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Abstract: In recent years, the Sentinel-1 satellites have provided a data archive of unprecedented
volume, delivering C-band Synthetic Aperture Radar (SAR) acquisitions over most of the polar
ice sheets with a repeat-pass period of 6-12 days using Interferometric Wide swath (IW) imagery
acquired in Terrain Observation by Progressive Scans (TOPS) mode. Due to the added complexity
of TOPS-mode interferometric processing, however, Sentinel-1 ice velocity measurements currently
rely exclusively on amplitude offset tracking, which generates measurements of substantially
lower accuracy and spatial resolution than would be possible with Differential SAR Interferometry
(DInSAR). The main difficulty associated with TOPS interferometry lies in the spatially variable
azimuth phase contribution arising from along-track motion within the scene. We present a Sentinel-1
interferometric processing chain, which reduces the azimuth coupling to the line-of-sight phase signal
through a spatially adaptive coregistration refinement incorporating azimuth velocity measurements.
The latter are based on available ice velocity mosaics, optionally supplemented by Burst-Overlap
Multi-Aperture Interferometry. The DInSAR processing chain is demonstrated for a large drainage
basin in Northeast Greenland, encompassing the Northeast Greenland Ice Stream (NEGIS), and
integrated with state-of-the-art offset tracking measurements. In the ice sheet interior, the combined
DInSAR and offset tracking ice velocity product provides a spatial resolution of 50 × 50 m and
1-sigma accuracies of 0.18 and 0.44 m/y in the x and y components respectively, compared to GPS.
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1. Introduction

Ice velocity is an essential parameter in the study of ice sheet and glacier dynamics. It governs
the discharge of ice from the accumulation zone to the edges of outlet glaciers and hence influences
estimates of ice sheet mass balance and sea level rise [1,2]. Furthermore, ice velocity measurements
constitute valuable input for constraining and validating numerical ice sheet models and for inversions
seeking to infer, for example, basal sliding patterns and ice thickness.

Application of Synthetic Aperture Radar (SAR) satellites to ice motion monitoring has long been
established. SAR-based measurements are currently obtained either through amplitude-based feature
and speckle tracking (collectively referred to as offset tracking) [3,4] or through Differential SAR
interferometry (DInSAR), a technique exploiting the radar phase [5]. Offset tracking has the advantage
of producing two-dimensional velocity measurements, namely along the range (satellite line-of-sight)
and azimuth (flight path) dimensions, and is applicable even on fast-flowing outlet glaciers, which may
reach velocities as high as several km/year. The accuracy and resolution of the amplitude-based
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offset tracking velocity retrievals, however, are generally substantially poorer than those obtained
with DInSAR [6], although the latter technique provides only measurements of the range motion
component. A comprehensive review of SAR-based ice velocity measurement techniques applicable to
Stripmap imagery is provided in [6].

In recent years, the European Space Agency (ESA) Sentinel-1A (S1A) and Sentinel-1B (S1B) SAR
missions have been generating an unprecedented archive of regularly acquired free and open access
data. Its main acquisition mode over land, namely Terrain Observation by Progressive Scans (TOPS) [7],
trades off azimuth spatial resolution for wide swath coverage, allowing full coverage of the Greenland
ice sheet to be achieved every 6–12 days. Concerning ice motion, however, such an archive is not being
exploited to its full extent. Sentinel-1-based ice velocity products are in fact exclusively based on SAR
offset tracking [8–11], whereas DInSAR is applied solely to Stripmap-mode imagery from other SAR
missions [10,12]. This is a limitation particularly for the ice sheet interior regions, where the velocity
magnitudes are often below the measurement accuracy provided by offset tracking. Even though
interior velocities are slow, it is of high interest to monitor dynamical changes related to fast-flowing
ice streams in order to detect how marginal acceleration and thinning spread inland [13], or to infer
knowledge of basal hydrology from ice velocity patterns [14].

