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Abstract: Accurate hyperspectral image classification has been an important yet challenging task for
years. With the recent success of deep learning in various tasks, 2-dimensional (2D)/3-dimensional
(3D) convolutional neural networks (CNNs) have been exploited to capture spectral or spatial
information in hyperspectral images. On the other hand, few approaches make use of both spectral
and spatial information simultaneously, which is critical to accurate hyperspectral image classification.
This paper presents a novel Synergistic Convolutional Neural Network (SyCNN) for accurate
hyperspectral image classification. The SyCNN consists of a hybrid module that combines 2D and 3D
CNNs in feature learning and a data interaction module that fuses spectral and spatial hyperspectral
information. Additionally, it introduces a 3D attention mechanism before the fully-connected
layer which helps filter out interfering features and information effectively. Extensive experiments
over three public benchmarking datasets show that our proposed SyCNNs clearly outperform
state-of-the-art techniques that use 2D/3D CNNs.

Keywords: convolutional neural network; 3D CNN; hyperspectral image classification

1. Introduction

With the rapid development of optics and photonics, hyperspctral sensors have been installed in
many satellites. Hyperspectral image classification is a fundamental and yet challenging task whose
purpose is to label each pixel contained in a hyperspectral image. Based on the rich spatial–spectral
information preserved in hyperspectral images, it enables us to distinguish different objects of
interest in the scene. They have been widely used in a variety of fields such as precise agriculture,
environmental surveillance, and astronomy [1]. For example, Brown et al. [2] proposed a linear mixture
model by combining various absorption band methods on CRISM to determine the mineralogy of the
surface on Mars.

Hyperspectral images classification has attracted more and more research attention. Conventional
image classification techniques such as support vector machine (SVM) [3] and K-nearest neighbor
(KNN) classifier have achieved reasonable performance for this task as they take into account
rich spectral information [4] captured in the hyperspectral images. Wang et al. [5] classified the
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hyperspectral images by using the Locality Adaptive Discriminant Analysis (LADA) algorithm to
reduce the dimensionality of hyperspectral images. There also exist several other approaches to
cope with this issue. For example, Wang et al. [6] proposed a dimensionality reduction method
for hyperspectral image classification by utilizing the manifold ranking algorithm to perform band
selection. Furthermore, Yuan et al. [7] proposed a novel dual clustering-based band selection approach
for hyperspectral image classification. While these methods have demonstrated superior classification
performance, they are not effective to classify hyperspectral images under complex scenarios.

Recently, with the big success of deep learning, the convolutional neural networks (CNNs) [8–11]
based approaches have achieved excellent performance for various image analysis related tasks,
e.g., image classification and object recognition. To classify hyperspectral images, both the spectral
and spatial perspectives should be taken into account. Intuitively, hyperspectral image consists of
hundreds of “images”, each of which represents a narrow wavelength band (visible or none-visible) of
the electromagnetic spectrum, also known as spectral perspective. Meanwhile, the spatial perspective
refers to the 2D spatial information about the objects contained in the hyperspectral images. Thus,
hyperspectral images are usually represented as the 3D spectral–spatial data. Consequently, several
approaches have been proposed in the literature. However, existing CNN-based approaches [12,13],
which focus on either spatial or spectral features alone, inevitably overlook the interweaving
relationships between the spatial and the spectral perspectives of objects captured in the hyperspectral
images. Essentially, the interweaving information could be leveraged to further improve classification
performance due to the following reasons. First, the interweaving relationships can further enrich the
feature space for the later classification task. Second, if spectral–spatial information could be used
simultaneously, the classifier could be co-supervised by different perspectives of the labeled data. As a
result, a relatively good CNN-based classifier can be trained by using a small number of labeled 3D
spectral–spatial images only.

To simultaneously model spectral–spatial information, some pioneer attempts have been made
along this line [14–23]. These approaches perform stacked convolution operations over spatial and
spectral feature space in a layer by layer manner, called 3D CNN models. Obviously, the advantage of
this kind of 3D CNN model lies in the generated rich feature maps. However, the main disadvantages
of these approaches are threefold. First, it is difficult to generate a deeper 3D CNN model. The reason
is that the solution space exponentially increases with the increasing number of 3D convolution
operations, which limits the depth of the model and the interpretation ability of the model. Second,
the memory cost is too high if a large number of 3D convolution operations are invoked. Third,
more training examples are needed to train a deeper 3D CNN model which is not practical as the public
hyperspectral image datasets are rather small. To cope with aforementioned challenges, this paper is
proposed to design a novel 3D CNN model which only needs few 3D convolution operations but can
generate richer feature maps.

In this paper, we propose the Synergistic 2D/3D Convolutional Neural Network (SyCNN) to
classify hyperspectral images. In the proposed SyCNN, the 2D CNN component and the 3D CNN
component are mixed together. Different from the conventional 3D CNNs that stack up 3D convolution
layer by layer, the proposed SyCNN, as shown in Figure 1, integrates 3D CNNs with 2D CNNs to
learn the salient features. Then, a data interaction module is proposed which fuses the 2D features
and 3D features together. Last but not least, a 3D attention mechanism is designed to drop out the less
important features. Experimental results on three benchmark datasets have demonstrated that the
proposed SyCNNs outperform a number of state-of-the-art hyperspectral image classifiers. Our major
research contributions are summarized as follows.

1. First, we design a basic SyCNN model (SyCNN-S) that comprises 2D CNNs and 3D CNNs to
extract rich feature maps. To classify the hyperspectral images, 2D CNNs and 3D CNNs are
separately trained in the SyCNN-S model before the final-connected layer. Then, the 2D output
features and 3D output features are concatenated and sent to the final-connected layer to label
the pixel by the softmax function.
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2. Second, we design an end-to-end hyperspectral image classification framework—deep SyCNN
(SyCNN-D) by integrating data interaction module into the mixture model to generate richer
feature maps. At each round of the model fusion process, the 2D CNNs and 3D CNNs are equally
fused together to generate deeper and more sophisticated feature maps, and then data interaction
is invoked to support the cross-domain transfer.

