
remote sensing  

Article

Alfalfa Yield Prediction Using UAV-Based
Hyperspectral Imagery and Ensemble Learning

Luwei Feng 1,2, Zhou Zhang 1,* , Yuchi Ma 1, Qingyun Du 2,3,4 , Parker Williams 1,
Jessica Drewry 1 and Brian Luck 1

1 Biological Systems Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA;
lwfeng@whu.edu.cn (L.F.); ma286@wisc.edu (Y.M.); pjwilliams3@wisc.edu (P.W.); jdrewry@wisc.edu (J.D.);
bluck@wisc.edu (B.L.)

2 School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China;
qydu@whu.edu.cn

3 Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University,
Wuhan 430079, China

4 Key Laboratory of Digital Mapping and Land Information Application Engineering,
Ministry of Natural Resources, Wuhan University, Wuhan 430079, China

* Correspondence: zzhang347@wisc.edu

Received: 3 June 2020; Accepted: 23 June 2020; Published: 24 June 2020
����������
�������

Abstract: Alfalfa is a valuable and intensively produced forage crop in the United States, and the
timely estimation of its yield can inform precision management decisions. However, traditional
yield assessment approaches are laborious and time-consuming, and thus hinder the acquisition
of timely information at the field scale. Recently, unmanned aerial vehicles (UAVs) have gained
significant attention in precision agriculture due to their efficiency in data acquisition. In addition,
compared with other imaging modalities, hyperspectral data can offer higher spectral fidelity for
constructing narrow-band vegetation indices which are of great importance in yield modeling. In this
study, we performed an in-season alfalfa yield prediction using UAV-based hyperspectral images.
Specifically, we firstly extracted a large number of hyperspectral indices from the original data
and performed a feature selection to reduce the data dimensionality. Then, an ensemble machine
learning model was developed by combining three widely used base learners including random
forest (RF), support vector regression (SVR) and K-nearest neighbors (KNN). The model performance
was evaluated on experimental fields in Wisconsin. Our results showed that the ensemble model
outperformed all the base learners and a coefficient of determination (R2) of 0.874 was achieved
when using the selected features. In addition, we also evaluated the model adaptability on different
machinery compaction treatments, and the results further demonstrate the efficacy of the proposed
ensemble model.

Keywords: alfalfa; yield prediction; hyperspectral; unmanned aerial vehicle (UAV); ensemble
learning; vegetation index

1. Introduction

Alfalfa is one of the most important and widespread perennial legumes, and it is considered
as a valuable forage crop with relatively high yield and nutritional value [1]. In 2018, nearly 53
million tons of alfalfa and alfalfa mixtures were harvested from about 17 million acres in the United
States [2]. Due to its large scale, precise management to achieve the forage yield goal is critical to
optimize profitability [3]. Timely estimation of alfalfa production within the growing season can
inform precision management decisions to reduce the potential production loss. Additionally, rapidly
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and accurately estimating the yield within the growing season also has the potential to improve the
timing in harvesting alfalfa to optimize the forage quality and production [4].

The early development of alfalfa is characterized by the formulation and growth of leaves
and stems. Then the appearance of flower buds indicates the transformation from vegetative stage
to reproductive stage, after which alfalfa progressively passes through flowering and seed pod
development [5]. At different stages of an alfalfa life cycle, adequate fertilization, irrigation and tillage
practices are required to ensure long-lasting productive stands [1]. In addition, the cutting frequency
also has a strong impact on the alfalfa yield, and three or four cuttings are usually adopted in the
northern United States. Typically, decreased yield can be observed in the successive cuttings through
a year [6]. Generally, alfalfa is harvested as hay or silage. Alfalfa intended for hay is sun-dried in
the field after cutting to a moisture level of less than 12% [7], while shorter drying time is needed for
silage which has more than 50% moisture content [8]. Machinery is typically used for alfalfa harvest
from mowing, raking, merging, to baling or chopping [9]. Wheel traffic from these machines has a
significant impact on soil health and crop production potential. According to a multi-state study, the
yield reduction in next cutting caused by wheel traffic ranged from 5% to 26% depending on the traffic
timing [10]. Traffic events which occurred three to five days after mowing caused significant losses in
alfalfa yield [11]. Though yield loss from wheel traffic varies from field to field, it can be reduced by
minimizing the number and locations of machinery operations [12–15].

Traditional yield assessment is based on destructive sampling which is to manually collect data
samples in the field and weigh the samples to determine the yield [16–19]. However, destructive
sampling is not only laborious and time-consuming, but also are unable to monitor the crop status over
a growing season [4]. The advances of remote sensing techniques have provided a non-destructive and
efficient way to monitor the crop growth, and thus has great potential for crop yield analysis. In the
last few decades, satellite remote sensing has been widely used in agriculture [20–22]. Among these
studies, several researchers explored the utility of satellite data to estimate alfalfa yield. For example,
multiple vegetation indices (VIs) extracted from time-series Landsat images were used to predict
alfalfa yield in Saudi Arabia, and near-infrared (NIR) reflectance, soil adjusted vegetation index (SAVI)
and normalized difference vegetation index (NDVI) were found to be strongly correlated with the
yield [23]. High-resolution commercial QuickBird satellite data were applied to estimate alfalfa yield
over hilly areas on Loess Plateau of China, and better performance was achieved than using the Landsat
data [20]. Though successful, the adoption of satellite remote sensing in precision farming has been
restricted due to limitations, such as cloud contamination and relatively coarse spatial and temporal
resolutions [21,22].

Recently, unmanned aerial vehicles (UAVs) have gained significant attention due to their greater
flexibility in mission scheduling, and image data with finer spatial resolution acquired from different
sensors mounted on UAV platforms have been widely used in precision agriculture. Based on
low-cost conventional digital RGB images, various studies have been carried out to assess the
growth status of crops and predict yields using either the original three color bands or derived
color indices, such as green-red vegetation index (GRVI) [24] and excess green vegetation index [25].
Since plants typically have strong reflective properties in the NIR wavelengths, multispectral sensors
have become more favored by incorporating the NIR channels. For example, several VIs which were
developed by including the NIR band, such as NDVI and red edge position index (REPI), have been
successfully applied in grain yield prediction [26], crop senescence rate detection [27], plant water
status assessment [28], and other applications in precision agriculture [29–31].

