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Abstract: Soil moisture (SM) plays a crucial role in the water and energy flux exchange between
the atmosphere and the land surface. Remote sensing and modeling are two main approaches to
obtain SM over a large-scale area. However, there is a big difference between them due to algorithm,
spatial-temporal resolution, observation depth and measurement uncertainties. In this study,
an assessment of the comparison of two state-of-the-art remotely sensed SM products, Soil Moisture
Active Passive (SMAP) and European Space Agency Climate Change Initiative (ESACCI), and one
land surface modeled dataset from the North American Land Data Assimilation System project phase
2 (NLDAS-2), were conducted using 17 permanent SM observation sites located in the Southern
Great Plains (SGP) in the U.S. We first compared the daily mean SM of three products with in-situ
measurements; then, we decompose the raw time series into a short-term seasonal part and anomaly
by using a moving smooth window (35 days). In addition, we calculate the daily spatial difference
between three products based on in-situ data and assess their temporal evolution. The results
demonstrate that (1) in terms of temporal correlation R, the SMAP (R = 0.78) outperforms ESACCI
(R = 0.62) and NLDAS-2 (R = 0.72) overall; (2) for the seasonal component, the correlation R of
SMAP still outperforms the other two products, and the correlation R of ESACCI and NLDAS-2 have
not improved like the SMAP; as for anomaly, there is no difference between the remotely sensed
and modeling data, which implies the potential for the satellite products to capture the variations of
short-term rainfall events; (3) the distribution pattern of spatial bias is different between the three
products. For NLDAS-2, it is strongly dependent on precipitation; meanwhile, the spatial distribution
of bias represents less correlation with the precipitation for two remotely sensed products, especially
for the SMAP. Overall, the SMAP was superior to the other two products, especially when the SM
was of low value. The difference between the remotely sensed and modeling products with respect to
the vegetation type might be an important reason for the errors.
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1. Introduction

Soil moisture (SM) plays a crucial role in better understanding the cycling and partitioning of
the water and energy flux in the land-atmosphere system [1,2]. The acquisition and analysis of the SM are
widely applied in the forecasting of weather and climate variability [3], monitoring of drought and other
natural disasters [4], irrigation management in agriculture [5] and the carbon cycle [6]. There are
three approaches to estimating SM from one point to the global scale [7]: (1) in-situ observations,
(2) remote sensing and (3) model simulations. In-situ measurements are considered the most reliable
SM data. However, ground-based observations suffer from low spatial representativeness due to
the heterogeneity of SM. Therefore, remote sensing and model simulations are two main ways to
obtain large-scale SM. The hydrological or land surface model mainly uses water balance equations to
obtain SM estimations; however, the uncertainty of meteorological forcing and difficulties in acquiring
exact regional soil hydraulic parameters may cause bias. Compared with that, remote sensing is a
promising method and benefits from relatively lower costs for large area applications.

Over the past few decades, a series of active and passive microwave satellites (e.g., the Advanced
Scatterometer (ASCAT) [8], the Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSR-E, AMSR-2) [9,10], the Soil Moisture and Ocean Salinity (SMOS) mission [11] and the Soil
Moisture Active Passive (SMAP) mission [12]) have been successfully launched and are able to monitor
SM globally. The SMAP, which was launched by the National Aeronautics and Space Administration
(NASA) in 2015, is recognized as a state-of-the-art L-band microwave SM product [13]. In addition,
in response to the requirement for a long-term and global SM record, the European Space Agency (ESA)
introduced SM to their Climate Change Initiative (CCI) program and developed the first multi-satellite
combined SM dataset (ESACCI) based on active and passive microwave sensors [14].

As remotely sensed SM products are under continuous development, the evaluation becomes
increasingly important, not only in hydrological modeling and other applications, but also to help
guide further SM-retrieved algorithm improvements. In comparison with other reference data,
in-situ observations are still the main validation sources of recent SM products [15,16]. Several
previous studies have focused on the comparison between remotely sensed and modeled SM data in a
particular region or globally. Cui et al. [17] conducted inter-comparisons of eight current SM products
over two dense networks at two spatial scales. González-Zamora et al. [18] assessed ESACCI with
SMOS products and in-situ data under different environmental conditions and spatial scales in Spain.
However, there are only a limited number of SM observational networks globally that meet dense
measurement requirement, called core validation stations (CVS). Most of the other stations only meet
the condition that there is some or one station in a grid cell, called sparse networks. Ma et al. [19]
evaluated the skills of multi-source remote sensing products using dense and sparse networks across
the globe. Zhang et al. [20] validated the SMAP L3 products with globally distributed sparse network
measurement data. Chen et al. [21] validated the SMAP L2 products by using the triple collocation (TC)
techniques with sparse SM networks. When using the sparse networks as reference data, the statistics
metrics perform worse than CVS due to the significant mismatch between a point and a satellite
footprint [21]. Generally, the SMAP and ESACCI have advantages over other remotely sensed products
in terms of good quality metrics [18,19].

The land surface model simulates SM by using accurate atmospheric data and reasonable soil
and vegetation property parameterization. Compared with remotely sensed SM products, the SM
modelling results are supposed to have the advantage of capturing long-term dynamic changes of SM
well. However, it also depends strongly on external meteorological forcing, especially precipitation.
Comparing the remotely sensed and model-based datasets will help us understand the difference
between them and estimate the uncertainties in both products.