3. Third, we propose a more sophisticated SyCNN model, namely SyCNN-ATT, by incorporating
the 2D and 3D attention mechanisms into the SyCNN model to drop out the less relevant features.

4. Finally, a number of extensive experiments have been conducted based on three different datasets,
and the experimental results have demonstrated that the proposed SyCNN model is superior to
other state-of-the-art hyperspectral image classifiers.
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Figure 1. The Synergistic Convolutional Neural Network (SyCNN) framework which integrates 2D
CNN, 3D CNN and the data interaction module for hyper-spectral image classification.

The rest of the paper is organized as follows. Section 2 briefly reviews the related work.
In Section 3, we first carefully design the architecture of the proposed SyCNN as well as the data
interaction module, and then we propose the deep SyCNNs for hyperspectral image classification task.
Experimental results are reported in Section 4 and we conclude the paper in Section 5.

2. Related Work

Hyperspectral image classification has long been studied in the literature. However, most existing
works are based on the conventional techniques. In this section, we only review the latest deep
learning-based approaches and these approaches can be classified into two categories, i.e., Traditional
Classification Methods and Deep Learning Models.

2.1. Traditional Classification Methods

A number of hyperspectral images classification methods had been proposed recently.
For example, Bandos et al. [24] proposed a linear discriminant method to classify hyperspectral images.
However, it cannot perform feature selection on low spectral resolution images. To automatically
separate overlapping absorption bands, Bandos et al. [25] further developed a noise-insensitive method.
There also exist some methods such as quadratic discriminant analysis and logarithmic discriminant
analysis, which are developed to address the nonlinearity. While these methods have achieved good
results, they suffer from the Huges phenomenon. For example, Wang et al. [5] proposed a novel
dimensionality reduction method, named LADA to classify the hyperspectral images. Wang et al. [6]
also proposed a manifold ranking based salient selection method for hyperspectral images classification.
This method first finds some representative bands by employing an evolution algorithm, and then
selects salient bands by using a manifold ranking strategy.

Many researchers developed kernel-based methods to improve the model performance.
The kernel-based methods firstly projected samples into a high dimensional space, and then the
projected samples of different classes are linearly separable. Camps et al. [26] introduced the SVM
as a kernel trick in the hyperspectral image classification. Rakotomamonjy et al. [27] proposed a
multiple kernel learning (MKL) method to classify hyperspectral images, which can learn a kernel
and a classification predictor at the same time. However, the kernel-based methods cloud not
explicitly exploit a spatial context. The composite kernel (CK) method was proposed to address
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this problem. In [28], the CK method was generalized by utilizing extended multi-attribute profiles
(EMAP). A generalized composite kernel (GCK) was proposed to exploit both extended multi-attribute
profiles and raw hyperspectral features in [29].

2.2. Deep Learning Models

Recently, deep learning models have achieved a significant performance on image classification
task. Deep learning based methods are introduced into hyperspectral images classification problem to
learn hierarchical representations from the hyperspectral remote sensing images.

2.2.1. 2D CNN-Based Approaches

LeCun firstly deigned the CNN [30,31] model on 1996. Due to the back propagation (BP)
mechanism, the proposed CNN model can be trained easily and achieves a very good performance in
handwritten digit recognition. A lot of deep learning based methods are developed in many fields.
For example, Glorot et al. [32] improved the CNNs by introducing the Rectified Linear Units (ReLU) as
the activation function. It can alleviate the vanishing gradient problem and the ineffective exploration
problem caused by the BP mechanism. Krizhevsky et al. [8] designed the AlexNet network with
ReLU activation. However, the deeper of the deep learning network will lead to the overfitting
problem. To address this phenomenon, Srivastava et al. [33] proposed the dropout mechanism after the
convolutional operation to reduce the noisy samples. At the same time, Szegedy et al. [10] proposed
the GoogLeNet model to classify the images, which is a deep CNN model with each layer comprising
multi-scale convolutional operations. He et al. [11] introduced the residual mechanism in the network,
and proposed a deep residual CNN model, namely ResNet.

There also have a lot of works for hyperspectral image classification based on CNN. To extract
the spectral–spatial information contained in hyperspectral images, a 2D CNN-based approach was
proposed in [12], where 2D CNN was utilized to explore the band selection results generated by the
adapted adaBootst-based SVM classifier. Based on the band selection results, several methods were
proposed to fuse certain 2D CNN networks for hyperspectral images classification. For example,
Liu et al. [34] utilized a deep belief netowkrs (DBNs) to extract deep spectral features. Ran et al. [35]
proposed a deep band sensitive convolutional network to classify the hyperspectral images and the
proposed network has two sub-components. One component is to extract the spectral features and
another one is to aggregate there features from different bands. In [36], the author proposed an
attention-based convolutional neural network to perform band-selection for hyperspectral images.
Furthermore, Liu et al. [13] proposed a semi-supervised 2D CNN model including the encoder,
the corrupted encoder and the decoder component. The classification model is trained to minimize
the reconstruction error between the input images and the mixture of both labeled and unlabeled
images. One of the state-of-the-art approach is proposed in [14]. In this paper, a deep 2D CNN model is
proposed to directly label each pixel in the hyperspectral images. Alternatively, the two-streamlike 2D
CNN approaches [37,38] were proposed with each stream of the proposed network was a pre-trained
2D CNN model. While these approaches could achieve comparably good model performance, a large
training dataset was a prerequisite which is unaffordable in most real-world applications.

