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Abstract: The influence of different urbanization levels on land surface temperature (LST) has
attracted extensive attention. Though both are world megacities, Shanghai and Tokyo have gone
through different urbanization processes that urban sprawl characterized by impervious surfaces was
more notable in Shanghai than in Tokyo over the past years. Here, annual and seasonal mean LST in
daytime (LSTday), in nighttime (LSTnight), and LSTdiff (annual and seasonal mean difference of LST
in daytime and nighttime) were extracted from the MODIS LST product, MYD11A2 006, for 9 typical
sites in Shanghai and Tokyo from 2003 to 2018, respectively. Then the effects of the urbanization
levels were analyzed through Mann-Kendall statistics and Sen’s slope estimator. The trends of change
in LSTday and LSTdiff for most sites in Shanghai, an urbanizing region, rose. In addition, there
was no obvious regularity when considering seasonal factors, which could be due to the increasing
fragmentized landscapes and scattered water bodies produced by urbanization. By comparison,
the change in LST in Tokyo, a post-urbanizing region, was regular, especially in the spring. In other
seasons, there was no obvious trend in temperature change regardless of whether the land cover
was impervious surface or mountain forest. On the whole, vegetation cover and water bodies can
mitigate the urban heat island (UHI) effect in urban regions. For more scientific urban planning,
further analysis about the effect of urbanization on LST should focus on the compound stress from
climate change and urbanization.

Keywords: megacities; urbanization level; MODIS LST; urban heat island; land cover; Mann-Kendall
test statistics

1. Introduction

Land surface temperature (LST), combining the results of all surface-atmosphere interactions and
energy fluxes between the atmosphere and the ground, plays an important role in studying urban
thermal environment and dynamics [1]. In pace with the socio-economic development, urbanization
causes the expansion of artificial impervious surfaces at the cost of natural surfaces and a population
shift from rural to urban areas [2]. The heterogeneity of land surface characteristics such as landscape
composition and the spatial configuration in a city is getting more complicated under the urbanization
process characterized by expansive impervious surfaces and shrinking croplands. Consequently,
LST changes quickly in space and time, and urban heat island (UHI), higher temperatures occurring in
urban areas than surrounding non-urban areas, will be more intense [3–6]. When pursuing strategic
planning in heat mitigation and adaptation, an interesting study is to capture the responses of LST to
different land cover elements at fine enough spatial and temporal scales [7,8].
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Due to the broad coverage with comparable spatial scales and temporal consistency, LST offered
by satellite thermal remote sensing is often used as a main indicator to understand the impact of
land use and land cover change in an urbanized region [9]. Through reducing noise effectively
from cloud contamination, zenith angle changes, and topographic differences, the retrieval error of
MODIS LST product is within ±2 K [3]. More statistically meaningful results could be obtained with
MODIS LST product, for it has longer time periods and moderate spatial resolution, compared to
other images with high spatial resolution with trapped temporal resolution such as Landsat OLI and
ASTER, or with high temporal resolution but low spatial resolution from COMS [10,11]. In addition,
the daytime and nighttime LSTs from MODIS is assumed to correspond to maximum and minimum
daily surface temperature as the viewing time of MODIS is midday and midnight [12,13], which makes
the differential of MODIS diurnal cycle very useful in studying LST variations [14].

Like most Asian countries, China has been experiencing rapid urbanization in recent decades.
Considerable attention has been paid to the urbanization effect on LST in China, especially when the
comparisons among the major cities and the conclusions about the urbanization impact on temperature
change were diverse [15–24]. Different climate zones for different cities and other factors such as data
inhomogeneity, spatial variations, analysis methods, and variation in elevation should be responsible
for the existing discrepancies of the impact of urbanization [25,26]. In addition, more researches should
be conducted to accumulate information about how to address surface temperature change in a fast
urbanized area of a developing country [27]. It is also important to quantify frequently the extent of the
effect of urbanization on local temperature changes in different typical cities at different urbanization
processes, especially for megacities because of their population being more than 10 million [2,10,28–30].
To date, main comparative monitoring of surface UHI in megacities in Asia was targeting capital cities
such as Beijing and Tokyo using short-time data [10,31], without considering the effect of different
climate conditions. With the highest urbanization level in China, more attention should be paid to the
variations of LST in Shanghai, along with the comparison with other developed megacities such as
Tokyo in East Asia. With more than 20 million in population in both cities, they have similar climate
but are in different urbanization stages. Through studying the effects of the urbanization processes on
LST for these megacities, it would help the understanding of the impact of land use and land cover
change and to make more rational planning. Here, the spatio-temporal variations of LST over Shanghai
and Tokyo, two megacities with similar climatic environments but at different urbanization levels,
were analyzed using cloud-free MODIS/Aqua LST (MYD11A2) to minimize the effect of cloud. Firstly,
differences of LST of selected typical sites, distant from the core centers, e.g., the Imperial Palace in
Tokyo and the People’s Square in Shanghai, were analyzed based on elevation and land use. Then the
impacts of land cover change on the variation of LST were investigated with Mann-Kendall method
from 2003 to 2018.