The main purpose of this study was to evaluate the discrepancy between the remotely sensed
products (SMAP and ESACCI) and a model-based product, the North American Land Data Assimilation
System (NLDAS-2). To achieve this purpose, we used 17 sparse SM sites in the Southern Great Plains
(SGP) for almost two years as a reference. The in-situ measurements in this region have rarely been
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used for the validation of SM products before, which might be valuable to complement previous studies.
In addition to calculate the statistics between three products and in-situ measurements, we decompose
the raw timeseries data into seasonality and anomaly components to analyze the temporal-spatial
difference of three products. The three SM products and in-situ observation descriptions and analysis
strategies and metrics are presented in Section 2, the results are presented in Section 3, a discussion is
presented in Section 4 and the main conclusions are presented in Section 5.

2. Data and Methods

2.1. In-situ SM Measuremets

The assessments and comparisons were carried out over an area in the U.S. SGP shown in Figure 1.
This region covers the southern part of Kansas and the northern part of Oklahoma with an area of nearly
90,000 km2. The SGP observatory is part of the United States Department of Energy’s Atmospheric
Radiation Measurement (ARM) networks, which consists of in-situ and remote-sensing instrument
clusters and offers high-quality meteorological data and fluxes of water, energy and carbon [22].
The sites corresponding to the red dots in Figure 1 were equipped with soil temperature and moisture
profile system (STAMP) deployed in early 2016. The STAMP system observes vertical profiles of
soil temperature and water content at 5, 10, 20, 50 and 100 cm. The STAMP uses the Hydraprobe to
measure soil water content at half hourly intervals. There are three sensor profile groups located 1 m
apart. We calculated the mean value of three groups at 5 cm depth. The instruments are well calibrated
and the uncertainty is less than 3% within a 95% confidence interval. The data were reviewed by the site
scientist team once per week. Some data quality flags are used to indicate bad or questionable data,
including the missing or the value out of the range. The specific information about the instruments can
be read in the STAMP handbook [23]. Every site also installs rain gauge to record the precipitation at
one-minute interval. The in-situ data are available from http://adc.arm.gov/discovery/. We averaged
the 5 cm half hour SM data and accumulated one-minute precipitation data to get daily values.
The land cover type of these sites is primarily winter wheat and grassland/pasture [23,24]. The soil
type is mainly sandy loam and silt loam [23]. The specific information about every site is shown
in Table 1. The SGP SM observation we used here is called a sparse network, which means that there is
just one group of sensors located within a remote sensing or modeled grid cell. The period used for
assessments and comparisons was chosen for all datasets available from January 2016 to December 2017.
It should be noted that the representativeness of SM of each site also has an impact on the comparison
analysis of three SM products (SMAP, ESACCI A and NLDAS-2). The representativeness errors
have different definitions in different scenes. It is hard to analyze its impact on the assessment
quantitatively. In this study, we just defined representativeness errors as the spatial deviations between
point-scale in-situ measurements and grid coarse-scale SM products. According to some previous
studies, the land cover patterns have a dominant impact on the representativeness of point-scale SM
measurements at finer spatial scales (within a satellite footprint) [25], and therefore, we respectively
compared the vegetation type of each site with the main vegetation type of the corresponding grid
cell, which would be used to determine the representativeness of SM of each site. Based on the 2016
national land cover database 2016 (NLCD 2016), we determined the main land cover type of every
satellite grid cell. The NLCD is based on the Multi-Resolution Land Characteristics (MRLC) with
16 land use classes and 30 m resolution [26]. We aggregated the 30 m pixel to the products SM data
scale (10 km) and counted the proportion of main land cover area (the proportion is larger than 10%).
The results are shown in the last three columns of Table 1.

http://adc.arm.gov/discovery/
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Figure 1. Southern Great Plains (SGP) domain and locations of soil moisture measurement sites are 
marked in red dots and they are labelled according to Table 1. 

Table 1. South Great Plains site names and mean surface soil moisture(m3/m3), mean 
precipitation(mm/d), soil texture and surface type. The ID given in column 2 corresponds to the red 
dots in Figure 1. The short name of soil texture means: SiCL: silt clay loam, CL: clay loam, L: loam, 
SiL: silt loam, SL: sandy loam. The last three column corresponds to the area proportion of three main 
land cover within coarse-scale grid cell. 

Site ID 
Mean 
SMa Precipb 

Soil 
Texture Surface type Grasslandc 

Cultivated 
Crop c Forestc 

Ashton E9 0.249 2.211 L Pasture 28% 66%  
Anthony E31 0.211 1.720 SiL Pasture 66% 28%  

Byron E11 0.292 2.049 L Pasture 41% 46%  
Lamont E13 0.238 2.457 SL Pasture/Wheat 18% 77%  

Maple city E34 0.272 2.391 SiCL Pasture 87%   
Marshall E36 0.212 1.983 SL Pasture 67% 13% 11% 
Medford E32 0.257 2.025 SiCL Pasture 25% 56%  
Morrison E39 0.260 2.111 SiL Pasture/Wheat 78% 15%  
Newkirk E33 0.237 2.573 SiL Pasture/Wheat 20% 73%  

Okmulgee E21 0.191 2.034 SiCL Forest 14%  58% 
Omega E38 0.203 1.965 SiL Pasture/Wheat 27% 68%  

Pawhuska E12 0.257 2.027 SL Native Prairie 53%  37% 
Pawnee E40 0.304 3.650 SiL Pasture 65%  20% 

Peckham E41 0.303 3.171 SiL Pasture/Wheat 29% 58%  
Ringwood E15 0.083 1.706 SL Pasture 38% 50%  

Tryon E35 0.30 2.127 CL Pasture 54%  29% 
Waukomis E37 0.217 1.789 SiL Pasture/Wheat 20% 72%  

a Daily mean SM of each site, b Daily precipitation of each site, c Grassland, cultivated crop and forest 
are three main land cover within coarse-scale grid cell, the rest land cover types are less than 10%. 