2.2.2. Three-Dimensional CNN-Based Approaches

In [39], the 3D CNN approach was first proposed to learn discriminative features to recognize
object actions from the spatial-temporal data. Later, Chen et al. [17] proposed a deep 3D CNN
network which stacked up several 3D convolutional layers to extract spectral–spatial feature maps
for classification. Similarly, a deep fully convolutional network (FCN) with a focus on 3D data was
proposed by Lee et al. [16]. Different from [16], Li et al. [18] proposed a 3D CNN network which
stacked up 3D convolutional layers without the pooling layer. The proposed model can well capture
the changes of local signals contained in the spectral–spatial data. Hamida et al. [15] designed a
deep 3D CNN network for hyperspectral image classification, where the pooling layers were replaced
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by the spectral–spatial 3D convolutional layers. Furthermore, there were some hybrid models that
combined 2D CNNs with 3D CNNs. Obviously, the 3D CNN-based approaches have more parameters
than the 2D CNN-based approaches. Accordingly, both the model complexity and the memory
consumption of the 3D CNN-based approaches are much higher than that of the 2D CNN-based
approach. As a result, Sun et al. [40] tried to replace the 3D convolutional layer with a mixture of a
2D spatial convolutional layer and a 1D temporal convolutional layer which could largely alleviate
the aforementioned problem. Unfortunately, this approach extracted the spatial features and spectral
features separately and thus ignored the interweaving relationships between the spatial and the
spectral perspectives of the hyperspectral images.

Apparently, these 3D CNN-based approaches cannot be directly adapted to model such
interweaving relationships due to the following reason. Most existing 3D CNN-based approaches
have several stacked 3D convolutional layers and thus is hard to directly optimize the estimation
loss through such nonlinear structure. To take the advantages of both the 2D and 3D CNN-based
approaches, this paper proposed to fuse the features extracted from 2D and 3D convolution operations
in an iterative manner and synergistically trained a hybrid 2D/3D CNN model with relatively few
training examples.

3. The Proposed SyCNN and Deep SyCNN Network

In this section, we first introduce the 3D convolution operation. Then, we introduce the proposed
SyCNN with more technical details. Finally, we propose a deep SyCNN network for hyperspectral
image classification task.

3.1. 3D Convolution Operation

Generally speaking, a 3D spectral–spatial hyperspectral image can be represented by a tensor and
its size is S× H ×W × C, where S denotes the spectral domain (comprising a range of wavelengths),
H and W are the height and width in the spatial domain, and C represents the number of channels.
Different from the 2D convolution operation, the kernels of a 3D convolution operation are formulated
as a 4D tensor ψ ∈ <nk×sk×hk×wk , where sk, hk, wk denote the kernel size in S, H, and W, respectively,
and nk is the number of kernels. The 3D convolution operation is illustrated in Figure 2. In Figure 2, it is
easy to observe that the 3D convolution operation takes the 3D spectral–spatial features I = Is,h,w as
the inputs and produces the 3D feature maps O = os,h,w by executing the convolution operation along
both the spatial and spectral dimensions of the inputs. Accordingly, the 3D convolution operation can
be formulated as follows:

O = ψ⊗ I,

os0,h0,w0 = [q1
s0,h0,w0

, q2
s0,h0,w0

, · · ·, qnk
s0,h0,w0

]T ,

qn
t0,h0,w0

= Σt,w,hψn,t,h,w · It0h0w0
s,w,h ,

(1)

where Is0h0w0
s,w,h denotes that the kernel starts from the position (s0, h0, w0) of the input image I and ends

at the position (s, w, h) of the input I. The qn
s0,h0,w0

is the value at the cell of (s0, h0, w0) on the n-th
output feature map by the n-th kernel.

Data Interaction

The proposed data interaction module for generating 2D and 3D feature maps is illustrated in
Figure 3. This module consists of the cross-domain transfer operation and the local cross-domain
connection operation. Let O2 denote the 2D output feature maps, and O3 denote the 3D output feature
map. Moreover, t is the time slot, then we have:
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Ot
2 = φ(It

2) + It
2,

Ot
3 = ψ(It

3) + It
3,

(2)

where It
2 ∈ <h×w and It

3 ∈ <s×h×w are the 2D input features and the 3D input features at time t,
respectively. φ denotes the 2D convolution and ψ is the 3D convolution. As shown in Figure 3, the 2D
features and 3D features are interacted by using the cross-domain transfer module and the local
cross-domain connection module.

W

S
H

Figure 2. Illustration of a 3D convolution operation. The convolution kernels slide along both the
spatial and spectral dimensions of the input 3D images and generate the 3D spectral–spatial features.

3D Conv3D Conv

2D inputs

3D inputs

2D Conv

2D 

3D 3D 

cross-domain 

transfer

3D outputs

2D outputs
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Figure 3. SyCNN with data interaction module that consists of the local cross-domain connection
and cross-domain transfer. 2D spectral–spatial fusion is achieved by transferring the 3D inputs to 2D
outputs and concatenating these outputs with the 2D inputs. On the other hand, the 3D spectral–spatial
fusion is obtained by transferring the 2D inputs to 3D outputs and concatenating these 3D outputs
with the 3D inputs.

We first transfer the 3D features obtained by the 3D convolution to the new 2D features Ót
2, and then

transfer the 2D features obtained by the 2D convolution to the new 3D features Ót
3, and we have:

Ót
2 = τ(Ot

3),

Ót
3 = β(Ot

2),
(3)

where β denotes the transfer operation from 2D features to 3D features, and τ denotes the transfer
operation from 3D features to 2D features. The transferred features are then concatenated with the
corresponding 2D or 3D features to form the final output features, written as:

Ot
2 = Ót

2 + Ot
2,

Ot
3 = Ót

3 + Ot
3.