2. Data and Methods

2.1. Study Areas

Shanghai, an international metropolis with rapid urbanization since the 1990s, is situated on the
broad flat alluvial plain of the Yangtze River Delta of China and is in the subtropical marine monsoon
climate. Thousands of streams and rivers flow through the region and a few remnant hills lie in the
southwest. Shanghai has four distinct seasons, generous sunshine and abundant rainfall. The average
annual temperature is 16 degrees Celsius. In this research, Chongming Island and other smaller islands
apart from the mainland of Shanghai city were not considered (Figure 1).
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As one of the world’s largest cities, Tokyo is a highly developed metropolis, composed of 23 more
urbanized special zones in the east (Figure 1). Most of the area is a nearly flat plain with altitudes less
than 70 m above sea level, except for the western mountain area and the flat-topped mountain areas in
its south-eastern and north-eastern parts. Tokyo has a humid subtropical marine monsoon climate
and four distinct seasons. The warmest month is August, averaging 27 ◦C, and the coolest month is
January, averaging 6 ◦C.

Both cities are located near the shoreline with similar prevailing weather conditions. As a key
indicator about urbanization, impervious surfaces can change the flows of energy and materials.
The impervious surface areas (ISAs) for the two megacities since 2003 were derived (Figure 2).
The urban sprawl was obvious in Shanghai city. In Tokyo, impervious surfaces expanded slightly,
mainly in the west. The average annual rate of city population (city population 34.5 million in 2000 to
37.5 million in 2018) in Tokyo during 2000–2018 was 0.5 percent, while the rate was 3.3 percent for
Shanghai (city population 14.25 million in 2000 to 25.6 million in 2018) during that period [2].
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Figure 2. The spatial distribution of the representative sites and the artificial impervious surfaces
change since 2003 for the megacities (a) Shanghai; (b) Tokyo.

2.2. Data

2.2.1. MODIS Land Surface Temperature (LST) Data

The overpass time for MODIS-Aqua “LST_Day_1km” and MODIS-Aqua “LST_Night_1km” is
13:30 local solar time and 01:30 local solar time respectively, very close to local time of the highest and
lowest temperature. MYD11A2 v006 product, the latest MODIS LST version, can provide a simple
average of all the corresponding LST pixels within an 8-day period for each pixel with a 1 km spatial
resolution. The LST data from March 2003 to February 2019 were selected via https://lpdaac.usgs.gov/.

https://lpdaac.usgs.gov/
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2.2.2. Land Cover Data

FROM-GLC10, Finer Resolution Observation and Monitoring Global Land Cover dataset
(FROM-GLC) depending on the 10-m resolution Sentinel-2 images with the computing support
by Google Earth Engine, can provide more spatial details at 10 m spatial resolution [32]. Moreover,
annual Global Artificial Impervious Areas (GAIA) from 2003 to 2018 with higher mapping accuracy is
available [33]. These two datasets were downloaded for free from http://data.ess.tsinghua.edu.cn.

2.3. Methods

2.3.1. The Procedure for Selecting Typical Sites

According to the land cover data, GAIA data, and Google Earth Pro, there were little land cover
changes for the Imperial Palace in Tokyo and the People’s Square in Shanghai (Figure 2). The land covers
in these urban cores were assumed to be unchanged during the study period. Then representative
sites distant from the core centers, i.e., Imperial Palace in Tokyo and People’s Square in Shanghai,
were selected with auxiliary information such as elevation for studying the effects of different land
cover changes on LST. A circle with a radius of 0.5 km centered at every site was used to determine
land cover, which ensured the representative sites matching the spatial resolution of the MODIS LST
product (Figures 2 and 3 and Tables 1 and 2). In this study, the spectral contribution of one land
cover such as impervious surfaces were heavily weighted in a circle, which would be identified as
impervious surface. Extreme cloudiness made it difficult and challenging to compare urbanization
effects on LST variations in Tokyo and Shanghai. If any 8-day composite had a pixel contaminated by
cloud for any site, the MODIS LST data would not be used for further analysis in this study. In other
words, the variations of LST during the day, at night, and the difference of LST between day and night
were analyzed when the LST values for both daytime and nighttime per site were normal. Practically,
the prerequisite that the LST values for both daytime and nighttime for every site must be normal
could partly ensure that the viewing time of the products used were in good weather condition in such
subtropical marine monsoon climate. The original MODIS LST product gives temperature in degree
Kelvin. In this study, the LST values in Kelvin was converted to Celcius temperature. In order to reduce
the influence of singular values, the seasonal and annual mean LST were calculated. The research
process is shown in Figure 3.