2.2. SMAP L3  

The SM satellite product used in this study is the passive enhanced level-3 product (L3SMPE), 
which is a daily composite of SMAP enhanced level-2 products (L2SMPE) that presents volumetric 
surface SM (0–5 cm, m3/m3). The NASA SMAP mission was launched on January 31st, 2015. The 
capability of the mission to measure SM relies on two instruments: a synthetic aperture radar and a 
radiometer operating at an L-band. The radar instrument had failed since July 7, 2015. The L-band 
brightness temperature is sensitive to SM and relatively insensitive to surface roughness and 
vegetation, which makes it the most suitable band to measure SM. The L2SMPE product is derived 
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Figure 1. Southern Great Plains (SGP) domain and locations of soil moisture measurement sites are
marked in red dots and they are labelled according to Table 1.

Table 1. South Great Plains site names and mean surface soil moisture(m3/m3), mean
precipitation(mm/d), soil texture and surface type. The ID given in column 2 corresponds to the red
dots in Figure 1. The short name of soil texture means: SiCL: silt clay loam, CL: clay loam, L: loam,
SiL: silt loam, SL: sandy loam. The last three column corresponds to the area proportion of three
main land cover within coarse-scale grid cell.

Site ID Mean SM a Precip b Soil Texture Surface Type Grassland c Cultivated Crop c Forest c

Ashton E9 0.249 2.211 L Pasture 28% 66%
Anthony E31 0.211 1.720 SiL Pasture 66% 28%

Byron E11 0.292 2.049 L Pasture 41% 46%
Lamont E13 0.238 2.457 SL Pasture/Wheat 18% 77%

Maple city E34 0.272 2.391 SiCL Pasture 87%
Marshall E36 0.212 1.983 SL Pasture 67% 13% 11%
Medford E32 0.257 2.025 SiCL Pasture 25% 56%
Morrison E39 0.260 2.111 SiL Pasture/Wheat 78% 15%
Newkirk E33 0.237 2.573 SiL Pasture/Wheat 20% 73%

Okmulgee E21 0.191 2.034 SiCL Forest 14% 58%
Omega E38 0.203 1.965 SiL Pasture/Wheat 27% 68%

Pawhuska E12 0.257 2.027 SL Native Prairie 53% 37%
Pawnee E40 0.304 3.650 SiL Pasture 65% 20%

Peckham E41 0.303 3.171 SiL Pasture/Wheat 29% 58%
Ringwood E15 0.083 1.706 SL Pasture 38% 50%

Tryon E35 0.30 2.127 CL Pasture 54% 29%
Waukomis E37 0.217 1.789 SiL Pasture/Wheat 20% 72%

a Daily mean SM of each site, b Daily precipitation of each site, c Grassland, cultivated crop and forest are three
main land cover within coarse-scale grid cell, the rest land cover types are less than 10%.

2.2. SMAP L3

The SM satellite product used in this study is the passive enhanced level-3 product (L3SMPE), which
is a daily composite of SMAP enhanced level-2 products (L2SMPE) that presents volumetric surface
SM (0–5 cm, m3/m3). The NASA SMAP mission was launched on January 31st, 2015. The capability of
the mission to measure SM relies on two instruments: a synthetic aperture radar and a radiometer
operating at an L-band. The radar instrument had failed since July 7, 2015. The L-band brightness
temperature is sensitive to SM and relatively insensitive to surface roughness and vegetation, which
makes it the most suitable band to measure SM. The L2SMPE product is derived from the SMAP
Enhanced L1 Gridded Brightness Temperature Product (L1CTB_E) (posted at a 9 km grid cell) based
on the Backus-Gilbert optimal interpolation technique [27]. The L3SMPE product is a daily product
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generated by compositing L2SMPE, which has an intermediate resolution (~9 km) and revisits twice a
day (ascending and descending). We chose the descending (6 AM local time) SM retrievals instead of
the ascending (6 PM local time) data because surface soil and vegetation are in better thermal equilibrium
conditions at 6:00 AM [28]. The SMAP products can be downloaded freely from the National Snow
and Ice Data Center (NSIDC) (https://nsidc.org/data/SPL3SMP). The SMAP enhanced SM is retrieved
from the interpolated SMAP brightness temperature observations at 9 km. This is because the SMAP
radiometer sampling provides overlapping observations along the scan and along the track, which
makes reconstructing the observed scene with improved resolution possible. More details about
the SMAP enhanced passive SM product can be found in [29].