(4)

It is easy to observe that the final output 2D features Ot
2 contain not only the 2D spatial feature

information but also the 3D spectral feature information. Similarly, the output 3D features Ot
3 also
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contain spatial and spectral feature information. The new 2D features and 3D features will be fed into
the next 2D convolutional and 3D convolutional operations as the input, respectively. By doing so,
we already generate more training samples to train the 3D CNNs, and the feature maps of 2D CNNs are
also spectral–spatial information. Thus the data interaction module not only reduces the complexity of
the proposed SyCNN in learning 3D convolution kernels, but also generates rich feature maps to train
the SyCNN. Due to its prowerful learning and extraction abilities, the proposed SyCNN can greatly
alleviate the overfitting problem.

3.2. Deep SyCNN Network

To perform hyperspectral image classification, we design a hybrid deep model by stacking 2D
convolution and 3D convolution which is synergistically trained. As shown in Figure 4a, the proposed
simple mixed model consists of three 2D/3D convolutional operations, which directly connect to the
fully-connected layer to classify unlabeled images. We design a simple yet efficient deep SyCNN
network by stacking the SyCNNs together. The proposed SyCNN model is an end-to-end network and
takes the hyperspectral images as input. The proposed deep SyCNN network consists of three SyCNNs
which only involves 3D convolutions, and the model is illustrated in Figure 4b. To further improve the
model performance, we introduce the attention mechanism with a focus on generating salient features
to facilitate hyperspectral image classification task. The proposed deep SyCNN-attention model is
plotted in Figure 4c. Furthermore, it is a none-trivial task to pre-process the input data. Note that
the BN-inception [41] and the ReLU function [32] are applied after each convolutional block in the
proposed model, which is used to address the overfitting problem caused by the sparse training data
and limited training samples in hyperspectral images. For simplicity reason, these BN and ReLu layers
are not plotted in the figure. In order to allow the input images of any length, we use a global pooling
layer as the last layer of the network.

3D Conv3D Conv

2D Conv

3D
Pool

2D
Pool

Hyperspectral 

image
3D Conv3D Conv

2D Conv

3D Conv3D Conv

2D Conv

G
lobal Pooling

FC

3D Conv

2D Conv

3D
Pool

2D
Pool

Hyperspectral 

image
3D Conv

2D Conv

3D Conv

2D Conv

G
lobal Pooling

FC

a

3D Conv

2D Conv

3D
Pool

2D
Pool

Hyperspectral 

image
3D Conv

2D Conv

3D Conv

2D Conv

G
lobal Pooling

FC

a

3D Conv3D Conv

2D Conv

Data 

interaction

3D outputs

2D outputs

Hyperspectral 

image

SyCNN

 block-1
3D Conv3D Conv

2D Conv

Data 

interaction

SyCNN

 block-23D
Pool

2D
Pool

3D Conv3D Conv

2D Conv

Data 

interaction

SyCNN

 block-3

G
lobal Pooling

FC

b

3D Conv

2D Conv

Data 

interaction

3D outputs

2D outputs

Hyperspectral 

image

SyCNN

 block-1
3D Conv

2D Conv

Data 

interaction

SyCNN

 block-23D
Pool

2D
Pool

3D Conv

2D Conv

Data 

interaction

SyCNN

 block-3

G
lobal Pooling

FC

b

3D Conv3D Conv

2D Conv

Data 

interaction

3D outputs

2D outputs

Hyperspectral 

image

SyCNN

 block-1
3D Conv3D Conv

2D Conv

Data 

interaction

SyCNN

 block-23D
Pool

2D
Pool

3D Conv3D Conv

2D Conv

Data 

interaction

SyCNN

 block-3

G
lobal Pooling

FC

c

3D 

attention

2D 

attention

3D Conv

2D Conv

Data 

interaction

3D outputs

2D outputs

Hyperspectral 

image

SyCNN

 block-1
3D Conv

2D Conv

Data 

interaction

SyCNN

 block-23D
Pool

2D
Pool

3D Conv

2D Conv

Data 

interaction

SyCNN

 block-3

G
lobal Pooling

FC

c

3D 

attention

2D 

attention

Figure 4. Illustration of the proposed models: (a) The deep simple SyCNN model, (b) the deep
SyCNN model, (c) the deep SyCNN with attention module. Yellow blocks and blue blocks refer to 3D
convolution and 2D convolution. Green blocks refer to data interaction module.

The difference between the proposed approach and the state-of-the-art 3D CNN models [14,19] is
that the deep SyCNN requires fewer 3D convolution operations for the spectral–spatial fusion stage,
and yet it can generate deeper and richer feature maps. Moreover, different from the conventional
3D CNN based models, the deep SyCNN approach can take full advantage of 2D CNN approaches,
and yet it can be trained using a much smaller image data set.
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4. Experimental Results

To evaluate the performance of the proposed deep SyCNN, rigorous experiments are performed
on three benchmark hyperspectral image datasets. We implemented the proposed approaches as
well as several state-of-the-art approaches on these datasets. The experimental settings as well as the
evaluation criteria are given in the following subsections. The proposed approaches are called deep
simple SyCNN network (SyCNN-S), deep SyCNN network with data interaction module (SyCNN-D),
and deep SyCNN-attention network (SyCNN-ATT), respectively.

4.1. Experimental Settings

In these experiments, three widely adopted benchmark hyperspectral image datasets, i.e., Indian
Pines Scene, Botswana Scene, and Kennedy Space Center datasets, are chosen for model
performance evaluation.