Hyperspectral cameras are more expensive than RGB and multispectral cameras, and large data
storage capacity is required to store hyperspectral data cubes and perform data processing. Despite
the challenges, hyperspectral imagery is capable of providing more detailed spectral information and
offering better opportunities for applications in precision agriculture since hundreds of spectral bands,
arranged in narrower bandwidth, are consisted in the images. Based on the advantage of hyperspectral
imagery, various agricultural applications have been studied using hyperspectral imagery, such as
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crop mapping [32,33], disease detection [34,35], and stress assessment [36,37]. Among the wide range
of applications, crop yield prediction by taking advantage of the continuous narrow spectral bands,
is one of the most popular [38–43]. For example, Leaf area index (LAI) and chlorophyll (CHL) were
estimated using noisy-reduced UAV-based hyperspectral data, and these traits were then used to
predict wheat yield in Belm, northwestern Germany, achieving a coefficient of determination (R2)
of 0.88 [44]. Another example showed that wheat yield could also be effectively predicted using
190 narrow bands from UAV-based hyperspectral imagery before harvest in Minnesota [45]. Compared
to RGB data, hyperspectral datasets were demonstrated to be more effective in modeling the yield of
winter barley [43]. Besides, they were also compared to multispectral images in grain sorghum yield
prediction, and the narrow-band NDVIs extracted from the hyperspectral data were able to explain
more yield variability [42]. Recently, to facilitate the feature selection, a feature explorer interactive
system was developed to accelerate the exploration, ranking and selection of the derived hyperspectral
indices [46]. Though successful, these studies were all focused on grain crops. It is necessary to
investigate the potential of applying hyperspectral imaging for modeling the forage yield.

In general, two types of models have been investigated for modeling the yield: process-based crop
simulation models and machine learning models. The crop models forecast yield by simulating the crop
growth, based on the known physiological characteristics of plants and a number of environmental
factors, and representative alfalfa simulation models include SIMED [47], ALSIM [48], ALFALFA
1.4 [49], ALF2LP [50], and the DSSAT-CROPGRO-Perennial Forage model, which can be adapted to
alfalfa [51]. Although successful, these models typically require a large number of input data related
to crop cultivar, management practices and soil conditions which are often difficult to obtain [52].
Moreover, the calibration of these mechanistic models can be challenging due to the complexity of
physiological processes.

In contrast, machine learning approaches aim to develop an empirical relationship between the
independent variables with the yield, and thus have the advantage of forecasting the yield without
relying on the specific parameters for individual crops [53]. In this context, various machine learning
models have been developed for crop yield prediction, such as linear regression [54], support vector
regression (SVR) [55] and artificial neural networks [56]. However, these approaches all depend on
single predictive models, and are subject to overfitting with limited training data [57]. In the machine
learning community, there is an increasing interest in ensemble techniques, which use a group of base
learners for training and combine the predictions from all of them for final predictions. Ensemble
models usually result in better predictive performance compared to single models [58,59]. Bagging,
boosting and stacking are three commonly used ensemble learning strategies. Bagging generates base
learners in parallel using training subsets obtained from bootstrap sampling, and boosting trains a
sequence of base models by exploiting their dependences [60]. Random forest (RF) and stochastic
gradient boosting are representative bagging and boosting approaches respectively, and their superior
performance in yield prediction has been demonstrated in several studies [53,61]. Unlike bagging and
boosting which typically combine homogeneous learners, stacking tends to employ heterogeneous
learners and leverage differences between them to improve the final accuracy. The diversity condition
guarantees the complementary information provided by difference models, which is also the key for
ensuring that the incorrect results are unlikely to achieve by all the base learners. To the best of our
knowledge, the stacking-based ensemble strategy has not been applied in yield prediction, though
several successful applications have been observed in machine learning and computer vision [62,63].

This study was designed to conduct in-season alfalfa yield prediction using UAV-based
hyperspectral images. The specific objectives included (1) investigate the potential of using
hyperspectral images for alfalfa yield prediction, (2) establish an ensemble learning model to
improve prediction performance, and (3) evaluate the model adaptability under different machinery
compaction treatments.
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2. Materials and Methods

2.1. Experimental Design and Field Data Collection

The research trials were conducted at the Arlington Agricultural Research Station in Wisconsin in
2019 (Figure 1). Wisconsin is located in the Great Lakes region which is in the north-central part of
the United States, and Arlington is located in south-central Wisconsin. Arlington has a continental
climate characterized by warm and humid summers and cold and dry winters. In 2019, the annual
total precipitation reached 115 cm, and the monthly average temperature was highest at 23 ◦C in July
and lowest at −9 ◦C in April [64].
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Figure 1. Experimental site location.

The study area shown in Figure 1 consists of two adjacent alfalfa fields, namely F635 and F650.
There was one block in F635 where alfalfa was seeded in May, 2018, and three blocks in F650 with
alfalfa newly planted in May, 2019. Each block contained 21 plots with a size of 24 m2 (W-E 4 m ×
N-S 6 m), and it was randomly designed with seven levels of machinery traffic treatments and three
replications for each. In each treatment, a certain number of traffic passes were used, with each pass
simulating a particular machinery operation, such as mowing, raking, merging, baling, chopping and
transporting. For treatments T1–T6, a swather was used to simulate both silage and hay harvest by
applying weight and pressure to the plant and soil. For example, three passes applied in T2 and T5
were used to simulate mowing, merging (or raking) and harvest operation, and the delayed second
and third passes in T5 were because more time was required for alfalfa to dry in hay harvest. The T7
was a control group without any traffic applied. The detailed descriptions for the seven treatments are
presented in Table 1. The two alfalfa fields were harvested four times from June to September, and the
dry matter yield data acquired and processed from the last two harvests which occurred in August
and September were used in this study.



