ts ) = Rsurf (λ) (6)

and the emissivity is:
ε(λ) = R(λ)/B(λ, Ts). (7)

By using the NEM algorithm, one assumes a uniform temperature distribution within the lava
surface, an assumption that does not apply to lava surfaces at sub-liquidus temperature.

2.5. The “Draping” Algorithm

Given the temperature heterogeneities observed in experimental melts, we have developed a
new algorithm to take into account the radiance contribution due to surfaces radiating at different
temperatures. In the following, we call the temperatures “sub-pixel temperatures”, which correspond
to temperatures of different thermal components observed within a pixel.

We assume a thermal two-component model for the lava surface [16] in order to limit the number
of unknowns. Following Dozier [48] and Rothery et al. [49], the radiance integrated over the area
captured by the sensor FOV (Afov) can be considered as a function of the fractional area of two thermally
distinct surfaces. These are a cooler crust component at temperature Tc occupying the fraction fc of FOV
area Afov and a high temperature component at temperature Th, which occupies the remaining (1-fc)
portion of the Afov area. The temperature Th represents high-temperature molten lava. The radiance
detected at one wavelength λwould be an average, weighted by the fractional area, of the two radiances
related to the different temperatures:

R(λ, Ti) = ε(λ) × [fh × R(λ, Th) + (1 - fh) × R(λ, Tc)], (8)

where R is the Planck function for a blackbody radiating to temperature T at wavelength λ, Ti is the
integrated temperature, and ε(λ) is the spectral emissivity. The Draping algorithm allows for the
simultaneous calculation of Th, Tc, fh and ε(λ) throughout the following steps:

• Identify the largest radiance Rmax over all available wavelengths.
• Create a lookup table of spectra derived from Equation (8) by varying Th, Tc and fh. Only spectra

respecting the condition R(λ, Ti) ≥ Rmax may be considered for comparison with measured
radiances. This constraint guarantees that ε(λ) ≤ 1.

• Compute cross-correlation between radiance measurements and each spectrum of the lookup
table and calculate the Spearman rank correlation coefficient.

• Identify the maximal Spearman rank correlation (Ti,,λ), which best matches the measured radiances
and therefore identifies the triplet of values Th, Tc and fh fitting the thermal two-components model.

In the end, the spectral emissivity will be:

ε(λ) = R(λ)/(λ, Ti,). (9)
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3. Results

Results obtained by applying the Draping algorithm on spectral data measured from the
experimental basaltic melt surfaces using the FieldSpec Pro are shown in Figure 4. The blue area
represents the envelope of curves given from Equation (8) by varying Th, Tc and fh under the condition
R(λ, Ti) ≥ Rmax. Th and Tc are forced to vary in the ranges 500–800 ◦C and 800–1200 ◦C, respectively.
The variable fh varies in the range 0.0–1.0 in steps of 0.01. The Spearman rank correlation coefficient is
calculated to test the correlation between our experimental radiances and the theoretical radiances
derived from Equation (8) using every triplet of Th, Tc and fh. The maximum value of the Spearman
rank correlation coefficient individuates the best-fitting triplet.
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Figure 4. Solutions from the application of the Draping algorithm on spectral data (SD) measured from
a basaltic melt surface. The blue area represents the envelope of curves given from Equation (8) by
varying Th, Tc and fh under the condition R(λ, Ti,) ≥ Rmax. The maximum value of the Spearman rank
correlation coefficient individuates the best fit curve (BF) and therefore the triplet of values Th, Tc and
fh that best fit the thermal two-component model (red curve).

Figure 5 shows the spectral emissivity derived from the cooling basalt sample at the sub-liquidus
temperature of 1039 ◦C. The liquidus temperature specifies the temperature above which magma is
entirely in a liquid state, i.e., the maximum temperature at which crystals can co-exist with the melt in
thermodynamic equilibrium. Many igneous processes involve the flow of silicates at sub-liquidus
temperatures, and therefore the simultaneous presence of a liquid and a crystalline phase.