TOPS interferometry on ice sheets is complicated by the azimuth antenna steering of this
acquisition mode, which significantly increases the sensitivity of the interferometric phase to azimuth
misregistration compared to the Stripmap and ScanSAR case. For scenes covering near-stationary areas,
Extended Spectral Diversity (ESD) was proposed in [15,16] to estimate a constant (i.e., scene-wide)
azimuth offset to refine the results of geometric coregistration based on precise orbits and a Digital
Elevation Model (DEM). Ice motion applications provide an additional challenge, however, since
the projection of the underlying horizontal surface motion causes the azimuth misregistration to be
spatially varying. In [17], a TOPS DInSAR approach based on adaptive azimuth coregistration and
Multi-Aperture Interferometry (MAI) azimuth motion measurements was presented and demonstrated
on TerraSAR-X TOPS acquisitions. However, this method was never applied to Sentinel-1 data.
Sentinel-1 TOPS DInSAR was used in [18] to measure ice velocity on glaciers in the Canadian Arctic
using the approach mentioned above for stationary scenes, which was justified for an area of interest
in which motion was confined to glacier tongues with velocity magnitudes within ∼ 35 m/y. In [19],
Sentinel-1 TOPS DInSAR was used to measure ice velocity and grounding line location for a set of
glaciers in West Antarctica, using offset tracking to estimate and remove the phase contribution due to
azimuth misregistration.

In this paper, we demonstrate the feasibility of generating Sentinel-1 TOPS DInSAR ice velocity
measurements in the interior of the Greenland ice sheet using a DInSAR processing approach based
on an azimuth coregistration refinement, as in [17]. However, after investigating different approaches,
we select a different method to generate such a refinement. We assess the performance of our algorithm
for the full Zwally 2.1 drainage basin [20], containing the North East Greenland Ice Stream (NEGIS),
using both ascending and descending tracks from the Sentinel-1 winter campaign 2019–2020 and
the surface parallel flow assumption [21] to generate 3D DInSAR velocity measurements. These are
compared to GPS velocity retrievals as well as to 3D ice velocity mosaics based on amplitude offset
tracking alone.

Section 2 outlines the data utilized in this study and describes the SAR data processing methods.
Section 3 presents the ice velocity maps obtained for the Zwally 2.1 drainage basin using both offset
tracking and DInSAR and their comparison with GPS measurements. Section 4 provides a discussion
on the performance of Sentinel-1 TOPS DInSAR and on the requirements to include this processing
algorithm in the routine generation of Greenland-wide ice velocity products. Conclusions are drawn
in Section 5.
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2. Data and Methods

2.1. Data

We utilized Sentinel-1A/B IW SLC images from the 2019–2020 Greenland winter campaign,
during which the acquisition plan prioritized a frequent, comprehensive coverage of the Greenland
ice sheet. We processed 3 acquisition cycles for 4 descending and 3 ascending passes, meaning that
for each track, a total of five 6-day image pairs and three 12-day pairs could be formed. An overview
of the processed Sentinel-1 images is found in Table 1. Figure 1 shows the coverage of the processed
Sentinel-1 tracks along with an outline of the region of interest, i.e., the Zwally 2.1 drainage basin,
containing the NEGIS.

Figure 1. (a) Sentinel-1 tracks processed in this study (black rectangles), Zwally drainage basins [20]
(dark blue polygons and numbers), GPS measurements used for validation (black dots), and Ground
Control Points used for the calibration described in Section 2.4 (gray triangles). (b) Zoom of the
area located within the dashed rectangle in panel a, containing the EastGRIP GPS measurements
(circles). (c) Area of interest for this study, shown in panel a. In all panels the color scale represents
the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) multi-year velocity mosaic
described in Section 2.1.