Remote Sens. 2020, 12, 2028 5 of 24

Table 1. Machinery traffic treatments applied to alfalfa plots in 2019.

Treatment Name Simulated Traffic Description

T1 Single Pass Silage/Hay Mower
One application of compaction

immediately after harvest covering the
entire plot.

T2 Three Passes Silage Mower, merger, forage
harvester

Three applications of compaction. One
immediately after harvest, one 24 h after
harvest, and one 26 h after harvest. Full

plot application.

T3 Five Passes Silage
Mower, merger, rake,

forage harvester,
transport vehicle

Five applications of compaction. One
immediately after harvest, two passes
24 h after harvest, and two passes 26 h

after harvest. Full plot application.

T4 Simulated Silage
producer

Mower, merger or rake,
forage harvester,
transport vehicle

Two-wheel tracks applied within the
plot. One pass immediately after

harvest, one pass 24 h after harvest, and
two passes 26 h after harvest.

T5 Three Passes Hay Mower, merger or rake,
bailer

Three applications of compaction. One
immediately after harvest, one 48 h after
harvest, and one 72 h after harvest. Full

plot application.

T6 Five Passes Hay Mower, merger, rake,
bailer, transport vehicle

Five applications of compaction. One
immediately after harvest, two passes
48 h after harvest, and two passes 72 h

after harvest. Full plot application.

T7 Zero Passes No No machine traffic applied.

2.2. Hyperspectral Image Acquisition and Pre-Processing

The hyperspectral data were acquired by a Headwall nano-hyperspec push-broom scanner.
This sensor covers 273 spectral bands ranging between 400–1000 nm with a bandwidth of 2.2 nm [65].
Each scan line contains 640 pixels with a pixel pitch of 7.4 µm. A VectorNav (VN)−300 GNSS/INS
navigation system was integrated with the hyperspectral camera to directly provide the position and
orientation of the camera for data geo-referencing. The DJI Matrice 600 Pro (M600) was used as the
UAV platform. Furthermore, a DJI Ronin MX three-axis gimbal stabilizer was used on the M600
airframe. By using the gimbal, the sensor can maintain a nadir view regardless of airframe orientation.
This capability can help stabilize the hyperspectral camera during the flight, leading to improved
data geometry quality. Two UAV flights were conducted on July 25 and August 19 in 2019 under
cloudless weather conditions. The UAV was flying at a speed of 5 m/s from an altitude of 40 m, and
the corresponding ground sampling distance (GSD) was 2.5 cm.

The acquired hyperspectral data were geometrically and radiometrically corrected. For the
geometric correction, the data were orthorectified using the Headwall SpectralView software based on
the GNSS/INS data from the VN-300. The raw hyperspectral data were first converted to radiance
using SpectralView then calibrated to reflectance using the calibration panels with 56%, 32% and 11%
reflectivity. Within each plot, the background (e.g., shadow and soil) were removed by thresholding the
NIR band at 800 nm wavelength (the pixels with reflectance values below 30% were removed in this
study). The filtering strategy was adopted because vegetation typically has much higher reflectance
values in the NIR region than the background [66,67]. Similar to previous studies [45,68], the 30%
threshold was empirically determined. The alfalfa reflectance data were extracted for each plot and
noisy bands below 442 nm and beyond 957 nm were removed.
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2.3. Spectral Feature Extraction and Reduction

The acquired hyperspectral data contain hundreds of spectral bands, and many adjacent bands are
highly correlated. To reduce the data dependency, instead of using all the original bands, we extracted
the narrow-band indices as spectral features and used them for modeling the alfalfa yield in this study.
Specifically, we explored 80 published indices (Table 2), with each derived from two or more spectral
bands. The indices included simple ratio index (SRI), NDVI, REPI, chlorophyll absorption ratio index,
modified versions of these indices such as mND705 and combination of them such as TCARI/OSAVI1.
Although the calculations are varied, most wavebands used were in the red and NIR ranges.

Table 2. Summary of vegetation indices (Vis) explored in this study.

Full Form Index Formula Reference

Normalized difference vegetation
index

NDVI[471,584] (R584 − R471)/(R584 + R471) [69]
NDVI[521,689] (R689 − R521)/(R689 + R521) [69]
NDVI[550,760] (R760 − R550)/(R760 + R550) [70]
NDVI[667,740] (R740 − R667)/(R740 + R667) [71]
NDVI[670,800] (R800 − R670)/(R800 + R670) [72]
NDVI[705,750] (R750 − R705)/(R750 + R705) [73]
NDVI[710,750] (R750 − R710)/(R750 + R710) [74]
NDVI[710,780] (R780 − R710)/(R780 + R710) [75]
NDVI[717,732] (R750 − R710)/(R750 + R710) [76]
NDVI[717,770] (R732 − R717)/(R732 + R717) [76]
NDVI[720,820] (R820 − R720)/(R820 + R720) [77]
NDVI[734,750] (R750 − R735)/(R750 + R734) [76]

Physiological reflectance index PRI[528,567] (R528 − R567)/(R528 + R567) [78]
PRI[531,570] (R570 − R531)/(R531 + R570) [79]

Normalized difference red edge NDRE (R790 − R720)/(R790 + R720) [80]

Modified normalized difference
vegetation index mND705 (R750 − R705)/(R750 + R705 − 2R445) [81]

Green normalized difference
vegetation index GNDVI (R750 − R550)/(R750 + R550) [82]

Renormalized difference
vegetation index RDVI (R800 − R670)/

√
R800 + R670) [83]

Normalized difference cloud index NDCI (R762 − R527)/(R762 + R527) [84]

Curvature index CI R675 × R690/R6832 [85]

-
Datt1 (R850 − R710)/(R850 − R680)

[86]Datt2 R850/R710
Datt3 R754/R704

Double Difference index DD (R749 − R720) − (R701 − R672) [87]

Double peak canopy nitrogen
index DCNI (R720 − R700)/[(R700 − R670)(R720 −

R670 + 0.03)] [88]

- Gitelson1 1/R700 [89]
Gitelson2 (R750-R800/R695-R740) − 1 [90]

-

Carte1 R695/R760

[91]Carte2 R605/R760
Carte3 R710/R760
Carte4 R695/R670

Simple ratio index

SRI[533,565] R565/R533 [92]
SRI[550,750] R750/R550 [93]
SRI[550,760] R760/R550 [70]
SRI[560,810] R810/R560 [94]
SRI[629,734] R734/R629 [71]
SRI[660,810] R810/R660 [95]
SRI[670,700] R700/R670 [96]
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Table 2. Cont.