Radiance spectra, collected at different temperatures, are quite stable and emissivity spectra overlap
in the spectral range 1300–2500 nm. Emissivity profiles are similar in shape and magnitude, suggesting
that spectral emissivity does not vary significantly in the investigated temperature range. The overall trend
of the spectral profiles appears to be roughly constant with a mean of 0.96 and a standard deviation (σε) of
0.011. This trend is interrupted by shallow dips in the ranges 1350–1420 nm and 1770–2020 nm, with values
as low as 0.95 that correspond to the two main water vapour absorption bands. However, another shallow
dip is visible in the ranges 2100–2300 nm centered at 2220 nm, which cannot be attributed to standard
atmospheric absorption bands. It is probably due to vibrational effects, which occur in basaltic melts at
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eruptive temperatures. This behaviour was observed in the higher temperature TIR emissivity spectra
due to the changes in the vibrational behaviour of silicate melts [24].
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Figure 5. High radiometric accuracy spectral emissivity of a basaltic melt at 1042 ◦C, derived using the
Draping algorithm. A broad absorption feature is visible in the range 2180–2290 nm centred at about
2220 nm. It is probably an overtone vibrational band of the silicate mineralogy due to the fact that the
basalt is molten.

The analysis of derived sub-pixel temperatures in Figure 6 shows that Tc ≈ Th until a temperature
of nearly 1120 ◦C is attained. At this point, we observe that Tc and Th begin to diverge from each other.
Whereas Th appears to be constant at a temperature of about 1100 ◦C, Tc varies significantly during the
cooling process.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17 
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Figure 6. Sub-pixel temperatures derived from radiance spectra using the Draping algorithm.
Assuming a thermal two-component model for our basaltic melts, we individuate three phases
in the cooling process based on the number of derived components. Measurements were collected
starting from completely molten lava at 1200 ◦C.
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4. Discussion

4.1. MethodValidation Using the Lava Simulator

For validation purposes, we applied the proposed methodology with the so-called lava simulator.
This is a heat source made of a single heating wire alloy [50]. Electricity is converted into heat through
Joule heating, with the heating power depending on the electrical current and the resistivity. As a
proxy for the molten lava with temperature Th, we used an alloy wire with a 0.5mm diameter made of
Isachrom 60 (NiCr6015). For the crusted background with temperature Tc, a plywood panel painted
with Senotherm spray (emissivity of 0.95) was used. A laboratory power supply unit provided a
total maximal output of 400W. The experiment setup was located on a trolley, so it could be used at
difference distances between the observing instruments and the lava simulator.

The changing distances were pivotal for the herein described experiment. Simultaneous observations
with two thermal cameras at different distances made it possible to estimate the temperature, fractional
area and emissivity of the hot wire [50]. The first of the thermal cameras (ImageIR 8300 – IR) made
observations in two spectral regions (SWIR and MIR), the second one (VarioCam – VC) merely observed
the TIR spectral region. The solution of Equation (8) is possible with only two thermal observations,
given that:

• the temperature of the alloy is independent of the distance;
• the fraction of the alloy within the camera’s FOV (given as an angle in the product specification) is

estimated based on the radius of the alloy and the distance to the camera;
• the temperature of the background is estimated from the pixels observing the plywood close to

the alloy;
• two thermal observations in different spectral regions are available.

Therefore, two spectral emissivities remain unknown, but these can be estimated in an iterative
solution. If we try different combinations of emissivities, we can find a solution with a small difference
to the theoretical fraction of the alloy and a small variation of its temperature over all observed
distances. These are the emissivities we are looking for. We ran our experiments with different
combinations of SWIR, MIR and TIR datasets to estimate the wire emissivities in all three spectral
regions. With emissivity steps of 0.05, we estimated the alloy’s emissivity to be 0.95 in the SWIR
channel, in MIR, 0.85 and in TIR, 0.25 [50]. Such a strong variation in emissivity is not expected in
the volcanic environment, however, because of the strong gradients, it is extremely interesting for
validating the Draping method.

Considering the SWIR filter response, we computed a weighted average of the emissivities
obtained from the Draping algorithm, resulting in a value of 0.93 for the IR’s SWIR band. Both
emissivities are estimated independently, however, a difference of 0.02 is already a significant value.
The difference of 0.02 is an acceptable deviation, considering that:

• the emissivity step in the iterative solution is 0.05;
• we only know the optical SWIR filter response and not the whole optics–sensor–electronics response;
• the SWIR filter already covers a water absorption band (see the noise in Figure 6 at 2.5µm).

Figure 7 shows the hot alloy’s emissivity obtained by the Draping algorithm within the SWIR
bandwidth, showing a decreasing trend towards the MIR band (>1.8 µm), as expected from the
iterative solution.
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The estimated emissivity made it possible to compute the temperature of the alloy (1292 ◦C)
and temperature of the plywood panel (99 ◦C). For this we used a combination of MIR and TIR
measurements and we obtained an error of 10 ◦C for the plywood panel and 39 ◦C for the alloy using
the iterative method [50].