Table 1. Geographic characteristics about the selected sites for Shanghai city in 2018.

Site Longitude (E) Latitude (N) Most Covered by Elevation (m a.s.l.)

1 121.803 31.146 Impervious 5
2 121.615 31.312 Impervious 5
3 121.277 31.450 Cropland 5
4 121.313 31.246 Impervious 5
5 121.473 31.232 Mixture 9
6 121.523 31.221 Impervious 12
7 121.577 30.997 Cropland 5
8 121.393 31.003 Rural settlement 7
9 121.236 30.828 Rural settlement 5

Mixture: Mixture of impervious surface and vegetation; Rural settlement: impervious surfaces for rural settlement;
a.s.l.: above sea level.

To calculate seasonal and annual mean LST and ensure data stability, seasons were defined
as follows in accordance with the local traditional season division: spring = March, April, May;
summer = June, July, August; autumn = September, October, November, and winter = December,
January, and February. Details about the LST products downloaded are listed in Table 3. In fact, there
were a few pairs of data with concurrent day and night LST for further analysis in the summertime
due to the prevailing East Asian summer monsoon.

http://data.ess.tsinghua.edu.cn
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Table 2. Geographic characteristics about the selected sites for Tokyo city in 2018.

Site Longitude (E) Latitude (N) Most Covered by Elevation (m a.s.l.)

1 139.772 35.669 Impervious 25
2 139.753 35.685 Vegetation 40
3 139.571 35.739 Impervious 55
4 139.633 35.645 Impervious 45
5 139.383 35.639 Mixture 155
6 139.323 35.763 Impervious 153
7 139.139 35.796 Mountain forest 750
8 139.104 35.728 Mountain forest 550

9 139.045 35.843 Mountain forest &
Sparse Built-up 730

Mixture: Mixture of impervious surface and vegetation; Mountain forest and sparse built-up: Mountain forest with
sparse impervious surface areas; a.s.l.: above sea level.

Table 3. Details about the land surface temperature (LST) product used for the average seasonal LST.

Season Months Included MYD LST Julian Day

Spring 3–5 57–145
Summer 6–8 153–233
Autumn 9–11 241–329
Winter 12–2 337–49

2.3.2. Trend Analysis Methods

The nonparameteric Mann-Kendall statistical test and Sen’s slope estimator, which are popular
for detecting the trends of change in climate and hydrology study [34,35], were adopted to analyze the
trends of LST changes.

(a) Mann-Kendall Trend Test

Here, statistical significance of LST trends for those sites, test statistics S, was estimated by
Mann-Kendall statistical test with Equation (1).

S =
n−1∑

i = 1

n∑
j = i+1

sgn
(
x j − xi

)
(1)

In Equation (1), n was the number of data points, x j and xi were the LST values in time series i
and j ( j> i) for each site, and the sign function sgn

(
x j − xi

)
was determined using Equation (2).

sgn
(
x j − xi

)
=


+1, i f x j − xi > 0
0, i f x j − xi = 0
−1, i f x j − xi < 0

(2)

Then the variance was estimated by Equation (3), where n was the number of data points, m the
number of tied groups, and ti the number of ties of extent i.

Var(S) =
n(n− 1)(2n + 5) −

∑m
i = 1 ti(ti − 1)(2ti + 5)

18
(3)
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A tied group was a set of sample data with the same value. If the sample size n was greater than
10, the standard normal test, ZS, was obtained by Equation (4).

ZS =


S−1√
Var(S)

, if S > 0

0, if S = 0
S+1√
Var(S)

, if S < 0
(4)

In this study, positive ZS values indicated increasing trends and negative ZS values indicated
decreasing trends. The significance level, α of 0.05, was adopted to judge the testing trends. When |ZS|

was greater than Z1−α/2 of 1.96 according to the standard normal distribution table, the null hypothesis
was rejected and the trend was significant over time.

