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Abstract: Global Navigation Satellite System (GNSS) coordinate time series contains obvious
seasonal signals, which mainly manifest as a superposition of annual and semi-annual oscillations.
Accurate extraction of seasonal signals is of great importance for understanding various geophysical
phenomena. In this paper, a Weighted Nuclear Norm Minimization (WNNM) is proposed to extract
the seasonal signals from the GNSS coordinate time series. WNNM assigns different weights to
different singular values that enable us to estimate an approximate low rank matrix from its noisy
matrix. To address this issue, the low rank characteristics of the Hankel matrix induced by GNSS
coordinate time series was investigated first, and then the WNNM is applied to extract the seasonal
signals in the GNSS coordinate time series. Meanwhile, the residuals have been analyzed, obtaining
the estimation of the uncertainty of velocity. To demonstrate the effectiveness of the proposed
algorithm, a number of tests have been carried out on both simulated and real GNSS dataset.
Experimental results indicate that the proposed scheme offers preferable performances compared
with many state-of-the-art methods.

Keywords: GNSS coordinate time series; weighted nuclear norm minimization; seasonal signal;
noise analysis

1. Introduction

Global Navigation Satellite System (GNSS) coordinate time series often appear in many
geophysical and geodetic applications. In addition to long-term trends and noise, GNSS coordinate
time series usually shows significant seasonal variations that mainly manifest as annual and
semi-annual oscillations [1–4]. A common research task in GNSS time series post-processing is
the extraction of the seasonal signal from a GNSS observable time series. Accurate extraction is helpful
not only for improving the reliability of GNSS time series, but is also vital for the studies of various
geophysical phenomena, such as the seasonal variations of crustal movement and the velocity of plate
movement [5–10].

To retrieve the seasonal signals of GNSS coordinate time series, several methods have been
investigated by numerous scholars during the past several decades [3,4,11–18]. A detailed review can
be found in [19]. The common method for devising a linear model is least-squares (LS) fitting [14],
however, LS lacks random changes in the estimation of signals, and thus only seasonal signals with
constant amplitude can be obtained [3], which is not consistent with the true seasonal variations.
It has been suggested in several other studies to extract the periodic signals by data-driven methods,
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such as wavelet decomposition (WD) [13] and singular spectral analysis (SSA) [11,16,20]. Recently,
Klos et al. compare and contrast these algorithms under different noise levels [17]. The results show
that promising results have been achieved with these methods, however, most of these methods
have several limitations. For instance, for WD, the wavelet basis function and the number of wavelet
decomposition layers must be specified in advance, which will greatly affect the effect of wavelet
denoising [13]. Although SSA can be used to effectively extract seasonal signals from univariate
coordinate time series in the time domain without any prior information, it does not perform well
when an inappropriate lag window is selected [11].

Weighted Nuclear Norm Minimization (WNNM) is a representative approach for solving low
rank matrix approximation (LRMA) problems, which has been widely used in many fields, such as
image denoising [21,22], image completion and repainting [23], seismic data denoising [24] and MIMO
channel estimation [25]. WNNM outline several commonly used low-rank matrix methods, such as
NNM, which can actually be viewed as a special counterpart of WNNM in which the weight vector
of WNNM is set the same. Recently, Zha et al. compared and analyzed WNNM and NNM from the
perspective of group sparse representation (GSR), mathematically proving that WNNM is more flexible
than NNM for many practical problems [26]. In summary, rational weight will enhance the WNNM
model for achieving better estimation. As is well known, seasonal signals in GNSS time series have
been represented by sums of sinusoids with annual and semi-annual cycles [3]. More recently, Cai et al.
proved that the Hankel matrix induced by the harmonic model has low-rank characteristics [27]. To the
best of our knowledge, however, there has not been any work in which WNNM has been applied to
GNSS time series. In this context, to differentiate these seasonal components in GNSS coordinate time
series, the WNNM is applied in this study to investigate the possibility of extracting seasonal signals
from GNSS coordinate time series. To circumvent this problem, the low-rank characteristics of the
Hankel matrix induced by GNSS coordinate time series was investigated. Furthermore, the WNNM
method was utilized to extract signals from the GNSS coordinate time series under different noise
models and noise levels, and the results are compared with several state-of-the-art methods. Finally,
the noise (i.e., the so-called residuals) was analyzed, and the corresponding parameters were calculated.

The rest of this paper is organized as follows. In Section 2, the GNSS time series model used in this
study is briefly introduced, and the detailed WNNM methodology analyzed. The efficiency of WNNM
in extracting the seasonal signals from simulated GNSS time series is tested in Section 3. Section 4
applies the WNNM to real GNSS data and compares the proposed algorithm with state-of-the-art
algorithms. Section 5 concludes the paper.

2. Model and Method

2.1. Model

In general, the GNSS coordinate time series of a single component of a single station are routinely
modeled as follows [2,4,11,28–30]:

y(t) = x(t) + ε(t)

= α + βt +
2

∑
j=1

aj(t) cos(2π f jt) + bj(t) sin(2π f jt) + ε(t),
(1)

where t(t = 0, 1, · · · , n− 1) represents the epoch, y(t), x(t), ε(t) represent the observation, signal and
noise at the t epoch, written as yt, xt, εt for simplicity, respectively. α, β are the initial displacement and
velocity, respectively. aj(t), bj(t)(j = 1, 2) represent the instantaneous amplitudes, which are assumed
to consist of a mean value (that is, aj, bj, j = 1, 2) plus a random component. f1, f2 corresponding to
the annual and semi-annual frequencies, respectively. The optimal stochastic model of the observation
noise for most stations has been considered as a combination of white noise (WN) and flicker noise
(FN) [1,4,28–32].
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Cai et al. proved that the Hankel matrix induced by the harmonic model has low-rank
characteristics [27]. Inspired by this, the Hankel matrix induced by GNSS coordinate time series
having a low-rank property was further investigated in this paper. A brief conclusion is given here via
Theorem 1. Before stating the theorem, a linear operator H is presented to map the vector z ∈ <n to
the Hankel matrix as follows [27]:

[Hz]ij = zi+j, ∀ i ∈ 0, · · · , n1 − 1, j ∈ 0, · · · , n2 − 1, (2)

where Hz ∈ <n1×n2 , the index of the vector and matrix is from 0 and [·]ij represents the (i, j)-th entry
of matrix. In order to explore the low-rank characteristics of the Hankel matrix induced by the GNSS
time series, let et be the new noise term, including the observation noise εt and the random variations
of the seasonal signal. In this case, xt is still used to represent the signals, including the trend term and
seasonal signals with amplitude aj, bj. Thus, the Hankel matrices induced by yt, xt and et are easy to
obtain via Equation (2), denoted as Y , X,E, then Equation (1) can be expressed as

Y = X + E, (3)

where

Y =


y0 y1 . . . yn2−1

y1 y2 . . . yn2
...

...
. . .

...
yn1−1 yn1 . . . yn

 , X =


x0 x1 . . . xn2−1

x1 x2 . . . xn2
...

...
. . .

...
xn1−1 xn1 . . . xn

 , E =


e0 e1 . . . en2−1

e1 e2 . . . en2
...

...
. . .

...
en1−1 en1 . . . en

 ,

and n1 = n− n2 + 1 < n
2 . For the Hankel matrix X above, it is proved that it is of low rank using the

following theorem.

Theorem 1. Suppose GNSS coordinate time series is a regular sample in the time domain, i.e., t ∈ Z+, and the
seasonal signal in xt is a mixture of r sinusoids with amplitude aj,bj, the corresponding Hankel matrix is
X ∈ <n1×n2 , then the following inequality

rank(X) ≤ 2r + 2,

holds, where rank(X) denotes the rank of X, and r is the order of seasonal signals.

Proof. See Appendix A for details.

Theorem 1 indicates that the Hankel matrix X is low rank with a certain condition. Thanks to
this useful conclusion, we can study the problem of seasonal signal extraction in GNSS coordinate
time series from a new perspective. In this paper, a WNNM based method, which exploiting the low
rank characteristic of the Hankel matrix, is proposed for extracting the seasonal signal from the GNSS
coordinate time series.

2.2. Weighted Nuclear Norm Minimization

The low-rank characteristic of the Hankel matrix induced by the GNSS time series is proved
in the preceding section. In this subsection, our intention is to use the WNNM to investigate
the GNSS coordinate time series to obtain the seasonal signals therein, leading to the following
WNNM-based model:

min
X
‖Y − X‖2

F + ‖X‖w,∗, (4)
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where, ‖X‖w,∗ = ∑i=1 |wiσi(X)| represents weighted nuclear norm, σi(X) denotes the i-th singular
value of X, wi ≥ 0 is a weight assigned to σi(X), and w = [w1, · · · , wn]T is the weight vector.
Although the weight vector benefits the corresponding WNNM-based model for achieving better
estimation. The difficulty of solving a WNNM model, however, is that it is non-convex in general cases,
and thus the traditional approaches used for NNM problems are no longer applicable. To address
this issue, a weighted nuclear norm proximal (WNNP) operator strategy has been investigated in
detail in [23]. If Y ∈ <n1×n2 , n1 ≥ n2, let Y = UΣV T be the singular value decomposition (SVD) of

Y , where Σ =

[
diag(σ1, σ2, · · · , σn)

O

]
, following Theorem 1 in [23], the global optimum solution of

Equation (4) can be solved as follows:

X̂ = UD̂V T , (5)

where

D̂ =

[
diag(d1, d2, · · · , dn)

O

]
,

and d1, d2..., dn is the solution of the following convex optimization problem:

min
d1,d2,...,dn

n

∑
i=1

(σi − di)
2 + widi, s.t. d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. (6)

More specifically, Equation (6) is a quadratic programming problem with linear constraints, which
imply that Equation (6) can be solved by off-the-shelf convex optimization solvers. As introduced by
Corollary 1 in [23], the global solution of Equation (6) is

d̂i = max(σi −
wi
2

, 0), (7)

provided the weights are sorted in a non-descending order.
Following Equations (5)–(7), it can be seen that Equation (4) can be equivalently converted to

a quadratic programming problem with a linear constraint that is a convex optimization problem,
and thus the solution of Equation (4) can be obtained using off-the-shelf convex optimization tool [33].
Obviously, the weight vector, as the key parameter of WNNM-based models, plays a crucial role in the
success of WNNM. Following the suggested setting of [23], wi =

C
√

n
σi(X)+ε

is set herein, where C is a
compromising constant that is set by experience. n is the size of the matrix, σi(X) represent the i-th
singular value of X and ε is a small positive constant to avoid dividing by zero. Let Y = UΣV T be

the SVD of Y , where Σ =

[
diag(σ1(Y), σ2(Y), · · · , σn(Y))

O

]
, and σi(Y) is the i-th singular value of Y .

Based on the relationship between the singular value of Y and the constant C, the singular value of
estimated matrix X∗ can be obtained. If ε is small enough to make ε < min{

√
C, C

σ1(Y)
} hold (ε is set to

10−6 in this paper), by using the weight vector wi =
C
√

n
σi(X)+ε

, the closed-form solution of Equation (4) is

X∗ = UΣ̃V T , (8)

where

Σ̃ =

[
diag(σ1(X∗), σ2(X∗), · · · , σn(X∗))

O

]
,

and

σi(X∗) =

{
0 c2 < 0

1
2 (c1 +

√
c2) c2 ≥ 0

,
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where c1 = σi(Y)− ε, c2 = (σi(Y) + ε)2 − 4C.
The procedure of WNNM is summarized in Algorithm 1.