4.2. Sub-Pixel Temperatures

Figure 6 shows sub-pixel temperatures derived from radiance spectra using the draping algorithm.
Temperatures were calculated during the cooling of the basaltic melt. The most relevant fact is the
ability of the algorithm to discriminate different stages of the melt cooling:

• the first phase, in which the basalt is completely melted;
• the second phase, in which two thermal components are identified;
• the third phase, which corresponds to the complete solidification of the basalt.

This ability indicates the robustness of the proposed algorithm. However, it should be noted that
in the two-component phase, the temperature of the cooler component (say the crust) seems to initially
decrease and then increase again until it equals the temperature of the hot component. This behaviour
is difficult to explain if we assume the hot and cold components always associate with the liquid and
solid phases, respectively.

We must stress again that the algorithm is based on the assumption of a simple two-component
thermal model for the melt. In fact, the proposed algorithm allows for the distinguishing of only two
different thermal components. The model assumes, then identifies, these components as associated
with the liquid and solid phases of the surface. However, preliminary temperature measurements
with thermocouples indicate the presence of more than two thermal components during the second
phase. Therefore, our two-component model could be too under-dimensioned to completely describe
the molten surface temperature distribution [51,52]. Alternatively, the two components observed
may represent different portions of the cooling crust with different cooling rates due to different
radiating morphologies.

As the FieldSpec instrument has hundreds of bands in the SWIR region, the question may arise at
this point: why should we not implement a solution describing more than two thermal components?
The answer lies precisely in the fact that all our bands cover only the SWIR region. Lombardo et al. [53]
demonstrated that the number of unknowns that can be calculated depends, not only on the number
of available bands, but also on their position in the spectrum. Input data have uncertainties due to
measurement limitations (instrument radiometric accuracy), which propagate the combination of
variables in the system of equations (Equation (8)).
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Lombardo et al. [53] performed a sensitivity analysis to determine the influence of the input
data uncertainty on the output results (observational parameters).The trade-off among alternative
band selections, the evaluation of atmospheric influence and radiometric accuracy were investigated.
The accuracy of the retrieved thermal parameters changes significantly if different bands are involved
in the computations. Solving a thermal three-components model by using three different SWIR bands
yields large errors in sub-pixel temperature solutions [53]. This is because the SWIR region is limited
with respect to the spectral range in which lava radiates at a molten temperature.

As shown in Figure 8, the accuracy in retrieved sub-pixel temperatures can be improved by adding
a MIR band or a TIR band as input data in Equation (8). Unfortunately, the FieldSpec has no bands
outside the SWIR portion of the spectrum.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 17 
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Figure 8. Radiance spectrum derived from Equation (8) using values of 1200 K, 500 K and 0.003 for
Tc, Th and fh, respectively. Red curves show uncertainties for an absolute radiometric accuracy of 0.03.
Dots show the location of 1.6 and 2.2 µm SWIR bands within this spectral profile. The SWIR region covers
only a small portion of the radiance spectrum (corresponding to the steep slope S1–S2), therefore it is
difficult to solve the unconstrained system of equations (Equation (8)) by adding another SWIR band.

4.3. Methodological Innovation Compared to Previous Methods for Temperature/Emissivity Separation

Numerous temperature and emissivity retrieval methods have been developed in recent decades.
All these methods have different purposes and constraints in their applications. The target radiation
measured by the sensor is a function of the emissivity of this target in the temperature during the
measurement. From a mathematical point of view, the equations modelling this problem form an
indeterminate system, where the number of measured variables exceeds the number of model equations
(that is, the number of input radiance bands). In this form, the problem can never be solved because

Nunknowns = Nchannels + Nparameters>Nchannels (10)

Each new equation brings a new unknown corresponding to the emissivity in that channel.
The problem becomes much more complex if we consider further variables:

• parameters for atmospheric correction;
• more than a single temperature of the target at the sensor pixel scale (sub-pixel temperatures).

Therefore, the main point to be searched for is to obtain a method, even not optimal, but with a
minimum of mathematical–physical restrictions and with the result of the lowest possible error. For a
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detailed discussion of these methods, we refer to Rolim et al. [36]. The main differences between these
methods and our methodology essentially concern the temperature range of the target investigated,
the spectral region examined, and the use of laboratory data. Herein, we want to focus on the
peculiarities of our methodology.