(b) Sen’s Slope Estimator

The non-parametric procedure for estimating the slope of trend was calculated by the following
Equation (5).

β =
x j − xk

j− k
(5)

where x j and xk were the LST values in time series j and k ( j > k) for each site, respectively.
And the Sen’s slope estimator was computed as

βmed = median(β) (6)

3. Results

3.1. The LST Change in Shanghai City

From the Sen’s slope estimator, the seasonal and annual mean LST change in daytime for most
sites showed a slight increase, while the trend at site 6 showed inconspicuous decrease except in
the winter (Figure 4 and Table 4). Although impervious surface dominated site 6, other land covers
introduced such as water body and vegetation cover accounted for the phenomenon. The trends of
mean LST change in daytime for sites 1 and 2, which are located at the border of northeastern Shanghai
and mostly covered by impervious surfaces, showed a statistically significant rise in the spring and the
summer. For annual mean LSTday, the rising trend was obvious. For annual mean LSTnight change,
the tendencies for the sites covered by impervious surface showed slight increase, while the trends
of sites 3, 7 used for cropland, and sites 8, 9 used for rural settlement, were decreasing (Figure 4 and
Table 5). If measured from the statistical tests, the decrease of the annual mean LSTnight for those sites
could be negligible.

Similar to the trend of annual mean LSTday, the trend of annual mean LSTdiff was increasing for
most sites except site 6 during the period (Figure 4 and Table 6). Unlike other sites, changes in LSTday
and LSTdiff on the annual time scale for sites 1 and 2 were statistically significant, which might be
caused by the growing air traffic and passenger flow. The change in LSTdiff change at those sites used
as cropland was significant at the 5% significance level. Similar results could be obtained for sites 8
and 9, the rural settlement. At those sites, more vegetation cover and population outflow occurred,
which could contribute to the decrease in the LSTnight change, causing LSTdiff on these sites amplified.
For sites covered by croplands and site 9, the trends of LSTdiff were significant at the 5% significance
level during the spring, summer and winter seasons. Though the trends of change of LSTday and
LSTdiff for most sites during the period were rising, no obvious regularity existed when considering
seasonal factors apart from sites 1, 2, and 3 in the spring.

To some extent, there were no obvious trends of annual mean LSTnight changes for most sites.
To measure the impact of urbanization on annual mean LST in cities such as Shanghai, only annual
mean LST in day could be sufficient.
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Table 4. Results of the statistical tests for seasonal and annual mean day LST at 13:30 local solar time
for Shanghai.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 121.803 31.146
ZS 3.5568 * 2.1161 * 0.7654 1.4857 2.7464 *

βmed 0.4021 0.2587 0.1861 0.1412 0.2322

2 121.615 31.312
ZS 2.5663 * 2.5663 * 1.2156 2.2061 * 3.1966 *

βmed 0.2665 0.3017 0.1288 0.1811 0.1981

3 121.277 31.450
ZS 1.9360 1.6658 0.6753 1.3057 2.4762 *

βmed 0.1814 0.1456 0.1181 0.1001 0.1195

4 121.313 31.246
ZS 0.9455 1.7109 0.3152 1.3057 1.1256

βmed 0.0606 0.1059 0.0462 0.1397 0.081

5 121.473 31.232
ZS 0.7654 1.3057 0.3152 1.8459 1.8459

βmed 0.0715 0.129 0.0941 0.1491 0.1376

6 121.523 31.221
ZS −0.3152 −0.8554 −0.8554 0.6753 −1.1256

βmed −0.0391 −0.0957 −0.1168 0.0546 −0.0581

7 121.577 30.997
ZS 1.0355 1.4407 0.4052 1.5758 1.3957

βmed 0.091 0.0934 0.0347 0.0832 0.0863

8 121.393 31.003
ZS 0.1351 1.4857 0.7654 1.4857 1.0355

βmed 0.0265 0.0865 0.1106 0.1304 0.0716

9 121.236 30.828
ZS 1.7559 0.9455 0.9455 1.6208 2.0260 *

βmed 0.1486 0.0951 0.1846 0.1061 0.0993

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.
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Table 5. Results of the statistical tests for seasonal and annual mean night LST at 1:30 local solar time
for Shanghai.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 121.803 31.146
ZS 0.2251 1.0355 0.9455 −0.5853 0.6753