The Indian Pines Scene dataset: This dataset is collected by the AVIRIS sensors located at
north-western of India, U.S., on 1992. It contains 145 × 145 pixels in spatial dimension in the
image, and 200 pixels in spectral dimension. Due to the presence of 20 noisy bands, we only used
200 hyperspectral bands in this experiment. Specifically, it removes the bands covering the regions
of water absorption, i.e., [104–108], [150–163], 220. The ground truth available includes 16 classes.
The false-color image and the corresponding ground reference map are shown in Figure 5. The numbers
of the training and test samples per class are listed in Table 1.

(a) (b)

Figure 5. Indian Pines dataset. (a) Three-band false-color composite. (b) Ground-truth map.

Table 1. Sample size for Indian Pines Scene.

NO. Class Name Training Samples Testing Samples

1 Alfalfa 32 14
2 Corn-notill 1003 424
3 Corn-mintill 585 245
4 Corn 168 69
5 Grass-pasture 340 143
6 Grass-trees 512 216
7 Grass-pasture-mowed 20 8
8 Hay-windrowed 335 143
9 Oats 14 6
10 Soybean-notill 683 289
11 Soybean-mintill 1721 733
12 Soybean-clean 417 174
13 Wheat 144 61
14 Woods 888 374
15 Buildings-Grass-Trees-Drives 272 113
16 Stone-Steel-Towers 65 28

Total 7200 3040

The Botswana Scene dataset: This dataset is collected by the Hyperion sensors on the NASA EO-1
satellite over the Okavango Delta on 31 May 2001. It has 1476× 1476 pixels in the spatial dimension and
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145 corrected bands in spectral dimension. Following with the Indian Pines Scene dataset, we removed
the noisy bands to produce an experimental data set containing 145 bands. This image dataset contains
14 categories. The false-color image and the corresponding ground reference map are shown in Figure 6.
The numbers of the training and test samples per class are listed in Table 2.

Figure 6. Botswana Scene dataset. (a) Three-band false-color composite. (b) Ground-truth map.

Table 2. Sample size for Botswana Scene.

NO. Class Name Training Samples Testing Samples

1 Water 189 81
2 Hippo grass 71 30
3 Floodplain grasses 1 176 75
4 Floodplain grasses 2 151 64
5 Reeds 188 81
6 Riparian 188 81
7 Fire scar 183 76
8 Island interior 143 60
9 Acacia woodlands 220 94
10 Acacia shrunblands 174 74
11 Acacia grasslands 214 91
12 Short mopane 127 54
13 Mixed mopane 189 79
14 Exposed soils 67 28

Total 2280 968

The Kennedy Space Center (KSC) dataset: This dataset is captured by using the AVIRIS sensor
over Florida on 23 March 1996. It has 512× 614× 172 pixels in spectral–spatial dimension. Dut to
remove 48 noisy bands, it obtains 172 spectral bands. The image dataset contains 13 labeled classes.
The false-color image and the corresponding ground reference map are shown in Figure 7. The numbers
of the training and test samples per class are listed in Table 3.

In the experiments, these datasets are randomly partitioned into training and testing datasets
at the ratio of 70% to 30%. The proposed approaches are implemented on a NVIDIA GTX1080ti
GPU machine using Pytorch [42]. The convolutional operation with the same color share the same
parameters of each proposed model. We adopt the Adam gradient descent optimizer with an initial
learning rate of 1e−4 to train our models. The mini-batch size is set to 100. The drop out ratio and
weight decay rate are respectively set to 0.5 and 5e−4.
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1 
 

 
Figure 7. Kennedy Space Center dataset. (a) Three-band false-color composite. (b) Ground-truth map.

Table 3. Samples size for Kennedy Space Center scene.

NO. Class Name Training Samples Testing Samples

1 Scrub 533 228
2 Willow swamp 170 73
3 Cabbage palm hammock 179 77
4 Cabbage palm/oak hammock 176 76
5 Slash pine 113 48
6 Oak/broadleaf hammock 160 69
7 Hardwood swamp 74 31
8 Graminoid marsh 302 129
9 Spartina marsh 364 156
10 Cattail marsh 284 120
11 Salt marsh 294 125
12 Mud flats 352 151
13 Water 649 278

Total 3650 1561

4.2. Baseline Models and Evaluation Criteria

We compare our approaches with both conventional and the state-of-the-art approaches which
are illustrated as follows.

• SVM-Grid A support vector machine based approach optimized by the stochastic gradient
descent algorithm. This conventional approach is one of the most widely adopted algorithms for
hyperspectral image classification.

• NN A simple neural network (NN) model with 4 fully connected layers with dropout, and this
approach is considered as the baseline deep learning model.

• Sharma A 2D CNN model consists of three 2D convolutional operations with band selection [12],
originally proposed for hyperspectral face recognition. It is a dimension reduction method,
where 1D convolutional operation is introduced to lead to a drastic reduction in the number of
parameters used.

• Liu is a semi-supervised 2D CNN model [13] for hyperspectral image classification, and it includes
one convolutional operation, one clean encoder, one corrupted encoder, and one decoder.

• Hamida is a 3D deep learning approach for hyperspectral image classification consisting of four
3D convolutions [15].

• Lee is a fully convolutional network (FCN) [43] which does not use any subsampling layer with
arbitrary sizes. It contains two 3D convolutions and eight 2D convolutions [16].

• Chen is a deep 3D CNN model consisting of three 3D convolutions [17].
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• Li is a 3D CNN model having two 3D convolutions and a fully-connected layer for image
classification [18]. Different from other 3D CNNs, the 3D convolution in this work has a fixed
spatial size and only slightly changes its spectral depth.

• He is a multi-scale 3D deep learning network [19] consisting of two 3D convolutions and two 3D
convolution-blocks, and each block contains four 3D convolutions.