2.3. ESACCI

The ESACCI SM product merges multi-source active and passive microwave SM products
that have different characteristics, which is a global daily, long-term SM record with a spatial
resolution of 0.25◦ [30]. The ESACCI consists of three individual datasets, including the active, passive
and the combined (active-passive) products. The active product is generated only by merging active
microwave-based datasets (i.e., scatterometers (SCAT and ASACT), the passive product is generated
only by merging passive microwave-based datasets (i.e., Scanning Multichannel Microwave Radiometer
[SMMR], Special Sensor Microwave Imager [SSM/I], Tropical Rainfall Measuring Mission Microwave
Imager [TMI], AMSR-E, WindSat, AMSR-2 and SMOS utilizing the LPRM) and the combined product is
generated by merging both active microwave- and passive microwave-based datasets. The product we
used here is the latest released ESACCI SM v04.4, which uses a new algorithm from previous versions,
based on uncertainty analysis to combine active and passive microwave products from the previous
versions. More detailed descriptions can be found in [31].

2.4. NLDAS-2

The NLDAS-2 is an offline modeling system, running four land surface models (CLM
(Community Land Model), Noah, Mosaic and VIC) at a 0.125◦resolution over the continental United
States [32]. It should be noted that NLDAS precipitation data sets are primarily derived from daily
National Oceanographic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC)
precipitation gauge data with an orographic adjustment using the Parameter-evaluation Regressions
on Independent Slopes Model (PRISM) [33]. Hence, it is relatively reliable in the United States.
We chose the Noah version. The Noah model is a land surface model developed by the National
Centers for Environment Prediction (NCEP). The model has four soil layers with spatially invariant
depths: 0–10, 10–40, 40–100 and 100–200 cm and simulates SM at the middle of each layer (5, 25,
70 and 150 cm) [32] The first layer was used in this study because it is the best match to the in-situ
measurements and remotely sensed SM datasets. The temporal resolution of the dataset is hourly,
so we average all values in a day to get the daily SM.

2.5. Evaluation Methods and Metrics

We first compared the difference between three coarse resolution SM products with respect
to in-situ observations. All three types of datasets were initially converted to daily averages due
to the different temporal resolutions. However, remotely sensed products had gaps in long-term
continuous observations, thus, available samples of the three products were different. As expected,
model-based SM products could be obtained during the entire study period. The advantages of
ESACCI in this temporal coverage come from the fact that it was a combined product of multiple
datasets. The SMAP product had the lowest temporal samples. We had two sample strategies to
deal with the discrepancy in temporal interval. One was selecting the days when all three products
and in-situ measurements had valid values to keep the sample numbers the same. The other was using
every product that could coincide with in-situ measurements, respectively. We used the t-test to
determine if there was a significant discrepancy between statistical metrics using different methods

https://nsidc.org/data/SPL3SMP
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of sampling. The results implied that there was no difference in statistical results between the two
sampling strategies.

It should be noted that a direct comparison between the spatial SM retrievals and the ground
measurements (precipitation distribution, soil characteristics, topography and vegetation) is challenging
due to the SM heterogeneity [25]. The discrepancy was evaluated according to four common metrics:
(1) correlation coefficient (R), (2) bias, (3) root-mean-square difference (RMSD) and (4) unbiased
root-mean-square difference (ubRMSD) [34]. For both SMAP and ESACCI data products, only those
SM data whose retrieval quality fields indicated good retrieval quality were used in evaluation.
An alternative is to use an average mean SM of multi-site observation, just like the CVS. However,
in our case, every grid cell has just one observation. Some researchers used unbiased RMSD (ubRMSD)
instead of RMSD in the analysis by subtracting the temporal mean bias. The degree of association
between the in-situ reference data and product datasets was calculated using the Pearson correlation
coefficient (R) according to Equations (1)–(4), where SMre represents a satellite- or model-based SM
retrieval (m3/m3) and SMm means the in-situ measurement (m3/m3). N represents the total number of
data pairs. Cov in Equation (1) represents the covariance of two datasets, the σrs and σm represent
the variance of satellite and modeled data. Furthermore, to ensure statistical robustness, stations with
at least 100 paired observations were used in this study:

R =
Cov(SMre, SMm)

σreσm
(1)

RMSD =

√
1
N

∑N

i = 1
(SMre − SMm)

2
i (2)

bias =
1
N

∑N

i = 1
(SMre − SMm)i (3)

ubRMSD =
√

RMSD2 − bias2 (4)

The evaluation of SM products can vary significantly across different time scales [35]. Various SM
products may represent a similar drying and wetting cycle but capture diverse short-term fluctuations.
Therefore, besides comparing the raw times series of in-situ measurements with the modelled or
remotely sensed products, we also want to use a moving-average window to decompose the raw
timeseries into a low-frequency SM dynamic and a higher-frequency anomaly. As shown in Equation
(5), the t means the SM value at day t obtained from remote sensing or in-situ measurements or
modelled data, while [t − 17,t + 17] means a time window of 35 days (5-week) centered on day t [31,32].
The overbar means the average of the SM values of 35 days, referred as the seasonality. The short-term
anomalies SMano(t) are calculated by subtracting seasonality from the raw timeseries SM values.
If the days of a particular time window that all SM datasets are available are less than 25%, the moving
average should not be calculated:

SMano(t) = SM(t) − SM[t− 17, t + 17] (5)