Full Form Index Formula Reference

Simple ratio index

SRI[533,565] R565/R533 [92]
SRI[670,800] R800/R670 [88]
SRI[675,700] R675/R700 [97]
SRI[680,800] R800/R680 [81]
SRI[690,752] R752/R690 [93]
SRI[700,750] R750/R700 [93]
SRI[705,750] R750/R705 [73]
SRI[706,755] R706/R755 [76]
SRI[708,747] R747/R708 [98]
SRI[710,750] R750/R710 [99]
SRI[717,741] R741/R717 [98]
SRI[720,735] R735/R720 [98]
SRI[720,738] R738/R720 [98]

Modified simple ratio index

mSRI[550,780] R780/R550-1 [100]

mSRI[710,780] R780/R710-1 [101]
mSRI[720,750] R750/R720-1 [100]

mSR705 (R750 − R445)/(R705 − R445) [86]
mSR (R750/R705 − 1)/(

√
R750/R705 + 1

)
[102]

New vegetation index NVI1 (R777 − R747)/R673 [103]
NVI2 R705/(R717 + R491) [92]

Enhanced vegetation index EVI 2.5(R800 − R670)/(R800 − 6R670 −
7.5R475 + 1) [104]

Transformed Chlorophyll
absorption in reflectance index

TCARI1
3[(R700 − R670) − 0.2(R700 −

R550)(R700/R670)] [105]

TCARI2
3[(R750 − R705) − 0.2(R750 −

R550)(R750/R705)] [106]

Modified chlorophyll absorption
ratio index

MCARI1 [(R700 − R670) − 0.2(R700 −
R550)](R700/R670) [15]

MCARI2
[(R750 − R705) − 0.2(R750 −

R550)](R750/R705) [106]

MCARI3
[(R750 − R710) − 0.2(R750 −

R550)](R750/R715) [106]

Optimized soil-adjusted
vegetation index

OSAVI1
(1 + 0.16)(R800 − R670)/(R800 + R670 +

0.16) [107]

OSAVI2
(1 + 0.16)(R750 − R705)/(R750 + R705 +

0.16) [106]

Combined TCARI/OSAVI TCARI/OSAVI1 TCARI1/OSAVI1 [105]
TCARI/OSAVI2 TCARI2/OSAVI2 [106]

Combined MCARI/OSAVI MCARI/OSAVI1 MCARI1/OSAVI1 [106]
MCARI/OSAVI2 MCARI2/OSAVI2 [106]

Triangular greenness index TGI −0.5[190(R670-R550) − 120(R670 −
R480)] [108]

Modified triangular vegetation
index MTVI 1.2[1.2(R800 − R550) − 2.5(670 − R550)] [109]

MERIS terrestrial chlorophyll
index

MTCI1 (R750 − R710)/(R710 − R680) [110]
MTCI2 (R754 − R709)/(R709 − R681)

Spectral polygon vegetation index SPVI 0.4 × [3.7(R800 − R670) − 1.2|R550 −
R670|] [111]

Red edge position index REP1
700 + 45[(R670 + R780)/2 − R700]/(R740

− R700) [69]

REP2
700 + 40[(R670 + R780)/2 − R700]/(R740

− R700) [112]

-
VOG1 R740/R720

[113]VOG2 (R734 − R747)/(R715 + R726)
VOG3 (R734 − R747)/(R715 + R720)

Optimal vegetation index Viopt (1 + 0.45)(R8002 + 1)/(R670 + 0.45) [114]

In supervised learning, feature selection is typically applied prior to the model development
to reduce the data dimensionality, especially when the training set is small. The recursive feature
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elimination (RFE) approach was a widely applied wrapper feature selection model and performed
well in previous studies [46,115,116]. Therefore, it was adopted for feature selection in this study.
It was performed iteratively by: (1) running an estimator to determine the initial feature importance
scores; (2) removing the feature with the lowest importance score; and (3) assigning the ranking
to the removed variable according to its removing order. This procedure was recursively repeated
until the rankings were determined for all the input features. We implemented the entire process
twice independently using two distinct estimators including SVR [117] and RF [118] to calculate the
initial feature importance in step (1), and the final rankings were calculated based on the results from
SVR-RFE and RF-RFE.

2.4. Ensemble Model Development

To enhance the prediction performance, an ensemble model was proposed based on a stacking
strategy including the following two steps: (1) train and apply multiple machine learning models
independently; and (2) combine multiple prediction results via a linear regressor [119]. It is important
to select appropriate base learners to develop a successful ensemble model, and diversity is a critical
condition, as the similarity between different models must be minimized for providing complementary
information [60]. SVR, K-nearest neighbors (KNN) and RF are commonly used machine learning
approaches with distinct principles, and their predictive ability for crop yield prediction have been
assessed by many studies [120–122]. Therefore, we used these three models as the base learners and a
brief description for each algorithm is presented below.