Algorithm 1 WNNM for GNSS time series
Input: Noisy time series y, the constant C, and ε.
Output: Extracted time series x̂

1: Construct the Hankel matrix Y via Equation (2);
2: Let Y = UΣV T be the SVD of Y , where Σ = diag(σ1(Y), σ2(Y), · · · , σn(Y));
3: for i = 1 : n do

4: c1 = σi(Y)− ε, c2 = (σi(Y) + ε)2 − 4C
5: if c2 ≥ 0 then

6: σi(X∗) = c1+
√

c2
2

7: else

8: σi(X∗) = 0
9: end if

10: end for
11: while ε < min{

√
C, C

σ1(Y)
} do

12: ωi =
C

σi(X∗)+ε
, Σ̃ = diag(σ1(X∗), · · · , σn(X∗))

13: and then X∗ = UΣ̃V T

14: end while
15: return x̂ = H†X∗, where H† is the inverse transform of H.

3. Results of Simulation

To validate the effectiveness of the proposed algorithm, it is tested on the simulated GNSS
coordinate time series here. The WNNM-based algorithm is compared with several state-of-the-art
methods, including moving ordinary least squares (MOLS)[17], WD [13] and SSA [11]. Following the
previous studies, it can be found that these methods have achieved outstanding performance. Here,
the similar strategies used in these studies are adopted. For MOLS, the time series is divided into small
segments, each of which is 2-years long and overlap each other for 1-year. For WD, the seventh and
eighth Meyer’s wavelets are also used, as in [17], to model the seasonal signals. For SSA, Klos et al.
analyzed the relationship between the lag window and the noise level, found that longer windows
(3-years) produce better performance in the presence of higher noise levels, smaller windows (2-years)
behave for low noise levels [17]. In this study, this method was also used to select the appropriate
lag window.

To make the simulated time series more reasonable, GNSS time series is generated via Equation (1),
where the seasonal signals are amplitude modulated. In all of the experiments, the parameters are
set to α = 10 mm, β = 5 mm/yr. The mean amplitude of the annual and semi-annual signals is set as
3 and 2, respectively. The variations of the stochastic part of aj(t) and bj(t) are set to have standard
deviations of 1.0 and 0.5, respectively. To quantitatively evaluate the performance, the reliability of
WNNM is evaluated in terms of trend uncertainty, noise spectral index, noise amplitude and misfit.
The trend uncertainty refers to the variance of the velocity estimation, which can be calculated by the
general formulas (29)–(31) in [34]. k is the spectral index, representing the slope under the logarithm
of the power spectral density (PSD) of the noise. Misfit represents the standard deviation between the
signals estimated with a certain method and the signal that was simulated. To facilitate comparison of
the performance of competing methods, first the effectiveness of the proposed WNNM-based method
under the “FN” was verified. However, the optimal noise model of GNSS time series is well described
as a combination of WN and FN, and thus the proposed WNNM-based method has also been verified
under “WN+FN”. To distinguish the different noises, σw and σf are used to represent the amplitude of
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WN and FN, respectively. In the following section, two cases will be discussed. The first case is that
the noise model is pure FN, and in the other case a WN is added back into the synthetic time series.
In each case, two different signal models, with or without a long-term trend, are considered separately.

3.1. Case 1: Pure FN

In this subsection, the performance of the proposed algorithm on the simulated time series,
which was corrupted by the pure FN, is investigated. Following the method presented in the preceding
section, the WNNM-based and competing methods were implemented, and the results are shown
in Figure 1, which depicts the signals extracted by different methods for low noise levels, that is,
1 mm/yr−

k
4 . The original GNSS time series is also plotted. It can be seen that the WNNM-based

method, as well as the other competing methods, can achieve good performance in extracting the
signals from the original GNSS coordinate time series, either in the case of without trend or with a
linear trend.

(a) (b)

Figure 1. Comparison between extracted signal and original Global Navigation Satellite System (GNSS)
time series, where σf = 1 mm/yr−

k
4 . Black scatter shows GNSS observed time series, black solid

line represents the simulated GNSS time series and green, cyan, blue and red lines represent signals
extracted by applying moving ordinary least squares (MOLS), wavelet decomposition (WD), singular
spectral analysis (SSA) and Weighted Nuclear Norm Minimization (WNNM), respectively. (a) Without
trend and (b) with a linear trend.

To compare the performance of the WNNM-based method with the other methods from the
point of view of frequency, the residuals were also analyzed using maximum likelihood estimation
(MLE) [7,28,29,35,36]. The PSD of residuals obtained by applying various methods are shown in
Figure 2, and the PSD of original GNSS time series and synthetic noise are also plotted for comparison.
As shown in Figure 2, the WNNM-based approach, as well as the other methods, can extract the
signals from GNSS time series. The lower power-spectrum curve of WD may be due to the fact that
the method absorbs some power, which is also shown in several previous studies.

To validate the results from a quantitative point of view, the corresponding parameters of the
residuals are calculated and the results are summarized in Table 1, where the last row, “Actual”,
shows the actual spectral index, noise amplitude and trend uncertainty of the simulated noise used
in this subsection. As can be seen in Table 1, for a lower noise level, the misfit of the WNNM-based
method is significantly lower than that of other methods, especially when the long-term trend is
removed. Furthermore, the spectral indices of other methods are generally closer to 0, which may be
due to the absorption of some colored noise in the process of extracting seasonal signals. This is also
verified in Figure 2. As can be seen from Figure 2, the residual of WNNM is closest to the synthetic
noise, while the residuals of several other methods are lower than that of synthetic noise, especially at
the annual and semi-annual epoch.
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(a) (b)

Figure 2. The power spectral density (PSD) of the original signal and residual time series estimated
by different strategies, where σf = 1 mm/yr−

k
4 . The horizontal axis is frequency and the unit is cycle

per year (cpy), and the vertical axis is power. The gray solid line represent the original time series,
the black solid line is the synthetic noise and cyan, blue, yellow and red represents residuals estimated
by applying MOLS, SSA, WD and WNNM, respectively. (a) Without trend and (b) with a linear trend.