3. Results

3.1. Temporal Evaluation with in-situ Observations

Table 2 summarizes the statistical metrics for the comparison between SMAP L3 passive enhanced
products (hereafter referred to as SMAP), ESACCI, NLDAS-2 and in-situ SM values. As for bias,
there was no consistency among the three products. The SMAP presented a little dry bias in terms of
the temporal mean, whereas the ESACCI and NLDAS-2 presented a wet bias (the median biases of three
products were 0.008 m3/m3, 0.036 m3/m3 and 0.028 m3/m3, respectively). Regarding the R and ubRMSD,
the SMAP products showed the highest R (median R is 0.79) and the lowest ubRMSD (median ubRMSD
is 0.05), followed by the NLDAS-2 (median R: 0.74; median ubRMSD: 0.06) and the ESACCI (median R:
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0.63; median ubRMSD: 0.06), as shown in Figure 2. In terms of the correlation coefficient, the SMAP
outperformed ESACCI for all sites according to the results of the t-test (P < 0.05). However, at some sites
(such as Byron and Medford), SMAP performed a little worse than NLDAS-2. In addition, there was no
obvious low R value found in SMAP for all sites, whereas the R values between ESACCI, NLDAS-2
and in-situ measurements were poor at some sites (Maple city for NLDAS and Medford for ESACCI).
The SMAP tended to underestimate SM in 11 sites (11/17), whereas the ESACCI and NLDAS-2 tended
to overestimate SM in most sites (12/17, 13/17). As for ubRMSD, as shown in Figure 2a, the median
value of SMAP was lower than that of other two products, though it exceeded the SMAP mission
requirement (ubRMSD below 0.04 m3/m3). The median value of ESACCI was little lower than that of
the NLDAS-2 in terms of ubRMSD. The variation of the ubRMSD of the ESACCI for all sites was larger
than for the other two products. There was no direct connection between the R and ubRMSD for all
sites. The distribution of R between two remotely sensed products was similar. For the Ringwood site,
the three products had a relatively low R. The ESACCI and NLDAS-2 had the lowest values in terms
of ubRMSD (0.032 m3/m3 and 0.034 m3/m3), which were smaller than that of the SMAP. Meanwhile,
the Medford site was different from other sites because all three datasets exhibited the largest ubRMSD:
0.074, 0.090 and 0.077.

Table 2. Statistics of the comparison between SM products and in-situ observations. RMSD, ubRMSD
and BIAS are the root mean square error (unit: m3/m3), the unbiased RMSD (unit: m3/m3) and the mean
bias (unit: m3/m3), respectively. R is the temporal correlation. The network acronyms correspond to
the first three letters of the site name. N means the available days that both three products and in-situ
measurements have valid values.

Site
SMAP ESACCI NLDAS-2

N
R Bias ubRMSD R Bias ubRMSD R Bias ubRMSD

Ash 0.87 0.018 0.054 0.62 0.036 0.058 0.79 0.061 0.055 266
Ant 0.76 −0.037 0.043 0.62 0.035 0.049 0.58 0.019 0.052 296
Byr 0.76 −0.078 0.052 0.54 −0.026 0.070 0.80 0.003 0.062 275
Lam 0.78 −0.003 0.054 0.55 0.037 0.060 0.69 0.056 0.058 266
Map 0.70 −0.008 0.059 0.58 0.014 0.063 0.53 0.04 0.066 259
Mar 0.83 0.003 0.042 0.68 0.052 0.056 0.81 0.028 0.049 290
Med 0.65 0.002 0.074 0.43 0.029 0.090 0.75 0.024 0.077 263
Mor 0.78 −0.026 0.050 0.66 0.007 0.064 0.73 0.007 0.060 251
New 0.80 0.029 0.052 0.46 0.052 0.079 0.82 0.065 0.067 263
Okm 0.70 0.058 0.051 0.62 0.099 0.057 0.74 0.086 0.052 247
Ome 0.80 −0.008 0.045 0.73 0.049 0.053 0.74 0.085 0.056 299
Pawh 0.82 −0.017 0.041 0.74 −0.022 0.051 0.72 −0.044 0.054 234
Pawn 0.79 −0.068 0.045 0.73 −0.035 0.051 0.72 −0.024 0.057 289
Pec 0.79 −0.055 0.050 0.50 −0.032 0.065 0.77 −0.018 0.055 271
Rin 0.65 0.078 0.043 0.62 0.062 0.032 0.59 0.067 0.034 270
Try 0.73 −0.079 0.052 0.61 −0.052 0.060 0.57 −0.053 0.064 249

Wau 0.81 −0.019 0.042 0.70 0.052 0.056 0.74 0.074 0.059 214

Figure 3 illustrates the time series behavior of the three SM products (SMAP, ESACCI and NLDAS-2)
and permanent in-situ measurements. The daily precipitation data measured by the networks were
also added to the figure as a bar plot. For some permanent observation sites, all three products show
generally good agreement with in situ measurements. The SMAP product was shown to have a higher
correlation coefficient than ESACCI and NLDAS, which is reflected in Figure 3. The remotely sensed
or model-based data showed consistency with the precipitation events. After a precipitation event,
high soil moisture values were estimated in both products. However, if the rain continued (April
in 2017), the SMAP retrievals would be overestimated over the site measurement for some sites (Ashton,
Medford), because the sensors measured 5-cm depth SM in soil, whereas the puddles after the rainfall
would affect the satellite measurements. Due to the restriction of the SM saturation conditions,
the modeled products would not overestimate the in-situ measurement too much. Following a dry