SVR is a supervised learning model characterized by the usage of kernels [123]. In SVR, the
variables are firstly transformed from the original space to another space through a kernel function.
Then, a linear function is determined to minimize errors between training data and the insensitive
loss function. KNN regression assumes that similar samples exist in close proximity in the feature
space. As an instance-based learning method, it estimates the response of an unknown sample by
averaging the responses from K nearest neighbors in the training set. RF regression is a combination
of multiple regression trees following the classical top-down procedure [124]. Each tree is generated
using a bootstrap sample and learned in parallel and independent of each other [125,126]. The final
estimation of RF is determined by averaging the predictions of all the independent trees.

In this study, we adopted a five-fold cross validation strategy [4,127,128] to create out-of-sample
predictions. To test the robustness of all models, 50 repetitions of five-fold cross validation were
performed, resulting in a total of 250 experiments (Figure 2). The R2, root mean square error (RMSE)
and mean absolute deviation (MAE) were used to evaluate the model performance, and the equations
of the indices are shown in Equations (1)–(3).

R2= 1 −

∑n
i=1 (y i − ŷi

)2∑n
i=1 (y i − y)2 (1)

RMSE =

√√
1
n

n∑
i=1

(y i − ŷi

)2
(2)

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷi

∣∣∣ (3)

where n is the number of samples, yi and ŷi represent the observed and the predicted yields of sample
i, y and denotes the mean of observed yield. Models with higher R2 and lower values of RMSE and
MAE indicating better performance in prediction. In addition, a paired sample t-test, was adopted to
evaluate the significance of the accuracy improvement of the ensemble model [129].
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3. Results

3.1. Yield Statistics and Spectral Profiles

Moisture contents were measured for each plot with an average of around 80% and a standard
deviation (STD) of 2%, and the dry matter yield was used in this study. The yields varied at the
two harvests, with an average of 2102.267 kg/ha in the August harvest, and a reduced average of
1042.149 kg/ha in September. The detailed yield statistics for each machinery treatment are shown
in Table 3. Among different treatments, similar patterns were observed in both harvests. In general,
compaction treatments with more traffic passes were associated with lower yields. For example, T1
and T7 had higher yields than others, and this is because T1 was simulating the pure mower operation
using a single traffic pass, and T7 is the control group without any traffic compaction. In contrast, T6
had the lowest yield due to the most severe compaction. Moreover, earlier machinery treatments were
found to have a less negative impact on the yield, by comparing the simulated silage (T2 and T3) and
hay (T5 and T6) harvests.

Table 3. Yield statistics for seven machinery wheel traffic treatments.

Harvesting Time Treatment Mean (kg/ha) Max. (kg/ha) Min. (kg/ha) STD (kg/ha)

August T1 2256.319 3170.609 1333.134 450.226
T2 2172.798 2495.764 1066.013 383.013
T3 2074.944 2447.826 1282.724 324.696
T4 2150.558 2752.013 923.186 500.141
T5 2037.878 2729.032 1436.424 373.870
T6 1808.317 2453.262 1095.171 357.561
T7 2215.053 2686.530 1328.933 359.785

September T1 1282.477 1528.347 1012.144 172.232
T2 1077.874 1441.119 295.044 304.434
T3 951.109 1262.709 510.520 230.796
T4 1171.774 1475.466 386.226 284.171
T5 868.823 1182.646 678.304 170.256
T6 701.285 1049.704 256.495 228.078
T7 1241.705 1439.142 562.412 228.325

To investigate the spectrum changes under compaction, the average alfalfa spectrum under each
treatment (T1–T6) was compared with the control group (T7) which had no compaction applied, and the
comparison results including the mean and standard deviation are shown in Figure 3. Similar to
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other green vegetation, alfalfa plants generally have low reflectance in blue (450–500 nm) and red
regions (600–700 nm) due to the chlorophyll absorption and high reflectance in NIR (800–900 nm) due
to the scattering in spongy mesophyll [130]. In addition, we found that more compaction resulted in
lower reflectance values in NIR due to the plant stress. For example, under the most severe wheal
compaction, T6 showed the lowest average reflectance values within the NIR region (750–1000 nm),
and the least spectra overlap with the control group T7.
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3.2. Feature Importance

The 80 VIs were ranked using the RFE strategy described in Section 2.3. The ranking results
from one experiment are shown in Table 4, and the ranking statistics over the 250 experiments are
shown in Figure A1. Across the 250 experiments, the VIs ranked in the top and bottom were relatively
stable. For example, Datt1 and MCARI1 mostly ranked highly, and they were originally developed
for estimating the chlorophyll content of eucalyptus and corn leaves [15,86]. Two indices, MTCI1 and
MTCI2, designed for a medium resolution imaging spectrometer [110] also had a stable and satisfactory
performance. Out of all the 80 indices, there were 27 three-band or four-band VIs, and about 20 of
them ranked in the top 40. This is likely because the appropriate combination of multiple bands
could provide more spectral information. We also noticed that four integrated indices, including
TCARI/OSAVI1, TCARI/OSAVI2, MCARI/OSAVI1 and MCARI/OSAVI2, ranked in the top 40, with
TCARI/OSAVI1 and MCARI/OSAVI1 appearing in the top 20. This indicates that different types of VIs
can be combined to complement each other for achieving enhanced performance. In addition, several
narrow-band NDVIs, which have been widely adopted for estimating vegetation properties [68], were
also effective in modeling the alfalfa yield.

3.3. Model Comparison and Performance

To further explore the high-performing features, we iteratively added the top one index into
the machine learning model and updated the model training performance until all the 80 indices
were included. The training accuracies obtained by the three base models (SVR, KNN and RF) were
calculated, and the results of one experiment are shown in Figure 4. Among all the 250 experiments,
RF performed the best, followed by KNN. As more features were included, the accuracies of all models
improved at first and then remained stable after around 25 features were included. Therefore, we
finally used the top 25 features for the ensemble model development.
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Table 4. VI ranking using recursive feature elimination (RFE).