βmed 0.0244 0.1077 0.1166 −0.0566 0.0406

2 121.615 31.312
ZS 0.7654 0.4952 0.9455 −0.045 1.3957

βmed 0.0593 0.0633 0.0969 −0.004 0.0671

3 121.277 31.450
ZS −1.0355 0 −0.2251 −1.3957 −0.5853

βmed −0.0627 0.0025 −0.016 −0.0877 −0.0115

4 121.313 31.246
ZS 0.7654 0.6753 0.9455 −0.045 1.4857

βmed 0.0567 0.0862 0.0852 −0.0026 0.0647

5 121.473 31.232
ZS 0.4052 −0.045 0.4952 0.4952 0.4952

βmed 0.0204 −0.0069 0.0361 0.0371 0.014

6 121.523 31.221
ZS 0.4502 0.4952 0.2251 0.3152 0.2251

βmed 0.0253 0.0267 0.0293 0.0155 0.0036

7 121.577 30.997
ZS −0.1351 0.2251 0.045 −0.3152 −0.045

βmed −0.0136 0.055 0.014 −0.0205 −0.0036

8 121.393 31.003
ZS −0.3152 −0.045 0.2251 −0.4052 −0.045

βmed −0.03 −0.005 0.0273 −0.0243 −0.0018

9 121.236 30.828
ZS 0.2251 −0.2251 0.045 −0.9455 −0.6753

βmed 0.0225 −0.0864 0.0062 −0.0472 −0.0301

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.

Table 6. Results of the statistical tests for seasonal and annual mean difference of LST between 13:30
local solar time and 01:30 local solar time for Shanghai.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 121.803 31.146
ZS −0.1801 0.2251 1.0355 1.3957 3.6468 *

βmed −0.0024 0.0493 0.096 0.2286 0.1915 *

2 121.615 31.312
ZS 2.4762 * 1.4857 0.9455 2.8364 * 3.0165 *

βmed 0.1838 * 0.1501 0.042 0.1802 * 0.1431 *

3 121.277 31.450
ZS 3.1066 * 0.3152 2.4762 * 2.6563 * 3.4667 *

βmed 0.2629 0.0442 0.1225 * 0.2248 * 0.1528 *

4 121.313 31.246
ZS −0.3152 0.4952 −1.4857 1.8459 0.045

βmed −0.0342 0.0561 −0.0972 0.1151 0.001

5 121.473 31.232
ZS 1.5758 1.1256 0.4952 2.1161 1.4857

βmed 0.1171 0.1137 0.0269 0.1179 0.0967

6 121.523 31.221
ZS −0.5853 −1.5758 −2.026 0.7654 −1.6658

βmed −0.0523 −0.1592 −0.1327 0.0336 −0.0524

7 121.577 30.997
ZS 1.1256 2.026 * 0.8554 2.5663 * 2.2961 *

βmed 0.0935 0.0979 * 0.0435 0.1633 * 0.0885 *

8 121.393 31.003
ZS 0.5853 0.3152 1.0355 1.936 1.3957

βmed 0.0613 0.0363 0.1151 0.1064 0.0805

9 121.236 30.828
ZS 1.936 1.8459 1.0355 2.2061 * 2.9265 *

βmed 0.1426 0.1725 0.0958 0.1197 * 0.1537 *

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.

3.2. The LST Change in Tokyo City

From Sen’s slope estimator and the Mann-Kendall test, there was slight increase of annual mean
LSTday for most sites in Tokyo (Figure 5 and Table 7). The rising trend of annual mean LSTday was
distinct for sites 3 and 6, which were mainly covered by impervious surfaces. Site 2 was a big park
used for Japanese Imperial Palace with dense vegetation, and the change in annual mean LSTday was
not significant. There was no obvious trend of change for annual mean LSTnight (Figure 5 and Table 8).
To an extent, the annual mean LSTnight change in a developed megacity such as Tokyo kept relatively
stable. The annual mean LSTdiff for most sites had the same trend similar to annual mean LSTday
despite different land covers (Figure 5 and Table 9).
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Table 7. Results of the statistical tests for seasonal and annual mean day LST at 13:30 local solar time
for Tokyo.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 139.772 35.669
ZS 2.7464 * 0.9455 −1.2156 −0.4952 1.3057