Remote Sens. 2020, 12, 2030 8 of 20

period, both products showed low SM values, thus reflecting dry soil conditions. For the Ringwood
site, the annual precipitation is low and the main soil texture is sandy, thus, the surface SM of this site
was very low. It was revealed that all three products overestimated the SM with a large positive bias of
0.078, 0.062 and 0.067 m3/m3. When precipitation continued to occur in a period of time (usually
in June or July), it would lead to an obvious overestimation of SM by SMAP and ESACCI.
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3.2. Comparison of Seasonal and Anomaly Components

The results presented above give an overview of the comparison of different products for all time
periods. We decomposed the daily time series SM values into seasonal and anomaly components
by using Equation (5). The ability of the product to capture the short-term SM variations was also
considered as an accuracy metric of the datasets. For short-term seasonal and anomaly components,
the temporal R between in-situ and satellite- or model-based products was inconsistent. As shown
in the scatterplot in Figure 4 and Table 3, for most sites (13/17), the temporal anomaly of the SMAP
product showed a weaker correlation with in-situ data than the raw time series. Meanwhile, the same
trend of ESACCI and NLDAS-2 was shown for fewer sites (8/17, 10/17). In contrast, the temporal
seasonality indicated that remotely sensed data were more effective at detecting interannual and seasonal
patterns than single precipitation events. As shown in Figure 4, for most sites (13/17), the R of
the seasonality component of SMAP improved compared with the original time series, as well
as the ESACCI (12/17). However, for NLDAS-2, the seasonal R between in-situ measurements
decreased compared with the original. The potential cause of the lower correlation values may be
related to the vegetation type. The vegetation dynamic interpretation of the model simulation was based
on leaf area index (LAI) for different sites, the vegetable types were mainly grassland and pasture,
and they had different growing periods. Locally observed rainfall (the main driver of SM temporal
pattern) could introduce discrepancies when compared to coarse resolution products. Moreover,
the model-based data performed better for anomaly time series, and they had a relative higher R
compared with in-situ measurements and a smaller ubRMSD than the remotely sensed data. The high
accuracy of input precipitation data might account for this.
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Table 3. Statistics of the comparison between SM products and in-situ observations in terms of anomaly
R, Bias (m3/m3), ubRMSD (m3/m3), u. N means the available days that both three products and in-situ
measurements have valid values.

Site
SMAP L3 ESACCI NLDAS-2

N
R Bias ubRMSD R Bias ubRMSD R Bias ubRMSD

Ash 0.848 0.000 0.044 0.714 −0.002 0.034 0.769 −0.001 0.034 266
Ant 0.779 0.000 0.028 0.65 −0.002 0.033 0.729 −0.001 0.028 267
Byr 0.718 −0.002 0.036 0.607 −0.003 0.04 0.753 0.002 0.037 309
Lam 0.756 0.000 0.043 0.617 −0.002 0.041 0.685 −0.002 0.039 266
Map 0.667 −0.001 0.039 0.567 −0.001 0.04 0.699 −0.001 0.027 259
Mar 0.796 −0.002 0.031 0.714 −0.002 0.033 0.767 −0.001 0.032 272
Med 0.69 −0.001 0.044 0.543 −0.002 0.043 0.696 −0.001 0.039 263
Mor 0.764 0.000 0.03 0.55 0.000 0.036 0.757 0.001 0.03 251
New 0.82 0.000 0.038 0.647 −0.001 0.041 0.81 −0.001 0.036 263
Okm 0.662 0.001 0.028 0.465 0.000 0.025 0.675 0.001 0.019 242
Ome 0.809 −0.002 0.045 0.732 0.049 0.053 0.745 0.085 0.056 299
Paw 0.721 0.000 0.032 0.596 −0.001 0.03 0.756 −0.001 0.024 234

Pawn 0.802 −0.001 0.029 0.616 −0.001 0.035 0.786 −0.001 0.033 255
Pec 0.75 −0.001 0.042 0.623 −0.002 0.045 0.777 −0.001 0.041 263
Rin 0.812 0.000 0.034 0.72 −0.002 0.026 0.552 −0.003 0.024 270
Try 0.749 −0.001 0.03 0.529 −0.001 0.04 0.699 −0.001 0.032 249

Wau 0.789 −0.002 0.037 0.648 −0.003 0.045 0.752 −0.001 0.046 214

3.3. Spatial Analysis with in-situ Observations

Although the dense networks provide reliable satellite footprint scale SM values, they just focus
on temporal dynamics at one grid cell. It is critical to evaluate whether various SM products actually
represent real SM spatial patterns. All permanent observation sites used in this study were located
in different grid cells. For these sites, spatial analysis was performed to estimate the agreement in spatial
patterns of in-situ SM with three SM products. We calculated the daily spatial R, bias and ubRMSD with
ground-based observations. The Figure 5 shows the time series plot of daily R and bias. The lowest
of Figure 5 depicts the temporal evolution of spatial mean SM of this region, which is calculated by
averaging all 17 sites observations. Not all sites had corresponding valid satellite retrievals in one day;
when the valid retrievals were less than six, the result of this day was discarded.