Table 1. Mean results of trend uncertainty, spectral index, noise amplitude and misfit estimated from
500 simulations under different strategies, where σf = 1 mm/yr−

k
4 .

Method

Without Trend With Trend

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

MOLS 0.017 −0.04 1.10 0.21 0.019 −0.06 1.25 0.21
WD 0.017 −0.03 1.18 0.29 0.017 −0.01 1.15 0.30
SSA 0.032 −0.62 0.90 0.13 0.018 −0.05 1.21 0.22

WNNM 0.041 −0.67 1.05 0.13 0.021 −0.31 0.94 0.20

Actual 0.067 −1 1.00 \ 0.067 −1 1.00 \
Results of WNNM algorithm are highlighted in bold.

Although the WNNM-based method achieves a better estimation compared to the other methods
under low noise level (i.e., σf = 1 mm/yr−

k
4 ), further work must be done, as the noise in a real

GNSS series is usually not very small. To evaluate the performance of the WNNM-based method
under different noise levels, its performance when a higher noise level is employed was further
verified (i.e., σf = 10 mm/yr−

k
4 ) [17]. As with the higher noise levels, the signals extracted using

various methods and the corresponding parameters of the residuals are given in Figure 3 and Table 2,
respectively. The corresponding PSD were presented in Figure 4. It can be observed that the PSD
of residuals show an obvious downward trend at the annual and semi-annual epoch. Among them,
WNNM is the most gentle, followed by MOLS and SSA, which indicate that WNNM can achieve a
better performance in extracting signals.

From the experimental results, it can be seen that, with increasing noise level, the performance
of all methods used in this paper decreased. More specifically, when the long-term trend is removed,
the performance of the WNNM-based approach is slightly better compared to that of MOLS, WD and
SSA. Meanwhile, WNNM can achieve a good performance as the other competing methods, even when
a linear trend is added back into the GNSS time series. In general, under pure FN model, the WNNM
method achieves excellent estimation at different noise levels. However, it is well known that noise
types in the GNSS coordinate time series are very complex, and it is not sufficient to consider the
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pure flicker noise. Based on this fact, the performance of the proposed WNNM-based method under
“WN+FN” is further verified in the next section.

(a) (b)

Figure 3. Comparison between extracted signal and original GNSS time series, where σf = 10 mm/yr−
k
4 .

Black scatter shows GNSS observed time series, black solid line represents the simulated GNSS time
series and green, cyan, blue and red lines represent signals extracted by applying MOLS, WD, SSA
and WNNM, respectively. (a) Without trend and (b) with a linear trend.

(a) (b)

Figure 4. The PSD of original signal and residual time series estimated by different strategies,
where σf = 10 mm/yr−

k
4 . The horizontal axis is frequency and the unit is cycle per year (cpy),

and the vertical axis is power. The gray solid line represent the original time series, the black solid line
is the synthetic noise and cyan, blue, yellow and red represents residuals estimated by applying MOLS,
SSA, WD and WNNM, respectively. (a) Without trend and (b) with a linear trend.
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Table 2. Mean results of trend uncertainty, spectral index, noise amplitude and misfit estimated from
500 simulations under different strategies, where σf = 10 mm/yr−

k
4 .

Method

Without Trend With Trend

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

MOLS 0.378 −0.78 8.14 1.71 0.360 −0.76 7.99 1.92
WD 0.287 −0.69 7.13 2.32 0.288 −0.69 7.15 2.33
SSA 0.392 −0.79 8.29 1.80 0.329 −0.73 7.67 2.05

WNNM 0.495 −0.89 8.90 1.39 0.452 −0.85 8.68 1.85

Actual 0.667 −1 10.00 \ 0.667 −1 10.00 \

3.2. Case 2: WN+FN

As described above, for most of the stations the optimal noise model of the GNSS time series is
well described as a combination of WN and FN [31]. To demonstrate the availability of WNNM in the
application of GNSS time series, the performance of WNNM under the combination of WN and FN is
discussed in this subsection. More specifically, Gaussian white noise with zero mean and variance 1 is
added to these GNSS time series.

As shown in Figure 5 and Table 3, the WNNM-based approach can also achieve better performance
under mixed noise. Compared with the other methods, the accuracy of WNNM-based method still
has some advantages. Further more, for lower noise level, the spectral indices of other methods
are generally closer to 0, which is consistent with the previous section. With the increasing of FN,
the WNNM-based method also has a good ability to extract seasonal signals from the GNSS time series.
The results are shown in Figure 6 and Table 4. Since the PSD of residuals is similar to those shown in
Figures 2 and 4, we omit it here for brevity.

Experimental results indicate that the seasonal signals extracted by the WNNM method are more
similar to the synthetic seasonal signals with smaller misfit under different noise models. Compared
with the other methods, the power spectrum curve of residuals obtained by using WNNM method are
also more similar to the power spectrum curve of simulated noise. In summary, it can be concluded
that the WNNM-based method proposed in this paper can achieve good performance under different
noise levels, whether the noise model is pure FN or a mixture of WN and FN. Compared with the case
in which a linear trend is added, the WNNM-based method can achieve better estimation by removing
the trend firstly.

Table 3. Mean results of trend uncertainty, spectral index, noise amplitude and misfit estimated from
500 simulations under different strategies, where σw = 1 mm, σf = 1 mm/yr−

k
4 .