Feature Ranking Feature Ranking

Datt1 1 SPVI 41
MCARI1 2 mSRI[720,750] 42
MTCI2 3 VOG1 43

MCARI/OSAVI1 4 Carte2 44
MTCI1 5 TCARI1 45
REP2 6 MCARI2 46

PRI[531,570] 7 Carte1 47
SR[675,700] 8 NVI1 48

NDVI[521,689] 9 NDVI[471,584] 49
NDVI[717,732] 10 NDVI[667,740] 50

REP1 11 Datt2 51
TCARI/OSAVI1 12 mSR 52

NVI2 13 RDVI 53
TCARI2 14 SRI[560,810] 54

TCARI/OSAVI2 15 NDVI[710,750] 55
NDVI[720,820] 16 SRI[710,750] 56

Carte4 17 Datt3 57
NDVI[734,750] 18 mND705 58

VOG3 19 mSRI[710,780] 59
PRI[528,567] 20 Gitelson1 60

VOG2 21 OSAVI1 61
NDRE 22 SRI[705,750] 62

SRI[533,565] 23 Gitelson2 63
EVI 24 NDVI[717,770] 64

SRI[720,735] 25 SRI[670,800] 65
SRI[629,734] 26 NDCI 66

DD 27 Carte3 67
MCARI/OSAVI2 28 SRI[660,810] 68

CI 29 OSAVI2 69
SRI[670,700] 30 mSRI[550,780] 70

MTVI 31 NDVI[705,750] 71
SRI[700,750] 32 NDVI[710,780] 72

NDVI[550,760] 33 SRI[550,750] 73
MCARI3 34 SRI[706,755] 74

SRI[717,741] 35 SRI[550,760] 75
DCNI 36 SRI[708,747] 76
TGI 37 mSR705 77

NDVI[670,800] 38 SRI[680,800] 78
SRI[720,738] 39 GNDVI 79

Viopt 40 SRI[690,752] 80

We trained all the four models (three base models, and one ensemble model) introduced in
Section 2.4 using both the full and selected features on training samples, and evaluated the model
performance on test samples. The test accuracies obtained from the 250 experiments are shown in
Table 5. Satisfactory accuracies with an R2 of more than 0.822 were achieved by all the approaches,
demonstrating the effectiveness of these models in modeling alfalfa yield. The ensemble model
outperformed all the base approaches, achieving an R2 of 0.874 using the reduced features and an R2

of 0.854 using the full features. Regarding the feature selection, the accuracies were improved for all
the approaches. We also compared the results between using the selected VIs and the derivatives of
full bands (Table A1). Again, the ensemble model outperformed other base models regardless of the
features adopted, which further proved the effectiveness of the ensemble model proposed in this study.
Besides, with the ensemble model, higher accuracies were achieved by using the selected VIs than
using first or second derivatives of full bands. Moreover, we used a paired sample t-test to evaluate
whether the methods are statistically different on the reported R2. Specifically, six statistical tests were
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performed, and the results are shown in Table 6. The t-test was conducted between the ensemble
model with each of the three base models (RF, SVR and KNN). The results showed that the accuracy
improvement obtained by the ensemble model was statistically significant under both selected and full
feature conditions.
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Table 5. Test accuracies including mean and standard deviation of random forest (RF), support vector
regression (SVR), K-nearest neighbors (KNN) and ensemble model in predicting the alfalfa yield.

Feature Model R2 RMSE (kg/ha) MAE (kg/ha)

Selected features

RF
0.833 252.912 185.317

(0.052) (36.243) (27.611)

SVR
0.842 247.593 185.869

(0.042) (36.269) (27.128)

KNN
0.850 241.430 183.557

(0.035) (31.183) (25.998)

Ensemble
0.874 220.799 164.787

(0.034) (32.169) (24.673)

Full features

RF
0.822 261.552 191.602

(0.054) (35.718) (28.109)

SVR
0.829 257.408 191.590

(0.042) (30.260) (23.569)

KNN
0.822 262.907 198.293

(0.044) (35.417) (28.847)

Ensemble
0.854 237.906 175.575

(0.036) (32.152) (25.300)

Table 6. Results from the paired sample t-test.

Feature Model t p-Value

Selected features
Ensemble vs. RF 18.355 0.000

Ensemble vs. SVR 16.890 0.000
Ensemble vs. KNN 17.059 0.000

Full features
Ensemble vs. RF 15.935 0.000

Ensemble vs. SVR 13.957 0.000
Ensemble vs. KNN 20.255 0.000

The agreement between the observed and predicted yield for each model using the selected
features is shown in Figure 5. Among the four models, the best agreement was found in the ensemble
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model (Figure 5d), while the worst agreement was observed in RF (Figure 5a). Moreover, in Figure 5,
two clusters could be identified and they respectively corresponded to the yields obtained from the
two harvests. Again, comparing to the other approaches, the ensemble model demonstrated better
agreement in both clusters.
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3.4. Model Adaptability for Different Compaction Treatments

We then further evaluated the model adaptability under different compaction treatments. To this
end, we calculated the prediction accuracies for all seven treatments, and the results are shown in
Table 7. In general, all models achieved good results and they performed particularly well under T1,
T2, T3 and T5 treatments, with all the R2 above 0.831. Additionally, we noticed that the ensemble
model provided decent estimation accuracy under all the treatments, and it was superior to other base
models in most cases. Although the accuracy varied across treatments, the ensemble model performed
relatively stable, with an R2 of more than 0.778 under each treatment, demonstrating its stronger
adaptability across treatments. Moreover, it is worth mentioning that the ensemble performance can
be directly affected by the base learners. For example, it achieved better performance in T3 and T5
when the base models showing higher accuracies.

Finally, the detailed yield modeling performance for each treatment was shown in the scatter plots
in Figure 6. It is clear to see that T1 and T7 had higher yields than others, while T6 had the lowest yield
due to the most severe machinery compaction. Among the four models, the ensemble model again
showed the best agreement between the observed and the predicted yield under most treatments, and
strong performance was exhibited under T3 and T5 treatments. Additionally, the figure also showed
that both the high and low yields obtained from the two harvests could be well modeled using the
ensemble approach.
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Table 7. Performance of RF, SVR, KNN and ensemble model in yield prediction for alfalfa under seven
machinery compaction treatments.