As shown in Figure 5, the spatial R between three products and in-situ measurements had a wider
range of variation than the temporal R. In some days corresponding to low SM values, all three products
data had poor values in spatial R. The spatial bias of three products might be related to the region
average SM values of the day. The SM values showed a continuous decreasing trend in the autumn
of 2016, while the spatial bias also followed the trend, especially for the modelling data. Therefore,
we drew scatter plots (Figure 6) about the spatial variations of three products (bias) and the average
SM values. The relationship between the three products and in-situ measurements were inconsistent
in terms of the spatial R and bias. For ESACCI and NLDAS, the products overestimated the in-situ
measurements in low SM values, which was also reflected in Figure 3. A strong linear increasing
trend was observed between the average SM value and the bias. For SMAP, the spatial bias did not
have an obvious connection with the spatial mean SM. One possible explanation for that is that high
SM usually corresponds to the days during or after precipitation; for the modeled data, precipitation
was the main reason for the bias between the in-situ and retrievals, and modeled data overestimated
the in-situ measurements at high SM and overestimated the in-situ measurements at low SM. In contrast,
for the SMAP, remotely sensed data had no such pattern. This indicates that the error source from
remotely sensed and modeled data were quite different.
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4. Discussion

4.1. Similarities and Differences with Other Validation Results

It is critical to assess the reliability of SM products before using them. By comparing multiple
sources of SM datasets, we can obtain knowledge of the strengths and weaknesses of different
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products. There are two ways to evaluate remotely sensed data. One is to compare with the in-situ
measurements [20], and the other is to compare with the modeling data [36]. Compared with
other validation results, there are some similarities and differences. The SMAP product validation
was based on a set of core validation sites (CVS) [28]. The CVSs provided high-quality in-situ SM
measurements and used an up-scaled method to acquire quasi-spatial SM reference data through
observations at multiple locations. The validation obtained from the CVSs was better than that obtained
through other conventional SM networks. The ubRMSD of most CVSs was less than 0.04 m3/m3,
which met the target of the SMAP mission [28]. According to previous studies, the SMAP generally
captures the dynamic range of SM better than other satellite products in terms of having a higher
R and a lower ubRMSD [17,19,37,38]. The ESACCI, which is a combined product merging multiple
remotely sensed data sources, except the SMAP, has an advantage of long-term climate data records
and increase the sampling time intervals. Moreover, the combined ESACCI may perform better
than individual products in some regions [18,30]. Although the statistical results of individual
site were inconsistent, The results indicate that the SMAP outperforms the ESACCI with higher
temporal R (SMAP:0.65–0.87; ESACCI:0.43–0.74) and lower ubRMSD (SMAP:0.041–0.074m3/ m3;
ESACCI:0.032–0.09 m3/ m3) with respect to in-situ measurements. Therefore, the next generation
of ESACCI may consider including the SMAP in the synthetizes. Model simulation is used as a
benchmark for remotely sensed data, especially in some regions, such as the US or Europe; the accuracy
of precipitation data is high, and model-based SM can capture the temporal change well. However,
in some areas where the accuracy of meteorological data cannot be guaranteed, satellite products
are proven to be better than model simulations [36,39]. In this study, though the precipitation data
of the NLDAS-2 are similar to the site’s measurement and the model-based data and the NLDAS
captured the seasonal and anomaly time series well, the SMAP also had a high R value compared with
the in-situ data in terms of seasonality and anomaly. This indicates that remotely sensed SM data
can reflect the change of SM due to short-term precipitation events. In addition, the SMAP captures
the drying process better than the model-based data and has less difference compared with the in-situ
data. All of these show the promising potential of remotely sensed data for drought monitoring
and rainfall estimation [40,41].

4.2. Analysis of the Possible Reasons for the Discrepancy between Different Products

Another important purpose of this study is to analyze the possible reasons for the discrepancy
between the remotely sensed and modeling products. First, the accuracy of sensors used in ground
measurement also affects the performance of satellite and modeling products compared with
in-situ products. According to the instrument handbook [22], the sensors were well calibrated
and the uncertainty of SM measurement is within 3% of the measured values, which was far less than
the difference between three products and ground-based observations In addition, various satellite
products might have different infiltrate depth, depending on the soil texture and SM content [42,43].
For SMAP, the uncertainty caused by the depths was estimated as a range (0–5 cm) with a set of
uncertainties, not a certain depth [29]. The ESACCI is a combined product for which active and passive
products have different sensing depths, but they are all defined as “surface soil moisture” and are
around 5 cm [30]. The NLDAS output 5 cm as the average SM of the first layer, which is not equal to
the true 5 cm ground measured depth. The mis-match of retrieved depth were usually considered to
be systematic errors, which were less connected to the temporal R and ubRMSD [44]. For ESACCI,
satellite products to be combined were firstly scaled against GLDAS Noah (Global version of NLDAS)
to harmonies their climatology [31]. Therefore, ESACCI and NLDAS estimates showed a similar wet
bias during the drying period based on our results. We compared the temporal mean of 5 cm and 10 cm
in-situ SM measurements as a reference. Indeed, the mean SM of 10 cm was wetter than the 5 cm data,
but it was still drier than the ESACCI and NLDAS data. Besides the depth, there are other reasons for
this deviation, which need further study.
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According to our results, the spatial bias between the ground reference data and the three products
is correlated with the SM values, especially for the modeling data. The uncertainty of precipitation
data may account for that. After a rainfall event, the surface soil becomes wetter and the variation
of spatial distribution increases, which is shown in Figure 5c. Data from all three products are lower
than the in-situ data. With the soil drying, the remotely sensed data decrease accordingly; moreover,
the modeling data show a slow drying rate, meaning the data will be wetter than the in-situ data.
Thus, the bias between modeling data and in-situ observations is strongly dependent on the changing
of the SM, whereas the remotely sensed data show less correlation with the reference SM values.