Method

Without Trend With Trend

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

MOLS 0.024 −0.13 1.41 0.24 0.017 −0.02 1.16 0.24
WD 0.021 −0.08 1.32 0.32 0.015 −0.04 1.06 0.34
SSA 0.022 −0.10 1.36 0.24 0.016 −0.01 1.13 0.24

WNNM 0.050 −0.78 1.07 0.16 0.046 −0.76 1.03 0.24

Actual 0.050 –0.83 1.00 \ 0.050 –0.83 1.00 \
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Table 4. Mean results of trend uncertainty, spectral index, noise amplitude and misfit estimated from
500 simulations under different strategies, where σw = 1 mm, σf = 10 mm/yr−

k
4 .

Method

Without Trend With Trend

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Misfit
(mm)

MOLS 0.351 −0.76 7.81 1.96 0.357 −0.76 7.94 1.96
WD 0.263 −0.66 6.85 2.38 0.281 −0.68 7.09 2.38
SSA 0.307 −0.71 7.39 2.01 0.326 −0.73 7.59 2.01

WNNM 0.514 −0.92 8.80 1.67 0.448 −0.85 8.60 1.95

Actual 0.583 −0.92 10 \ 0.583 −0.92 10 \

(a) (b)

Figure 5. Comparison between extracted signal and original GNSS time series, where σw = 1 mm,
σf = 1 mm/yr−

k
4 . Black scatter shows GNSS observed time series, black solid line represents the

simulated GNSS time series and green, cyan, blue and red lines represent signals extracted by applying
MOLS, WD, SSA and WNNM, respectively. (a) Without trend and (b) with a linear trend.

(a) (b)

Figure 6. Comparison between extracted signal and original GNSS time series, where σw = 1 mm,
σf = 10 mm/yr−

k
4 . Black scatter shows GNSS observed time series, black solid line represents the

simulated GNSS time series and green, cyan, blue and red lines represent signals extracted by applying
MOLS, WD, SSA and WNNM, respectively. (a) Without trend and (b) with a linear trend.
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4. Application to Real Data

In this section, the WNNM is applied to analyze the real GNSS coordinate time series. Nine
GNSS stations in China are selected to assess the WNNM-based method as well as the competing
methods. The locations and relevant information about each station are shown in Figure 7 and Table 5,
respectively. Most of the information in Table 5, such as epochs of offset, are taken from information
provided by Scrips Orbit and Permanent Array Center (SOPAC (http://sopac-ftp.ucsd.edu/pub/
timeseries/)). The last column in Table 5 shows the optimal noise model (ONM) of each site in the Up
component, which follows from [37] (please refer to [37] for details).

The “Detrend” GNSS coordinate time series used in this study are available from SOPAC.
The longest one is SHAO station (6049 d) and the shortest is LHAS station (2790 d). There are
two main reasons for choosing these data. First, SOPAC uses ”st_ f ilter” software to combine the
solutions obtained by the Jet Propulsion Laboratory (JPL) (using GIPSY software) and by the SOPAC
(using GAMIT/GLOBK software) analysis center, to eliminate errors due to software and processing
strategies and finally obtain a unified, self-consistent solution (a detailed combination strategy is
presented in Section 2.2 [19]). Second, the data do not contain long-term trends, and the ONM of
most of these sites is “WN+FN” [37]. Although the ONM of some stations (such as URUM, GUAO
and WUHN) are not “WN+FN”, but they were still retained to verify the robustness of our method
under different noise models. Although the Detrend time series was adopted, before the experiments
were started, a standard pre-processing procedure, such as missing data interpolation [38] and offsets
extraction [39], were also performed and the gross error, if existing, were removed using the 3σ

criterion [29,40]. Owing to the fact that this is not the focus of this study, the data pre-processing
strategies will not be discussed in detail, interested readers are referred to the relevant literature.

Figure 7. Locations of GNSS sites used in this study, which was prepared using the GMT.

Table 5. Locations of GNSS sites used in this study.

Site Longitude Latitude Span Numbers Epochs of Offset Miss Rate ONM (U)

BJFS 115.8924 39.6086 1999.8041–2019.7795 5500
2010.3877, 2011.1904
2015.9027, 2016.2309 24.63% WN+FN

KUNM 102.7971 25.0295 1998.7685–2013.0836 3892 2004.9850 25.58% WN+FN
LHAS 91.1039 29.6573 1995.3740–2007.0699 2790 \ 34.69% WN+FN
SHAO 121.2004 31.0996 1995.0233–2019.2133 6049 2011.1904 31.54% WN+FN
TCMS 120.9873 24.7979 2002.7481–2019.5356 4270 \ 31.46% WN+FN
TNML 120.9873 24.7979 2002.7481–2019.2370 3949 \ 35.48% WN+FN
URUM 87.6000 43.8079 1998.8342–2018.9575 5044 2008.7172 25.13% WN+PL

WUHN 114.3572 30.5316 1993.3630–2016.7363 5464
2002.0699, 2002.8315
2011.2233, 2013.8808 26.54% WN+BPPL

GUAO 87.1773 43.4711 2002.4534–2016.2008 3134 \ 34.04% WN+BPPL

http://sopac-ftp.ucsd.edu/pub/timeseries/
http://sopac-ftp.ucsd.edu/pub/timeseries/
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As can be seen from Table 5, most of these sites have approximately 30% missing data, and to
minimize the impact of missing data, the analysis was limited to 2000 days for each site. Figure 8
shows the time series before and after pre-processing with BJFS and TNML sites as examples. It can be
seen that before the pre-treatment there are missing and outliers in the coordinate time series, and after
pre-processing these data are well suppressed. Following the methods introduced in the preceding
section, the pre-processed data from the nine sites were analyzed. Here, the graphical results of three
directions (North, East and Up) of BJFS station are shown. The time series extracted by applying
MOLS, WD, SSA and WNNM are shown in Figure 9a–c, respectively, and the observed GNSS time
series is also illustrated for comparison. It can be seen from Figure 9a–c that the WNNM method can
accurately extract seasonal signals in all directions of this site. As shown in Figure 9b, there is still a
slight linear trend in the East component, for which the LS should be first used to remove this trend.
The results of removing the linear trend term are shown in Figure 9d. Obviously, the time-varying
amplitude periodic signals of BJFS station obtained by the four methods are close to each other.