4.3. Evaluation Criteria

Three widely adopted evaluation criteria are chosen in the experiments to evaluate the model
performance which are overall accuracy (OA), the F1 score and Kappa coefficient (K). The OA is
the mean accuracy of each category. The F1 score is also called balanced F score which is harmonic
average value of precision and recall value of each category. The Kappa coefficient (K) is an index
value measuring whether the classification results are consistent with the underlying true classes or
not. For hyperspectral image classification, we mainly check whether such inconsistency is caused by
“accidental” factors or “inevitable” factors. These evaluation criteria are calculated as follows.

Precison =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Accuracy =
TP + TN

TP + TN + FN + FP
,

OA = (
1
n ∑

k
Accuracyk),

F1 = (
1
n ∑

k

2 · Precisonk · Recallk
Precisonk + Recallk

)2,

K =
N ∑n

i=1 xii −∑n
i=1(xi+ × x+i)

N2 −∑n
i=1(xi+ × x+i)

.

(5)

where TP denotes the true positive value, FP denotes the false positive value, and FN denotes the false
negative value. n is the number of categories, and N is the total number of data samples. xii denotes
the number of categories on the diagonal of the confusion matrix, xi+ is the total number of the i-th
row, and x+i denotes the total number of the i-th column.

4.4. Experimental Results

4.4.1. Experimental Results on the Indian Pines Scene Dataset

The comparative model performance based on the Indian Pines Scene dataset with respect to
OA, F1 and K are depicted in Table 4. From this table, it is obvious that the model performance of
our proposed approaches is superior to both baseline methods and the state-of-the-art approaches.
Among all proposed approaches, the SyCNN is the best one with respect to all evaluation criteria
and this is consistent with our expectation. Moreover, the proposed deep SyCNN-attention model
can achieve a comparably good model performance to the proposed SyCNN. Among all compared
methods, the Sharma achieves the best classification results. It is also well noticed that the performance
of 2D CNN based approaches is better than that of 3D CNN based approaches. Apparently, the reason
is that the number of training examples is rather limited which only favors the less complicate models
such as the Sharma.

To further evaluate the model performance, the experimental results of all approaches are
plotted in Figure 8. It can be seen from Figure 8 that the proposed SyCNN model performs the
best result among all methods. The possible reasons are as follows: (i) It is a synergistic trained model,
which consists of 2D convolutions and 3D convolutions to generate deeper and richer features; (ii) it
makes full use of the 2D and 3D features by the data interaction module. Since the parameters of the
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deep 3D CNN models need more training samples, we find that the Sharma and Liu methods produce
the second better results than the methods based on 3D CNNs, such as Hamida, Lee, Li, Chen, and He.
It’s observed that the worst model is NN, which is a baseline deep learning model for hyperspectral
image classification. The reasons are that the NN model only has one 2D convolution but 4 fully
connected layers for prediction task and the 2D convolution is not sufficient enough to generate the
deep and rich features.

Table 4. Evaluation results on the Indian Pines Scene dataset.

Class Methods

# SVM-Grid NN Sharma Liu Hamida Lee Li Chen He SyCNN-S SyCNN-D SyCNN-ATT

1 88.00 92.30 100 66.70 100 63.60 100 96.30 100 100 100 100
2 85.50 84.20 99.40 88.50 84.90 82.40 96.60 95.90 89.00 100 99.60 99.20
3 80.80 80.30 93.60 86.10 79.70 80.40 90.60 91.10 86.00 91.30 91.70 96.10
4 79.20 71.90 100 83.60 93.60 82.80 95.80 97.20 95.00 97.10 100 99.30
5 95.20 93.70 94.60 91.60 93.80 93.70 94.50 92.60 95.70 96.10 95.30 97.20
6 96.70 96.10 100 98.40 99.10 97.50 99.80 99.10 100 100 99.50 100
7 80.00 93.30 100 40.00 76.90 82.40 100 93.30 100 100 100 100
8 99.00 99.30 100 96.30 99.00 97.30 99.70 99.70 100 100 100 100
9 66.70 100 100 0 90.90 28.30 100 100 50.00 100 100 100
10 80.60 82.40 97.00 89.30 76.20 84.20 96.10 90.50 91.90 97.70 97.00 98.30
11 84.90 87.90 97.50 91.50 87.40 89.80 96.20 94.70 92.60 98.10 98.00 98.70
12 89.30 83.10 97.20 89.70 87.70 79.70 96.20 96.90 93.80 98.30 98.90 98.60
13 100 100 100 100 100 96.10 100 100 100 100 100 100
14 95.80 93.50 99.70 98.40 98.90 94.20 99.70 98.90 99.10 100 100 100
15 76.70 69.10 84.20 77.20 76.30 72.00 82.20 83.70 85.80 86.80 91.10 87.40
16 100 98.20 96.40 100 98.20 100 100 98.20 96.40 100 98.20 100

OA 87.93 87.57 95.64 89.56 86.99 87.87 94.22 93.20 91.87 95.90 96.13 97.31

F1 87.40 89.07 97.48 81.08 90.16 83.42 96.71 95.51 92.21 97.84 98.08 98.43

K 86.20 85.80 95.10 88.10 85.20 86.10 93.40 92.30 90.80 95.30 95.60 96.90

(a) Indian Pines (b) Ground truth (c) SVM-Grid (d) NN (e) Sharma (f) Liu (g) Hamida

(h) Lee (i) Li (j) Chen (k) He (l) SyCNN-S (m) SyCNN-D (n) SyCNN-ATT

Figure 8. Visualization of the experimental results based on Indian Pines: (a) Indian Pines, (b) Ground
truth, (c) SVM-Grid, (d) NN, (e) Sharma, (f) Liu, (g) Hamida, (h) Lee, (i) Li, (j) Chen, (k) He,
(l) SyCNN-S, (m) SyCNN-D, (n) SyCNN-ATT. It is observed that the outputs produced by our proposed
models are quite close to the Ground truth.