Another key issue regarding differences between the SM products is the mismatch of vegetation
data between remotely sensed and modeling products, which also reflect whether the site is
representative. As shown in Table 1, most sites can stand for the vegetation type of their pixel, except
for Anthony, Medford. The vegetation around the site were often mixed with pasture and cultivated
crop, whereas the grid cells were more dominated by one type. For example, the Lamont site is
covered by wheat crop and pasture; however, the corresponding footprint pixel were most covered by
the cultivated crop. Which would If alleviate the disparity between different scales. Our results indicate
that systematic differences exist in remotely sensed or modeled products and ground measurements,
even though the temporal dynamics are every similar. After conducting a moving mean calculation
of 35 days, we found that the systemic bias mainly lay in the seasonal part. The anomaly ubRMSD
decreased, whereas the anomaly R did not have a significant change.

There is further potential for improvement in SMAP SM retrievals. The improvements include
use of better ancillary data (optimized vegetation water content (VWC] and better soil texture data).
The vegetation canopy exerts significant effects on the soil-emitted energy [45]. Vegetation not only
attenuates signals from soil surfaces but also emits radiation itself, leading to a reduced sensitivity of
brightness temperature to SM. Accordingly, the influence of vegetation must be corrected accurately
before achieving reliable SM estimations. Commonly, the effects of vegetation are mainly represented
by the vegetation optical depth (VOD), which characterizes the radiation attenuation caused by
vegetation The VOD of SMAP is estimated from the VWC, which is calculated by using a 10-year
MODIS NDVI climatology data at 1-km spatial resolution. An empirical polynomial is established
to calculate VWC from NDVI. Seasonal biases of remotely sensed or modeled SM products showed
that most in-situ data that include managed agriculture exhibit significant time-dependent seasonal
bias. According to a previous study, the performance of satellite products is worse for sites that are
dominated by cultivated crop [28]. In general, the main vegetation type of the SGP region is cultivated
crop and grassland/pasture; one site is covered by forest (Waukomis). We aggregated a 30 m land-cover
map to the 9 km scale pixel and counted the crop, grassland and forest class of grid cells; we found
that the main vegetation type of the footprint pixel was nearly consistent with the corresponding site.
As shown in Figure 7, climatology vegetation optical depth (VOD) cannot indicate the discrepancy
between the crop and grassland in terms of the growing period. The time variation of NDVI for
winter wheat differed markedly from that of natural grassland, especially in summer. The winter
wheat usually matured in late April [24]. After harvesting, the ground would be uncovered for
a period of time, whereas the nature pasture continued growing. As shown in Figure 8, t crops
the NDVI reached a maximum of about 0.6 in terms of NDVI. After harvest, the NDVI decreased
sharply and maintained a relatively low value in the summer. In contrast, the NDVI of natural
grassland increased consistently after entering the growth of vegetation and held a high value of
about 0.7 in the summer. It was noted that the NDVI of pasture might vary irregularly due to cattle
grazing or regular mowing. Besides the water stored in vegetation foliage, the intercepted precipitation
or dew also had an effect on microwave radiation. Whether the free water in the canopy affected
the microwave emission depended on the type and physical structure of vegetation [46], which would
need to be considered in future research.
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5. Conclusions

Assessing the discrepancy between the remotely sensed and modeling SM products is crucial for
their utilization in scientific studies and applications and also improves our knowledge of how they
can be further improved. This paper provides a comparison among SMAP, ESACCI and NLDAS-2 SM
retrievals using 17 permanent in-situ measurements as ground reference over the SGP. The vegetation
types of SGP are mainly wheat and pasture, which have different growing periods. The possible reasons
behind the difference between remotely sensed or modeled products are also investigated and discussed
in detail. The results demonstrate that (1) the temporal variation of the SMAP is more consistent with
ground measurements, with a higher temporal correlation coefficient (median R = 0.78) than ESACCI
(R = 0.62) and NLDAS-2 (R = 0.72). However, there is no significant discrepancy between the three
products in terms of the ubRMSD, for which all values exceed the target (0.04 m3/m3). However,
compared with other studies with respect to sparse networks, the metrics in this study had a relatively
high accuracy. (2) After decomposing the original values into the seasonal and anomaly components,
the seasonality part of remotely sensed data had even higher R than the model simulation, which
indicates that the vegetation had an important impact on the seasonal change of SM, and remotely
sensed data can capture that. There was no significant difference for correlation R between the anomaly
satellite- or model-based datasets and in-situ measurements, which implies that the remotely sensed
products have the potential to capture the short-term variation caused by a single rainfall event,
like modeling products. (3) The distribution pattern of spatial metrics is different between the three
products. For NLDAS and ESACCI, the bias was more related to the daily SM values. For SMAP,
the bias was more random. In general, the SMAP is superior to the other two products, especially
when the SM is at a low value. The remotely sensed products have the ability to reflect the occurrence
of precipitation events. By comparing remotely sensed data and model simulations, we can see
the potential advantages of combining two of them.
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