βmed 0.2165 * 0.0967 −0.1225 −0.0167 0.0567

2 139.753 35.685
ZS 2.2961 * 1.4857 −1.5758 −0.9455 0.7654

βmed 0.1579 * 0.1428 −0.1469 −0.0604 0.0371

3 139.571 35.739
ZS 3.5568 * 2.4762 * −0.7654 0.2251 2.2061 *

βmed 0.2766 * 0.2201 * −0.0873 0.0158 0.1298 *

4 139.633 35.645
ZS 3.4667 * 3.0165 * −1.0355 −0.6753 1.8459

βmed 0.1903 * 0.1959 * −0.0888 −0.033 0.0737

5 139.383 35.639
ZS 2.8364 * 1.5758 −0.6753 0.045 1.7559

βmed 0.2394 * 0.1558 −0.0788 0.0014 0.092

6 139.323 35.763
ZS 3.5568 * 2.6563 * −0.6753 0.6753 2.1161 *

βmed 0.3044 * 0.1927 * −0.0957 0.0693 0.1204 *

7 139.139 35.796
ZS 2.3862 * 0.4052 −1.3057 −0.2251 0.3152

βmed 0.1827 * 0.0325 −0.1141 −0.0118 0.0194

8 139.104 35.728
ZS 1.936 0.3602 −1.6658 0.045 0.8554

βmed 0.1528 0.0256 −0.1236 0.0079 0.0315

9 139.045 35.843
ZS 2.2061 * −0.9005 −1.7559 0 −0.3152

βmed 0.1524 * −0.1492 −0.1267 0.001 −0.0125

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.

Yet, the responses of LST to the same land cover in different seasons were obviously different.
The mean LSTday of nearly all sites showed an increasing trend in the spring according to the
significance level. Though site 8 did not reject the null hypothesis, its Mann-Kendall test value
was close to 1.96. Similarly, mean LSTnight change in the spring, for most sites except site 7, rose
significantly. As for mean LSTdiff change in the spring, sites 3 and 6, covered by impervious surface,
rejected the null hypothesis and had a rising trend due to fast heat loss at night. In the summer, sites,
3, 4, and 6, covered by impervious surface, had obvious rising trend related to mean LSTday, while
the trend of change in mean LSTnight at those sites in the summer was inconspicuous. Mean LSTday
and LSTnight change in the autumn and winter did not indicate significantly positive nor negative.
Generally, the LST change in Tokyo rose regularly in the spring. During other seasons, there was no
obvious trend of change whether land cover was impervious surface or vegetation.
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Table 8. Results of the statistical tests for seasonal and annual mean night LST at 1:30 local solar time
for Tokyo.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 139.772 35.669
ZS 2.9265 * 0.1351 −0.8554 −0.3152 1.1256

βmed 0.2266 * 0.0531 −0.0683 −0.0281 0.0544

2 139.753 35.685
ZS 3.3767 * 0.6303 −1.4857 −0.9455 1.0355

βmed 0.2117 * 0.0484 −0.1515 −0.0387 0.0475

3 139.571 35.739
ZS 3.3767 * 0.3152 −1.3957 −0.8554 1.0355

βmed 0.2445 * 0.0233 −0.1065 −0.0142 0.055

4 139.633 35.645
ZS 3.0165 * 0.1351 −1.6658 −0.5853 0.6753

βmed 0.1987 * 0.01 −0.1582 −0.0341 0.0294

5 139.383 35.639
ZS 3.1066 * 0.4502 −0.8554 −0.4952 0.9455

βmed 0.186 * 0.074 −0.0752 −0.0225 0.05

6 139.323 35.763
ZS 2.9265 * −0.7654 −1.6658 −1.3057 −0.045

βmed 0.1969 * −0.0431 −0.1726 −0.0776 −0.003

7 139.139 35.796
ZS 1.936 1.0355 −1.2156 0.045 0.7654

βmed 0.1298 0.0616 −0.0743 0.0036 0.0357

8 139.104 35.728
ZS 2.4762 * 0.3152 −1.0355 −0.1351 0.5853

βmed 0.163 * 0.0255 −0.0815 −0.0056 0.0283

9 139.045 35.843
ZS 2.2961 * 1.0355 −1.5758 0.2251 0.2251

βmed 0.1422 * 0.0492 −0.0944 0.0245 0.0091

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.

Table 9. Results of the statistical tests for seasonal and annual mean difference of LST between 13:30
local solar time and 01:30 local solar time for Tokyo.