Results of trend uncertainty, spectral index and noise amplitude estimated from the GNSS time
series of BJFS are provided in Table 6. Different from the simulation, the true signal in the real data
is unknown, it is impossible to calculate the corresponding misfit as in the simulation experiment.
Here, the validity is verified by calculating the correlation coefficients between the signals extracted by
various methods. Results of BJFS station are shown in Table 7. As can be seen from Table 7, the highest
correlation coefficient with WNNM was MOLS, followed by SSA. The correlation coefficients between
the signals obtained by each method are relatively large. For the three components, the correlation
coefficients are about 0.99. The results indicate that the four methods mentioned in this paper are all
effective in estimating the actual periodic signals with time-varying amplitude.

(a) (b)

Figure 8. GNSS coordinate time series before and after pre-processing for BJFS and TNML stations.
(a) The series which has been interpolated (red line), and the original series (black line) is also plotted;
(b) Two GNSS time series, where red line represents the time series after the outliers have been removed
and black line represents the original time series.

Table 6. Results of trend uncertainty, spectral index and noise amplitude estimated from the GNSS
time series of BJFS station under different strategies.

Method
North East Up

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

MOLS 0.4436 −1.3172 3.8570 0.6391 −1.3815 4.9550 1.6703 −1.3381 13.9940
WD 0.3567 −1.2500 3.4910 0.5611 −1.3422 4.6670 1.6771 −1.3393 14.0210
SSA 0.3890 −1.2776 3.6270 0.4166 −1.2500 4.0770 1.6238 −1.3296 13.8120

WNNM 0.4650 −1.3320 3.9380 0.6720 −1.3970 5.0670 1.7151 −1.3466 14.1540
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(a) (b)

(c) (d)

Figure 9. Results of BJFS station. (a) North component; (b) East component; (c) Up component and
(d) East component, but the trend have been removed by LS.

Table 7. Correlation coefficients between the extracting result of WNNM and results from MOLS, WD
and SSA for the North, East and Up components of BJFS.

North

MOLS WD SSA WNNM

MOLS 1
WD 0.9621 1
SSA 0.9666 0.9896 1

WNNM 0.9868 0.9624 0.9741 1

East

MOLS WD SSA WNNM

MOLS 1
WD 0.9095 1
SSA 0.9298 0.9051 1

WNNM 0.9574 0.8537 0.9279 1

Up

MOLS WD SSA WNNM

MOLS 1
WD 0.9860 1
SSA 0.9920 0.9962 1

WNNM 0.9935 0.9861 0.9917 1
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Moreover, processing schemes of the other sites are the same as that of BJFS, which will be
omitted due to space limitations. Similarly, the residuals obtained by various methods in all stations
were also analyzed. The results are presented in Table 8. According to the results, one can see that
the noise amplitude and noise spectral indices of different sites are different, and even different
directions of the same site have certain differences, which have been demonstrated and verified
by previous studies. The corresponding spectral indices for the North and East components were
estimated to vary between −1.0636 and −1.6248, −1.0859 and −1.5159, respectively. For the vertical
components, the spectral indices of the power-law process of the sites URUM, WUHN and GUAO
were estimated to range from −1.3459 to −1.6447, with a median of −1.4872. The spectral indices
of the remaining sites were estimated to be a mean of −1.1022, with the minimal and maximal
being, respectively, −1.3466 in BJFS and −0.7407 in LHAS. The amplitude of the residuals for the
North component varied from 1.60 mm/yr−

k
4 to 10.05 mm/yr−

k
4 with a median of 4.43 mm/yr−

k
4 ,

and from 2.65 mm/yr−
k
4 to 6.52 mm/yr−

k
4 with a median of 4.28 mm/yr−

k
4 for the East component.

The minimal and maximal amplitudes of the residuals of the vertical component are, respectively,
2.65 mm/yr−

k
4 and 28.73 mm/yr−

k
4 .

Mean values of trend uncertainty, spectral indices and noise amplitude estimated from the nine
stations are also provided in Table 9. As shown in Tables 8 and 9, for most stations, results estimated
by applying WNNM are not significantly different from the results obtained by the other methods.
Correlation coefficients of the seasonal signals for the Up component of the other eight stations are
also presented in Table 10. As shown in Table 10, the mean correlation coefficients between the signals
extracted by WNNM and those by MOLS, WD and SSA were 0.9223,0.9641 and 0.9711, respectively.
In addition, it is not hard to find that the correlation coefficients between MOLS and the other methods
are small at the URUM station. This is primarily due to the large changes during 2018, which leads to
the poor estimation of MOLS. Over all, the correlation between WNNM and the other methods was
largely that verified the effectiveness of WNNM method in extracting the seasonal signals. The results
of horizontal components are similar to these. We omit it here.

Table 8. Results of trend uncertainty, spectral index and noise amplitude estimated from the GNSS
time series of the other stations under different strategies.