Model Metrics T1 T2 T3 T4 T5 T6 T7

RF R2 0.863 0.852 0.908 0.762 0.880 0.731 0.759
RMSE (kg/ha) 221.319 249.490 190.915 310.648 226.252 327.119 281.774
MAE (kg/ha) 170.618 192.834 132.685 216.692 154.630 229.184 196.870

SVR R2 0.845 0.889 0.871 0.702 0.906 0.801 0.784
RMSE (kg/ha) 235.242 215.894 225.637 347.210 200.501 281.140 266.777
MAE (kg/ha) 166.508 168.490 172.771 254.350 162.607 228.031 185.659

KNN R2 0.851 0.831 0.900 0.850 0.891 0.774 0.745
RMSE (kg/ha) 230.624 266.081 198.819 246.571 216.394 299.885 289.737
MAE (kg/ha) 185.806 222.928 151.893 172.299 166.075 240.781 210.967

Ensemble R2 0.873 0.869 0.918 0.839 0.914 0.837 0.778
RMSE (kg/ha) 212.574 234.157 180.469 255.500 192.307 254.738 270.159
MAE (kg/ha) 159.047 185.788 126.512 191.685 142.453 191.387 189.763

4. Discussion

4.1. Selection of the Vegetation Indices

In this study, we explored 80 hyperspectral narrow-band indices, and approximately 95% of these
indices used the red-edge wavelengths in their calculations. To reduce the data dimensionality, all the 80
VIs were ranked based on the REF approach, and several representative indices were discussed below.

First, we noticed that three-band or four-band indices ranked importantly and about six of
them were among the top ten indices. This is likely because the multi-band indices tend to provide
more spectral information and improve the robustness and precision in assessing plant traits [92].
For example, Datt1, MCARI1, MTCI1 and MTCI2 are four three-band indices, and they were relatively
stable in the top ten among the 250 experiments. Their strong performance is mainly due to their
sensitivity to the chlorophyll content which is strongly correlated with the photosynthetic capacity of
the plants [131]. In previous studies, integrated indices such as MCARI/OSAVI and TCARI/OSAVI
were found to outperform TCARI and MCARI, and this is mainly because combining the MCARI
or TCARI with the optimized SAVI (OSAVI) can help reduce the background effects [15]. However,
this pattern was not observed in this study as the background pixels (e.g., soil) were already excluded
in the data pre-processing step. Another multi-band index REP is calculated using four narrow bands
to ascertain the position of maximum slope in the red-NIR region, and its potential of estimating
biomass has been identified in previous studies [76,132,133]. Two REP indices (REP1 and REP2) were
considered in this study, and both were selected for the model development.

In addition, various narrow-band NDVIs have been evaluated by researchers for estimating
different plant traits [68,88,111,134] and several of them were also demonstrated to be effective in
modeling alfalfa yield in this study. Another common index is the physiological reflectance index
(PRI), which is typically used for indicating the photosynthetic efficiency [78]. In this study, PRI[531,570]

also ranked importantly and was selected for the model development. Besides, we also studied 19
SRIs with multiple band combinations, and only about three of them were selected as predictors, and
none of them ranked in the top ten. This is likely because the information provided by SRIs are already
included in other VIs with more spectral bands or complex mathematical structures.

4.2. Advantages of the Ensemble Model

Instead of using a single machine learning model, we developed an ensemble model by combining
three base learners in this study. The results showed that the ensemble model outperformed the
other approaches significantly when using both all the VIs and the selected ones. With the selected
features, the ensemble method obtained 0.874 in R2, 220.799 kg/ha in RMSE and 164.787 kg/ha in MSE,
achieving an increase of 2.8%, 8.5%, and 10.2%, respectively, in comparison with the KNN which was
the best performing single model. In addition, we further evaluated the model performance on seven



Remote Sens. 2020, 12, 2028 16 of 24

compaction treatments. Again, the ensemble model yielded more adaptive and satisfactory results
than base models with R2 exceeding 0.778 on all the subsets.

As demonstrated previously, in ensemble learning, sufficiency and diversity are the two main
principles in selecting the base models [135]. It means that each base learner should possess good
predicting capabilities, but at the same time, the dependence between the models must be minimized for
providing complementary information [60]. This is reasonable because the ensemble method combines
the individual predictions, and therefore the performance of each base model can affect the final
fusion results. On the other hand, limited additional information would be gained by combining the
high-performance models which are similar. Based on the two conditions, we employed SVR, KNN and
RF which have completely different training mechanisms, as the base learners in this study, and their
parameters were optimized strategically for achieving the best performance. The experimental results
further demonstrate the effectiveness of the base model selection.

4.3. Effects of Machinery Compaction

Previous studies showed that alfalfa is one of the most susceptible forages to machinery traffic
which may lead to a reduction in the next cutting yield. In this study, seven levels of compaction
were explored, and two main insights were found from the experiments. First, we noticed that the
yield loss is positively correlated with the severity of the compaction. The more traffic passes were
applied, the greater the observed yield loss. This is mainly because the soil compaction caused by
the wheel traffic can lead to reduced macropore air permeability and water infiltration, and thus
negatively affect the plant root development and lower the yield [12]. Second, the later application
of machinery traffic practices tends to increase the yield loss, which could be noticed by comparing
the yields from hay and silage harvests. This is because delayed wheel traffic is more likely to cause
physical damage to regrowth shoot and therefore decrease the yield [9]. Similar findings were also
noticed in other studies [9–11,135,136]. For example, wheel traffic was found to be a contributing factor
to alfalfa yield loss in a field study conducted in Nevada, and fewer and earlier machinery treatments
were recommended to reduce the damage [10]. A field experiment carried out in Auchincruive,
Scotland, also demonstrated that both frequent and delayed wheel passes caused reductions in herbage
yield [135].