The land surface emissivity (LSE) is the average emissivity of an element of the surface of the
Earth calculated from measured radiance and land surface temperature (LST). Most of the methods in
the literature refer to moderate temperature ranges [26–37]. As a result, these methods used the TIR
spectral region to calculate LST. The magmatic temperature of lava varies between 800 ◦C and 1200 ◦C,
so the peak of the emission shifts to shorter wavelengths (MIR and SWIR) as the temperature increases.
There are not many studies on the emissivity of molten lavas.

Rogic et al. [25] investigated the role of emissivity in lava flow “distance-to-run”. Authors observed
that TIR emissivity relating to the solidified (cooled) product does not reflect the range of temperatures
involved in an active lava flow. They also demonstrated that a variation of 0.2 in emissivity may result
in significant changes to the prediction of lava flow “distance-to-run” estimates.

Lee et al. [24] developed a micro furnace for use with a laboratory Fourier-transform infrared (FTIR)
spectrometer and collected TIR emission spectra of actively melting and cooling silicate glasses. This is
the experiment that comes closest to ours for setup and instrumentation. The TIR emissivity spectra of
synthetic glasses and silicate melts were acquired. The authors experienced thermal heterogeneities in
the sample and temperature fluctuations over time. The Draping algorithm allowed us, for the first time,
to verify and quantify these thermal heterogeneities. Furthermore, by using a large diameter crucible
(10 cm in inner diameter) it was possible to stabilise the temperature of the sample and minimise the
effects of iron leaching. Once again, it must be highlighted that our innovative measurements refer to
emissivity in the spectral region of SWIR.

The effectiveness of the Draping algorithm is based on two main factors:

• an accurate atmospheric correction of the data;
• the availability of high-spectral resolution(hyperspectral) data.

To analyse hyperspectral thermal data, it is necessary to correct the data for the atmospheric
effects to retrieve the surface emissivity and temperature. Atmospheric parameters were calculated
using precise laboratory air temperature, humidity and pressure values simultaneously recorded by a
portable meteo-station. In our experiments, the contribution of emitted radiance from the lava surface
is higher than the contribution of downwelling radiance. Our corrected data show that there is a
negligible contribution of the atmospheric reflected downwelling radiance.

The Draping algorithm allows for simultaneously calculating the spectral emissivity and
two sub-pixel temperatures using high-spectral resolution data. This is a three-step algorithm,
which combines the original NEM algorithm [46] with a pre-estimate shape method [54] and a lookup
table (LUT) to individuate the best sub-pixel temperatures to fit the thermal two-component model [55]
of Equation (8). Given sufficient computational power, an exhaustive retrieval of the sub-pixel
temperatures and the spectral emissivity can be performed.

FieldSpec allows the punctual acquisition of thousands of bands in the SWIR region. The next
step will be the use of the Draping algorithm with satellite hyperspectral data. We plan to use the
Draping algorithm with the PRecursore IperSpettrale della Missione Applicativa (PRISMA) sensor
data. PRISMA is a medium-resolution hyperspectral imaging mission of the Italian Space Agency
Agenzia Spaziale Italiana (ASI) launched in March 2019. PRISMA provides hyperspectral imagery
(~250 bands) at a spatial resolution of 30 m on a swath of 30km. The spectral resolution is better than
12 nm in a spectral range of 400–2500 nm (VNIR and SWIR regions). The radiometric characteristics of
this sensor make ASI-PRISMA a suitable instrument for observing high temperature events, such as
volcanic eruptions and wildfires, and therefore a suitable instrument for testing the Draping algorithm
on satellite data.
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5. Conclusions

In this work, original experimental measurements of the spectral emissivity of Etnean basaltic
melts were retrieved and presented. Due to the non-uniform temperature distribution of the basaltic
melt surfaces, the new Draping algorithm for temperature/emissivity separation was implemented
for the first time to simultaneously estimate the spectral emissivity and the sub-pixel temperatures
in the SWIR region of the spectrum. The comparison between the cold and molten emissivities
retrieved confirmed that the overall spectral emissivity does not vary significantly with magmatic
temperature in the investigated SWIR spectral range. The sub-pixel temperatures appeared to vary
widely during the cooling process of the silicate liquid. Future work will concern the investigation of
the relationship between derived sub-pixel temperatures and thermal components of the lava during
the cooling process.

In addition, an absorption feature in the range 2180–2290 nm was identified, which corresponded
to an atmospheric window. This window is pivotal for the IR remote sensing of active volcanoes both
from the ground and from space and therefore requires further investigations that can be done by
exploring the acquisitions on active volcanoes of the new hyperspectral space mission ASI-PRISMA,
in orbit since 2019.
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