Site Method
North East Up

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

KUNM

MOLS 0.5403 −1.2692 5.1130 0.6734 −1.3104 5.9260 1.4175 −1.1684 15.9820

WD 0.3862 −1.1670 4.3650 0.5635 −1.2564 5.4530 1.2566 −1.1314 15.0970

SSA 0.4086 −1.1844 4.4820 0.5505 −1.2495 5.3920 1.2674 −1.1341 15.1560

WNNM 0.5519 −1.2766 5.1550 0.6605 −1.3055 5.8630 1.3195 −1.1478 15.4130

LHAS

MOLS 0.1635 −1.1480 1.9090 0.2534 −1.1514 2.9420 0.1502 −0.8226 3.0180

WD 0.1243 −1.0636 1.6760 0.2048 −1.0859 2.6580 0.1159 −0.7407 2.6580

SSA 0.1308 −1.0793 1.7170 0.2047 −1.0861 2.6570 0.1206 −0.7534 2.7100

WNNM 0.1665 −1.1535 1.9260 0.2661 −1.1675 3.0050 0.1376 −0.7958 2.8860

SHAO

MOLS 0.9741 −1.4123 7.1450 0.7676 −1.3828 5.9370 0.9421 −1.2500 9.2200

WD 0.8581 −1.3743 6.7390 0.7161 −1.3619 5.7500 0.9414 −1.2500 9.2130

SSA 0.8663 −1.3771 6.7700 0.7124 −1.3604 5.7360 1.0464 −1.2833 9.6600

WNNM 1.0508 −1.4355 7.3900 0.8549 −1.4157 6.2320 0.9408 −1.2500 9.2070

TCMS

MOLS 0.5611 −1.3687 4.4510 0.4083 −1.3541 3.3250 0.6230 −1.1870 6.8030

WD 0.4971 −1.3323 4.2080 0.2916 −1.2500 2.8540 0.4834 −1.1087 6.0370

SSA 0.5185 −1.3450 4.2910 0.2910 −1.2500 2.8480 0.4949 −1.1164 6.1000

WNNM 0.6298 −1.4038 4.6910 0.4110 −1.3567 3.3310 0.6355 −1.1934 6.8630
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Table 8. Cont.

Site Method

North East Up

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

Trend
Uncertainty

( mm/yr)
k

σ

( mm/yr−
k
4 )

TNML

MOLS 0.3574 −1.2884 3.2700 0.2995 −1.2626 2.8670 0.2857 −0.9614 4.5710

WD 0.2943 −1.2291 2.9870 0.2631 −1.2225 2.7010 0.2663 −0.9393 4.4190

SSA 0.3048 −1.2398 3.0370 0.2627 −1.2222 2.6990 0.2410 −0.9088 4.2050

WNNM 0.3496 −1.2820 3.2350 0.3443 −1.3050 3.0590 0.2799 −0.9556 4.5210

URUM

MOLS 1.9938 −1.6179 10.0000 1.0745 −1.5159 6.5220 5.6630 −1.6241 28.0710

WD 1.8614 −1.5973 9.7060 0.9353 −1.4741 6.1310 6.0291 −1.6447 28.7380

SSA 1.8756 −1.5998 9.7340 0.8497 −1.4456 5.8670 4.3477 −1.5439 25.0540

WNNM 2.0304 −1.6248 10.0510 0.9936 −1.4936 6.2840 4.5277 −1.5565 25.4860

WUHN

MOLS 0.3617 −1.2291 3.6710 0.4067 −1.2921 3.6970 2.1608 −1.3929 16.4130

WD 0.2908 −1.1622 3.3140 0.3580 −1.2533 3.4830 2.2150 −1.4000 16.6110

SSA 0.2905 −1.1622 3.3110 0.3597 −1.2549 3.4900 1.8447 −1.3459 15.2420

WNNM 0.3332 −1.2052 3.5250 0.4157 −1.2992 3.7310 1.9788 −1.3676 15.7290

GUAO

MOLS 0.1713 −1.2190 1.7700 0.5416 −1.4204 3.9150 2.6531 −1.4944 16.7550

WD 0.2454 −1.4750 1.6060 0.4770 −1.3820 3.6950 2.5835 −1.4867 16.5480

SSA 0.1480 −1.1702 1.6630 0.4670 −1.3758 3.6580 2.6268 −1.4918 16.6680

WNNM 0.1612 −1.1970 1.7300 0.5469 −1.4239 3.9280 2.6674 −1.4977 16.7430

Table 9. Mean results of the trend uncertainty, spectral indices and noise amplitudes estimated from a
set of nine stations.

Component Method Trend Uncertainty ( mm/yr) k σ (mm/yr−k/4)

North

MOLS 0.6185 −1.3189 4.5762
WD 0.5460 −1.2945 4.2324
SSA 0.5480 −1.2706 4.2924

WNNM 0.6376 −1.3234 4.6268

East

MOLS 0.5627 −1.3412 4.4540
WD 0.4856 −1.2920 4.1547
SSA 0.4572 −1.2772 4.0471

WNNM 0.5739 −1.3516 4.5000

Up

MOLS 1.7295 −1.2488 12.7586
WD 1.7298 −1.2268 12.5936
SSA 1.5126 −1.2119 12.0674

WNNM 1.5780 −1.2346 12.3336

Table 10. Correlation coefficients of extracting signals for the Up component of the other eight stations
under different strategies.

Site Correlation Coefficients Site Correlation Coefficients

KUNM

Method MOLS WD SSA WNNM

TNML

MOLS WD SSA WNNM

MOLS 1 1
WD 0.9586 1 0.9823 1
SSA 0.9625 0.9945 1 0.9844 0.9927 1

WNNM 0.9693 0.9879 0.9917 1 0.9895 0.9908 0.9942 1

LHAS

MOLS 1

URUM

1
WD 0.9468 1 0.5664 1
SSA 0.9593 0.9945 1 0.5581 0.9826 1

WNNM 0.9738 0.9741 0.9846 1 0.5969 0.9552 0.9557 1
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Table 10. Cont.