Site LONG
(E)

LAT
(N)

Test
Trends

Spring Summer Autumn Winter Annual

1 139.772 35.669
ZS 0.3152 0.1351 0.045 −0.1801 0.4052

βmed 0.0159 0.004 0.0045 −0.0024 0.0189

2 139.753 35.685
ZS −0.4952 1.4857 0.7654 −0.8554 0.7654

βmed −0.0223 0.0466 0.0165 −0.0271 0.0201

3 139.571 35.739
ZS 2.1161 * 2.4762 * −0.2251 1.4857 3.2866 *

βmed 0.0763 * 0.2418 * −0.0055 0.0764 0.109 *

4 139.633 35.645
ZS 0.6753 1.4857 −0.2251 −0.1351 1.1256

βmed 0.0567 0.1505 −0.0134 −0.0066 0.0261

5 139.383 35.639
ZS 1.3957 0.5853 0.045 0.3152 0.8554

βmed 0.0789 0.0852 0.0025 0.0106 0.0473

6 139.323 35.763
ZS 2.6563 * 2.1161 * −0.3152 2.5663 * 3.1966 *

βmed 0.1470 * 0.2884 * −0.0327 0.1209 * 0.1449 *

7 139.139 35.796
ZS 1.4857 −0.3602 −1.4857 −0.4952 −0.6753

βmed 0.071 −0.0271 −0.0513 −0.017 −0.0073

8 139.104 35.728
ZS 0.045 0.4052 −1.6658 0.6753 0.5853

βmed 0.0054 0.0269 −0.0596 0.0208 0.017

9 139.045 35.843
ZS 0.4952 −0.9455 −0.4052 0.5853 −1.2156

βmed 0.0591 −0.0906 −0.0501 0.0319 −0.0345

ZS: Mann-Kendall test; βmed: Sen’s slope estimator; * Statistically significant trends at the 5% significance level.

3.3. Analysis of Urban Heat Island (UHI) for the Megacities

Due to the master planning in Shanghai, the newly urbanized regions were more spatially scattered
when compared to the urbanized region before 2003 (Figures 1 and 2). Fragmentized landscapes and
scattered water bodies in Shanghai made LST change in different regions and seasons more irregular.
To analyze the spatial variations of the UHIs roughly, the annual mean LSTs of sites 2, 5, 6, 8, and 9,
transecting the city from the northeast to the southwest, were used (Figure 6). Covered by impervious
surface, sites 2 and 8 had higher LST in daytime than other sites since 2007. The LST of site 2 was as low
as site 5 during the first two years, implying site 2 experienced abrupt land cover change. Landscape
reconstruction made site 6 having more vegetation cover and waters, causing the trend of change of
LSTday decreasing slightly. Site 9, a residential area belonging to the suburbs of Shanghai, had lower
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LST in daytime and nighttime than other sites covered by impervious surface. All sites covered by
impervious surface had lower LSTnight compared to the sites with other land covers. The diurnal
temperature change of the sites covered by impervious surfaces was bigger than those sites with other
land covers. With the increasing population and the sprawl of artificial impervious surfaces, the UHI
effect is expected to keep mounting.
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Although Tokyo has a climate similar to that of Shanghai, no acute land cover change occurred in
Tokyo after having experienced a long-term urbanization. The sites 1, 2, 3, 6, and 7 in Tokyo from the
east to the west with rising elevation were selected to analyze the UHI (Figure 6 and Table 2). The trend
of LST change for these sites in Tokyo could be seen to level out regularly, with slow and possibly no
increase. Sites 3 and 6, mainly being covered by impervious surface, had higher mean LSTday than
the others, while the mean LST of the two sites in nighttime was lower than the LST of sites 1 and
2. The variations of the LSTdiff for the five sites further supported that UHI was obvious due to the
effect of impervious surfaces. It should be noted that site 1 had no distinct higher temperature than
other sites with impervious surface cover owing to the huge water body, Tokyo Bay. The annual mean
LSTday, LSTnight, and LSTdiff for site 7 covered by mountain forest were all lower than other sites,
indicating that LST decreased significantly as the altitude increased.

4. Discussion

4.1. Factors about LST Change for Two Megacities

The derived impervious surfaces reflected the urbanization process well for both cities. There
was spatially notable urban expansion from the urban core in Shanghai, whereas few significant land
use changes had occurred in Tokyo for the past decades [33,36]. For most urbanized areas, the spatial
resolution of MODIS LST was 1km, meaning that a large proportion of pixels were a spectral mixture
of impervious surface, green space, water, and soil cover types. The variation of LST increased with
percent ISAs, and significantly higher variations in LST occurred in areas with high percent ISA [37].
From the comparison, the LST change in the developed urban environment was more regular than
Shanghai under the fast urbanization process. To better quantify the effect of different urbanization
processes on LST in the future, remote sensing data with higher spatial resolution should be taken
into consideration.