According to the Table 4, the Sharma approach can achieve the best model performance among all
compared models. However, the model performance of all proposed approaches is better than that of
the Sharma. Among all proposed approaches, the results of the evaluation criteria, i.e., OA, F1 and K,
of the proposed SyCNN-S is respectively increased by 0.26%, 0.36% and 0.2% when compared with the
Sharma. The SyCNN-D can further improve the model performance by 0.228%, 0.24% and 0.3% with
respect to OA, F1 and K. The SyCNN-ATT is the best one among all proposed approaches. Apparently,
the 3D CNN based approaches cannot achieve desired better model performance than 2D CNN based
approaches which could also be found in the visualized results plotted in Figure 8.
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4.4.2. Experimental Results Based on the Botswana Scene Dataset

Table 5 reports the evaluation results based on the Botswana Scene dataset. Botswana Scene
dataset only has 3248 samples, and the labels are unbalanced. Similarly, the proposed approaches
can achieve the best classification performance. Due to the data interaction module, the proposed
SyCNN-D could extract the deeper and richer features from the hyperspectral images. The 2D
convolutional operation could extract much more spatial information by treating the whole spectral
information as channels, but it loses the relationship between different spectral bands. While the 3D
convolutional operation cloud extract much more spatial–spectral fusion information by operating
on spectral information, it could only combine a few spectral information with a fixed size and need
more training samples for the next operation. In the data interaction module, the 2D extracted features
could be projected into 3D features and the projected 3D features are fused in the 3D extracted features.
Thus, the new 3D features combine more spectral information and make full use of spatial information.
In addition, the new 3D features are sufficient to train the next 3D convolutional operation. So as
the new 2D features that have more spectral information are also sufficient to train the next 2D
convolutional operation. The Sharma and Liu methods are the second best models, and the rest 3D
CNN based approaches are the worst models except for the NN model.

Table 5. Comparative evaluation based on the Botswana Scene dataset.

Class Methods

# SVM-Grid NN Sharma Liu Hamida Lee Li Chen He SyCNN-S SyCNN-D SyCNN-ATT

1 99.40 100 99.40 100 100 100 100 100 100 100 100 100
2 98.40 96.80 100 96.60 92.90 98.40 100 100 100 98.40 100 100
3 98.60 92.90 100 100 96.60 91.70 100 100 100 100 100 100
4 97.70 90.30 100 100 92.70 69.30 99.20 91.40 97.70 100 100 100
5 92.40 81.50 98.80 95.20 91.00 83.70 94.90 97.70 93.40 98.80 100 100
6 87.40 74.40 99.40 92.10 72.60 76.10 91.00 92.90 91.30 100 100 100
7 98.70 99.40 100 100 100 99.40 100 89.30 100 100 100 100
8 100 97.50 100 100 97.60 76.90 100 98.10 100 100 100 100
9 90.20 85.10 100 96.10 64.70 61.70 100 93.80 97.40 100 100 100
10 90.30 83.90 99.30 97.90 97.40 81.70 100 94.40 100 100 100 100
11 94.40 93.10 99.50 97.90 95.50 95.60 100 91.50 100 100 100 100
12 91.40 95.40 98.10 99.10 97.10 90.60 96.20 96.20 99.10 95.20 97.10 99.10
13 93.90 87.70 100 100 99.40 100 100 99.40 100 100 100 100
14 100 96.70 100 100 90.60 88.50 100 92.60 100 100 100 100

OA 94.66 90.25 99.48 97.49 91.38 85.94 97.94 95.38 98.25 99.38 99.69 99.79

F1 95.20 91.05 99.61 99.68 92.01 86.34 98.36 95.52 98.49 99.46 99.79 99.93

K 94.20 89.40 99.40 97.80 90.70 84.80 97.80 95.00 98.10 99.30 99.70 99.80

We also visualize the corresponding experimental results evaluated based on Botswana Scene
dataset in Figure 9. Clearly, the SyCNN-ATT model is the best one among all the experimental methods.

4.4.3. Experimental Results Based on the Kennedy Space Center Dataset

Table 6 reports the evaluation results based on the Kennedy Space Center dataset. Similar
observations of the proposed methods are obtained, that is, they achieve better classification
performance than other baseline methods. Among all proposed methods, the SyCNN-ATT method is
the best one. Again, the outstanding performance of the proposed deep SyCNN-ATT model can be
easily observed based on the visualized results that are plotted in Figure 10.
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Table 6. Classification results of the Salinas scene.

Class Methods

# SVM-Grid NN Sharma Liu Hamida Lee Li Chen He SyCNN-S SyCNN-D SyCNN-ATT

1 57.80 87.60 89.40 81.50 69.40 94.50 87.40 54.10 91.40 94.40 94.70 97.80
2 72.50 71.30 94.50 80.00 61.80 68.80 91.20 88.60 93.40 98.60 99.30 99.30
3 0 62.40 92.20 68.30 7.50 72.20 69.20 91.40 95.10 96.70 100 100
4 0 24.10 76.60 60.90 40.70 7.30 70.30 91.50 75.20 94.60 98.70 100
5 0 53.70 88.90 61.70 31.60 67.40 82.20 100 86.30 95.90 97.90 96.80
6 0 30.80 67.30 42.20 2.90 64.20 76.30 98.50 87.80 98.60 99.30 100
7 0 54.20 92.50 85.30 5.60 35.00 90.00 96.80 98.40 98.50 100 100
8 41.60 61.40 94.30 72.70 70.20 80.00 81.40 82.80 97.20 98.00 96.40 97.70
9 73.40 83.10 99.40 84.50 85.30 95.70 91.10 93.30 99.40 100 100 100
10 83.50 88.10 99.60 96.60 77.10 86.30 96.70 100 99.20 100 100 100
11 96.00 98.40 100 100 99.60 98.80 99.60 100 100 100 100 100
12 74.80 85.30 99.70 95.00 87.10 85.00 93.50 100 99.00 99.70 100 100
13 96.70 99.50 100 99.60 99.80 97.30 100 100 100 100 100 100