5. Conclusions

Alfalfa is an important forage crop in the U.S., and it plays an important role in the food supply
chain as feedstock for animals. Pre-harvest insight to yield can help optimize management practices.
In this study, we developed an ensemble-based machine learning model for alfalfa yield prediction
using UAV-based hyperspectral imagery. The narrow-band hyperspectral indices were extracted
and the most important ones were selected for the model development. The results showed that the
ensemble model outperformed other base models, and the highest accuracy was achieved when using
the reduced features. In addition, we examined the model performance under different compaction
treatments, and again, the best performance was achieved by the ensemble model, indicating its
stronger adaptability in comparison with other approaches. Moreover, we also found that the yield loss
is positively correlated with the compaction severity, while earlier compaction after harvest can help
reduce the impact. Our study demonstrated the efficacy of using hyperspectral images for modeling
alfalfa yield, and for future work, we will incorporate environmental factors, such as climate variables
and soil properties, into the modeling process and to further enhance the prediction performance.

Author Contributions: Conceptualization, L.F., Z.Z., J.D. and B.L.; Data Collection, Y.M., Z.Z., P.W., J.D. and B.L.;
Methodology, L.F. and Z.Z.; Validation, L.F., Y.M., and Z.Z.; Writing—original draft, L.F. and Z.Z.; Writing—review
and editing, L.F., Z.Z., Y.M. and Q.D., P.W., J.D. and B.L. All authors have read and agreed to the published version
of the manuscript.

Funding: Support for this research was provided by the National Institute of Food and Agriculture, United States
Department of Agriculture, under ID number WIS03026.



Remote Sens. 2020, 12, 2028 17 of 24

Acknowledgments: This work was partly supported by the China Scholarship Council (NO.201906270096).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Appendix
Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 23 

 

Appendix 

 

Figure A1. Statistics of VI rankings in 250 experiments. 

Table A1. Test accuracies of RF, SVR, KNN and ensemble model in predicting the alfalfa yield. 

Feature Model R2 RMSE (kg/ha) MAE (kg/ha) 

First derivatives of full bands 

RF 0.848 249.623 187.215 

SVR 0.845 251.307 198.938 

KNN 0.823 267.859 210.981 

Ensemble 0.869 231.887 180.150 

Second derivatives of full bands 

RF 0.820 270.324 209.001 

SVR 0.814 275.077 217.356 

KNN 0.800 283.308 217.900 

Ensemble 0.836 258.841 201.951 

First and second derivatives of full bands 

RF 0.856 241.011 181.244 

SVR 0.854 243.162 195.826 

KNN 0.803 281.108 217.741 

Ensemble 0.874 226.434 177.255 

Selected VIs 

RF 0.833 252.912 185.317 

SVR 0.842 247.593 185.869 

KNN 0.850 241.430 183.557 

Ensemble 0.874 220.799 164.787 

References  

1. Radović, J.; Sokolović, D.; Marković, J. Alfalfa-most important perennial forage legume in animal 

husbandry. Biotechnol. Anim. Husb. 2009, 25, 465–475. 

2. United States Department of Agriculture National Agricultural Statistics Service. Available online: 

https://www.nass.usda.gov/ (accessed on 3, March, 2020). 

3. Andrzejewska, J.; Contreras-Govea, F.E.; Albrecht, K.A. Field prediction of alfalfa (Medicago sativa L.) fibre 

constituents in northern Europe. Grass Forage Sci. 2014, 69, 348–355. 

4. Noland, R.L.; Wells, M.S.; Coulter, J.A.; Tiede, T.; Baker, J.M.; Martinson, K.L.; Sheaffer, C.C. Estimating 

alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Res. 2018, 222, 189–

196. 

5. Summers, C.G.; Putnam, D.H. Irrigated Alfalfa Management for Mediterranean and Desert Zones; UCANR 

Publications: Davis, CA, USA, 2008; Volume 3512. 

6. Gląb, T. Effect of Soil Compaction on Root System Morphology and Productivity of Alfalfa (Medicago sativa 

L.). Pol. J. Environ. Stud. 2011, 20, 1473–1480. 

7. Harris, P.A.; Ellis, A.D.; Fradinho, M.J.; Jansson, A.; Julliand, V.; Luthersson, N.; Santos, A.S.; Vervuert, I. 

Feeding conserved forage to horses: Recent advances and recommendations. Animal 2017, 11, 958–967. 

8. Manyawu, G. Principles of Silage Making; International Livestock Research Institute (ILRI): Nairobi, Kenya, 

2016. 

9. Undersander, D.; Cosgrove, D. Alfalfa Management Guide; American Society of Agronomy Crop Science 

Society of America Soil Science: Madison, WI, USA,2011. 

10. Schmierer, J.; Putnam, D.; Undersander, D.; Liu, J.; Meister, H. Wheel Traffic in Alfalfa–What do We Know? 

What Can We Do About It? In Proceedings of the National Alfalfa Symposium, San Diego, CA,USA, 13-15 

December, 2004; pp. 13–15. 

Figure A1. Statistics of VI rankings in 250 experiments.

Table A1. Test accuracies of RF, SVR, KNN and ensemble model in predicting the alfalfa yield.

Feature Model R2 RMSE (kg/ha) MAE (kg/ha)

First derivatives of
full bands

RF 0.848 249.623 187.215
SVR 0.845 251.307 198.938
KNN 0.823 267.859 210.981

Ensemble 0.869 231.887 180.150

Second derivatives
of full bands

RF 0.820 270.324 209.001
SVR 0.814 275.077 217.356
KNN 0.800 283.308 217.900

Ensemble 0.836 258.841 201.951

First and second
derivatives of full

bands

RF 0.856 241.011 181.244
SVR 0.854 243.162 195.826
KNN 0.803 281.108 217.741

Ensemble 0.874 226.434 177.255

Selected VIs

RF 0.833 252.912 185.317
SVR 0.842 247.593 185.869
KNN 0.850 241.430 183.557

Ensemble 0.874 220.799 164.787

References
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