Site Correlation Coefficients Site Correlation Coefficients

Method MOLS WD SSA WNNM MOLS WD SSA WNNM

SHAO

MOLS 1

WUHN

1
WD 0.9821 1 0.9346 1
SSA 0.9889 0.9965 1 0.9368 0.9897 1

WNNM 0.9871 0.9852 0.9913 1 0.9450 0.9885 0.9890 1

TCMS

MOLS 1

GUAO

1
WD 0.8186 1 0.9553 1
SSA 0.8286 0.9925 1 0.9723 0.9912 1

WNNM 0.9446 0.8540 0.8751 1 0.9723 0.9774 0.9875 1

5. Discussion and Conclusions

GNSS coordinate time series contains obvious seasonal variations. In recent years, the previously
published papers show that the harmonic model with time-varying amplitude can better model the
seasonal oscillations. As a result of the time-varying amplitude, the traditional least square method is
no longer tried. The data-driven methods, such as WD and SSA, are another main branch along this
line of research. These methods can extract the seasonal signal accurately without knowing the prior
information of the signal, but they also have some shortcomings. The WNNM method utilizes the low
rank characteristics of Hankel matrix formed by GNSS time series. Different from the SSA that simply
drops the smaller singular value, which will lose some useful information, WNNM shrinks the singular
values according to their amplitude, which makes it more flexible in dealing with practical problems.

In this paper, seasonal signals were extracted from the GNSS coordinate time series by using the
WNNM method. This is based on the fact that the Hankel matrix constructed by GNSS time series is
low rank. To work around this issue, the Hankle matrix induced by the GNSS coordinate time series is
investigated, the results demonstrate that it has low-rank characteristic under certain conditions. Then,
a WNNM-based method was therefore proposed to extract the signals from the GNSS observations.
The capability of WNNM approach to extract seasonal signals from GNSS time series was explored by
extensive experiments that have been carried out on simulation time series. The results indicate that
the seasonal signals extracted by WNNM are closer to the simulated signals, and smaller misfits were
obtained under different noise models and noise levels. Whereas, seasonal signals extracted by WD
method may be contaminated by colored noise more or less. In the application of real GNSS coordinate
time series, the estimates of trend uncertainty, spectral indices and noise amplitude after applying
WNNM are not significantly different from the results obtained by the other methods. This implies that
the WNNM as well as other methods, can accurately extract seasonal signals in GNSS observations.
As shown in Tables 7 and 10, it can be found that the highest correlation with WNNM is SSA, with a
mean of 0.9734 for the Up component. For most of the nine sites, the correlation between WD and
SSA is also larger, which may be due to the fact that they absorb some colored noise when extracting
seasonal signals. The specific reasons are for further study. To conclude, the WNNM-based method is a
reliable method for extracting the seasonal signals in GNSS coordinate time series. The WNNM method
is not only beneficial to better study the noise in the geodetic time series, but also provides strong
support for further improving the estimation accuracy of site velocities and their uncertainty estimates.
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Appendix A. Proof of Theorem 1

Proof. The signals in GNSS coordinate time series is:

x(t) = α + βt +
r

∑
j=1

aj cos(2π f jt) + bj sin(2π f jt)), (A1)

where α, β are the initial displacement and velocity, respectively. r is the order of seasonal signals, aj,bj
are the mean value of amplitudes. The seasonal signals can be expressed as a complex form by using
Euler’s formula, that is:

x(t) = α + βt +
q

∑
j=1

dje
i2πλjt, (t = 0, 1, · · · , n− 1), (A2)

where,
q = 2r,

Aj =
√

a2
j + b2

j ,

φj = −arctan(
bj

aj
),

i =
√
−1,

dj =

{
1
2 Aje

iφj , j = 1, 2, · · · , r,
1
2 Aj−re−iφj−r , j = r + 1, r + 2, · · · , q,

λj =

{
f j, j = 1, 2, · · · , r,
− f j−r, j = r + 1, r + 2, · · · , q.

Denote x(t) = xt(t = 0, 1, · · · , n− 1), the corresponding Hankel matrix X can be constructed by using
Equation (2), i.e.,

X =


x0 x1 . . . xn2−1

x1 x2 . . . xn2
...

...
. . .

...
xn1−1 xn1 . . . xn

 , (A3)

where n1 = n− n2 + 1. The following matrices can be obtained by splitting the matrix X:

X = T + S, (A4)

where

T =


α α + β . . . α + β(n2 − 1)

α + β α + 2β . . . α + β n2
...

...
. . .

...
α + β(n1 − 1) α + βn1 . . . α + β n



http://sopac-ftp.ucsd.edu/pub/timeseries/
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S =



q
∑

j=1
dj

q
∑

j=1
dje

i2πλj . . .
q
∑

j=1
dje

i2πλj(n2−1)

q
∑

j=1
dje

i2πλj
q
∑

j=1
dje

i2πλj2 . . .
q
∑

j=1
dje

i2πλjn2

...
...

. . .
...

q
∑

j=1
dje

i2πλj(n1−1)
q
∑

j=1
dje

i2πλjn1 . . .
q
∑

j=1
dje

i2πλjn


,

where T , S are defined as trend matrix, seasonal matrix, respectively.
For matrix T , owing to the GNSS coordinates time series are sampled uniformly in days, that is,

the value of t is a positive integer, so the T can be expressed as follows:

T ∼


α α + β . . . α + (n2 − 1)β

β β . . . β

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,

it is easy to know that rank(T) = 2;

For matrix S, define yk = ei2πλk for k = 1, ..., q, Cai et al. proved that S is low rank by using the
vandermonde decomposition of Hankel matrix [27], that is S = ELDET

R, where,

EL =


1 1 . . . 1
y1 y2 . . . yq
...

...
. . .

...
yn1−1

1 yn1−1
2 . . . yn1−1

q

 ,

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dq

 ,

ER =


1 1 . . . 1
y1 y2 . . . yq
...

...
. . .

...
yn2−1

1 yn2−1
2 . . . yn2−1

q

 .

If all xt is distinct, and q ≤ min(n1, n2), the EL,ER are both full rank matrixs, rank(S) = q, when all
dj 6= 0. In summary, rank(X) = rank(T + S) ≤ rank(T) + rank(S) = q + 2� min{n1, n2} hold, thus,
the hankel matrix induced by GNSS coordinate time series is low rank.
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