OA 67.39 79.79 93.35 84.27 76.22 84.14 88.62 86.83 94.69 97.44 97.76 98.92

F1 45.89 67.37 91.88 79.10 62.82 73.27 86.84 92.08 94.03 98.46 98.95 99.35

K 62.80 77.40 92.60 82.50 73.10 82.30 87.40 85.50 94.10 97.20 97.50 98.80

(a) Botswana (b) Ground truth (c) SVM-Grid (d) NN (e) Sharma (f) Liu (g) Hamida

(h) Lee (i) Li (j) Chen (k) He (l) SyCNN-S (m) SyCNN-D (n) SyCNN-ATT

Figure 9. Visualization of the experimental results based on Botswana: (a) Indian Pines, (b) Ground
truth, (c) SVM-Grid, (d) NN, (e) Sharma, (f) Liu, (g) Hamida, (h) Lee, (i) Li, (j) Chen, (k) He,
(l) SyCNN-S, (m) SyCNN-D, (n) SyCNN-ATT. It is observed that the outputs produced by our proposed
models are quite close to the Ground truth.
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(a) KSC (b) Ground truth (c) SVM-Grid (d) NN (e) Sharma (f) Liu (g) Hamida

(h) Lee (i) Li (j) Chen (k) He (l) SyCNN-S (m) SyCNN-D (n) SyCNN-ATT

Figure 10. Visualization of the experimental results based on KSC: (a) Indian Pines, (b) Ground truth,
(c) SVM-Grid, (d) NN, (e) Sharma, (f) Liu, (g) Hamida, (h) Lee, (i) Li, (j) Chen, (k) He, (l) SyCNN-S,
(m) SyCNN-D, (n) SyCNN-ATT. It is observed that the outputs produced by our proposed models are
quite close to the Ground truth.

4.4.4. Effects on the Ratio of Training Examples

Apart from the adopted evaluation criteria, we also examined how the ratio of training examples
could affect a model’s classification performance. In this experiment, we varied the ratio of training
examples from 10% to 70% and the experimental results based on all datasets are plotted in Figure 11.
It is obvious that the performance of all models improves with the increasing number of training
examples. This experimental result suggests that the deep neural network-based hyperspectral image
classifiers generally need more training data to achieve better classification performance. It is also
observed that the proposed approaches can successfully alleviate overfitting and outperform other
approaches when only 10% training data was used. Based on the result of this experiment, we can
conclude that the proposed three SyCNN-based methods can achieve good classification performance
even a small training set is provided. Such a characteristic of the SyCNN-based methods is promising
as the available training data for most real-world image classification applications is usually quite
limited. It’s more capable to handle spatial–spectral information and each part of the SyCNN also
helps to improve performance. We note that the design of the SyCNN makes it possible to produce a
promising result based on a small dataset.
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Figure 11. Visualization of the influence of training samples proportion for different methods based on
the three datasets: (a) Indian Pines, (b) Botswana, (c) KSC. It can be observed that the results of our
proposed models are very stable and better than the comparison methods.
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4.4.5. Comparison of Parameters and Times of Different Methods

The comparison results about execution time of different models are reported in Table 7.
The experiments are implemented on Botswana dataset. It could be seen that the proposed methods
have a number of network parameters, including parameters of 2D CNNs, data interact module,
and 3D CNNs. However, it does not significantly increase the model complexity. The execution time is
not as high as Liu’s. The possible reason is that the model has more operations such as convolutional
operations. It also can be seen that the proposed methods outperform all methods.

Table 7. Comparison of parameters and times of all methods.

Methods Number of Parameters Execution Time (s) OA

SVM-Grid 2.98 MB - 67.39
NN 65.52 MB 20.57 79.79
Sharma 5.9 KB 25.86 93.35
Liu 4.08 MB 8282.78 84.27
Hamida 472 KB 46.88 76.22
Lee 1.22 MB 128.29 84.14
Li 2.38 MB 37.90 88.62
Chen 3.27 MB 285.63 86.83
He 8.18 KB 98.67 94.69
SyCNN-S 21.14 MB 117.03 97.44
SyCNN-D 29.46 MB 146.52 97.76
SyCNN-ATT 34.98 MB 154.15 98.92

5. Conclusions

In this paper, we first propose a simple synergistic trained deep learning model, which is
constructed by mixing 2D CNNs and 3D CNNs to extract deeper spatial–spectral features with
fewer 2D/3D convolutions. We further present a deep SyCNN network for hyperspectral image
classification, which introduces a data interaction module into the simple synergistic trained 2D/3D
model. Experiment results show that our proposed deep SyCNN model has obtained a robust,
good result and outperforms state-of-the-art methods for image classification. We also introduce 3D
attention module into the deep SyCNN model to gain a state-of-the-art performance.

One explanation of the performance improvement of the SyCNN network could be that a deep
network generally benefits by deepening the model. Another is based on the observation that there
is stronger spectral redundancy than a spatial one in hyperspectral images. Thus, we propose a
synergistic trained deep learning model that consists of 2D CNNs and 3D CNNs to further enhance
the abstraction ability on the spatial domain and explore more useful information on the spectral
domain. In the future, we will seek to design a optimal deeper SyCNN network for hyperspectral
image classification. On the other hand, we will introduce a relation network into the SyCNN to
learn the relationship between 2D and 3D output features, which is proposed to enhance the feature
extraction process.
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