Urbanization would change land surface, physical properties, and physical processes dramatically
and the surface fabric of urbanized area served an essential role in the generation of the urban/rural
temperature differences, i.e., the UHI effect. UHI could have negative impacts on society, economy,
and ecology, and be harmful to human health [38,39]. Our research revealed that the sites covered
by vegetation or mixed with huge water bodies had relatively lower LST than the sites covered by
impervious surface, which is attributed to the cooling effect of urban green vegetation [40]. A consensus
was that landscape composition could play a key role in affecting urban thermal comfort [40,41].
In the summer, water bodies could make urban regions cooler than the surrounding areas in the
daytime, while water bodies would be warmer than the surrounding areas in nighttime. ISAs could be
considered as heat-source, while vegetation and water as heat-sink in all seasons. Briefly, planning with
more water bodies and higher percent of vegetation should be a favorable approach to mitigate the UHI
for their cooling effect [41,42]. Expo 2010, a mega event for Shanghai, had caused the city area-based
urban renewal and served a spatial platform for more massive development with more vegetation cover
and improving urban air quality [43]. At the same time, more people would live in urban area and the
proportion of industrial land and the density of buildings increased [2]. All these would enhance the
UHI effect. Moreover, the upcoming Tokyo 2020 Olympic Games would certainly lead to land cover
difference between pre-event and after the event. To develop an environmentally-benign living space,
urban planning should pay more attention to quantify the contributions of local background climate
and landscape characteristics [37,44].

Generally, vegetation could lower urban temperature through plant’s evapotranspiration and
shading. When carrying out further analysis of different urbanization stages on LST, more factors such
as dominant vegetation types, ecological homogenization in cities, wind speed etc. on both macro and
micro scales should be considered, especially in coastal cities with sea wind.
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4.2. Issues about the MODIS LST Product

Due to the limitations of valid pixels in the MODIS daily LST product, the MODIS LST 8-day
composite product, integrating the average of daily LST observations in eight days, was used. However,
cloud contamination still existed. In addition, the trend of Chinese Blue Days in Yangtze River Delta
was decreasing as well [45]. Besides, the accuracy of MODIS LST product depended on the land cover
classification [1], so there were uncertainties in the product. Even though interference brought by
cloud on LST was minimized, other biases could be introduced by temporal gaps due to the inconstant
overpass time of the satellite [46]. Note that the number of LST data points per site in different
years was different due to unstable climatological factors such as wind speed, precipitation, humidity,
and solar radiation and weather conditions such as precipitation and cloud, and the representation
of data, was not optimal. However, the trend of annual mean LST change was rising in the mass,
especially for Shanghai, the region with fast urbanization process. It is also important to note that
the strength of the MODIS sensor was its regular image acquisition at the cost of reasonable spatial
resolution [47]. In this study, the effects on LST of different land covers were characterized on the basis
of investigating the LST change with elevation, land use datasets and Google Earth map information.
Further research should be carried out to elucidate the effects of other factors including precipitation
changes, topography or soil types with sensors having higher spatial resolution for LST changes.

5. Conclusions

In this study, the spatio-temporal variations of LST over Shanghai and Tokyo, two megacities
with similar climates but with different urbanization processes, were analyzed using cloud-free
MODIS/Aqua LST product from 2003 to 2018. Typical sites were selected on the basis of elevation and
land use. Then Mann-Kendall method was adopted to investigate the impacts of land cover per site on
the variation of LST.

The trend of annual mean LSTday and LSTdiff change in Shanghai showed rising for most sites
except site 6 with obvious land use change during 2003–2018. The trend of change at the sites such
as 1 and 2 covered by impervious surface showed statistically significant rise at the 0.05 significance
level.in the spring and the summer during the period. The trend of LST at those sites with relatively
invariant land use patterns had no obvious change when considering seasonal factors except in the
spring. The diurnal temperature change of the sites covered by impervious surfaces was bigger than
those sites with other land covers. By contrast, the trend of LST change in Tokyo was more regular
especially in the spring. There was no obvious rising or cooling whether land cover was impervious
surface or mountain forest.

With the comparisons of Shanghai and Tokyo, the trend of LST change in an urbanizing region
was of great magnitude without obvious regularity, while the trend of LST change in a post-urbanizing
region was rather moderate. The areas covered by impervious surfaces had higher LST than the
surrounding with other land cover. The cooling effect of urban green space in any megacity was
obvious. The study focused on the effect of different urbanization levels on the trend of change in LST.
Actually, many aspects such as green space, ISA, and their compositions and structures as well as
climatic factors should be responsible for the change in LST. Urban planning for a region under fast
urbanization process should learn a lesson from a post-urbanizing region and clarify the contributions
of local background climate and landscape characteristics.
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