External datasets used for the SAR data processing include the 90 m Tandem-X DEM [22],
Sentinel-1 Precise Orbit Ephimeredes files downloaded from: https://qc.sentinel1.eo.esa.int/aux_
poeorb/, and a Greenland-wide multi-year average (2016–2019) ice velocity mosaic, based on the
monthly ice velocity products distributed by the Geological Survey of Denmark and Greenland
(GEUS) within the Danish Programme for Monitoring of the Greenland Ice Sheet (PROMICE) [9].
These measurements were carried out with Sentinel-1 intensity offset tracking (cfr. Section 2.2),
exploiting all available observations from 14 September 2016 to 17 June 2019, and are referred to as the
PROMICE multi-year velocity mosaic throughout the remainder of this paper.

Validation of the core measurement techniques and of the final ice velocity mosaics was carried
out using GPS measurements provided by the East Greenland Ice-core Project (EastGRIP). These cover
transects both across and along the upstream part of NEGIS, as shown in Figure 1b. Additionally,
measurements were collected for a 5× 9 grid of stakes (spaced 2.5 km apart) just outside of the shear

https://qc.sentinel1.eo.esa.int/aux_poeorb/
https://qc.sentinel1.eo.esa.int/aux_poeorb/


Remote Sens. 2020, 12, 2014 4 of 22

margin. The GPS measurements provide a range of velocities for validation between approximately
10–60 m/y and strain rates (i.e., velocity gradients) in the order of 10−3 y−1 near the NEGIS shear
margin [23].

Table 1. Overview of Sentinel-1 image pairs processed for the Zwally 2.1 drainage basin test case. In the
case of DInSAR, every available 6-day pair from the listed cycles (i.e., 5 image pairs per track) was
used, while all available 12-day pairs were used in offset tracking processing (3 image pairs per track).

Track Orbit Cycles Acquisition Dates

31 Ascending A: 188, 189, 190/B: 118, 119, 120 16 December 2019–15 January 2020
54 Descending A: 188, 189, 190/B: 118, 119, 120 18 December 2019–17 January 2020
74 Ascending A: 188, 189, 190/B: 118, 119, 120 19 December 2019–18 January 2020
83 Descending A: 188, 189, 190/B: 118, 119, 120 20 December 2019–19 January 2020
89 Ascending A: 188, 189, 190/B: 118, 119, 120 20 December 2019–19 January 2020
112 Descending A: 188, 189, 190/B: 118, 119, 120 22 December 2019–21 January 2020
170 Descending A: 188, 189, 190/B: 118, 119, 120 26 December 2019–25 January 2020

2.2. Intensity Offset Tracking

A reference offset tracking processing was carried out using the IPP processing software developed
at the Technical University of Denmark [24]. Intensity data patches of size 256× 64 (range × azimuth),
corresponding to about 900× 900 m on the ground, are selected on a regular grid of 40× 10 pixels in
the master SLC, corresponding to 560× 560 m on the ground, and the corresponding patches in the
slave SLC are located using the satellite orbits and a DEM. For each patch pair, the normalized
2D cross-correlation surface is calculated, and the position of the correlation peak is estimated
with sub-pixel accuracy using FFT oversampling and a parabolic fit on a region surrounding the
peak. Displacement estimates are accepted based on thresholds for the correlation (>0.05) and the
signal-to-noise ratio (>7), i.e., the ratio of the peak to the surrounding correlation surface. These
thresholds are the same used for the offset tracking processing within PROMICE and hence are not
fine-tuned for this specific data set. The output is two offset maps (i.e., range and azimuth offsets),
from which outliers are removed based on local medians using the approach described in [25]. Error
estimates are generated by calculating the local standard deviation for each pixel in the displacement
maps in a 5× 5 neighborhood. Finally, the displacements and error estimates are scaled to velocity
and geocoded to form slant range/azimuth velocity maps on a polar stereographic grid with 250 m
spacing. The calculation of Cartesian velocity components is deferred to a later stage, as described
in Section 2.5, since this allows to "fuse" measurements generated using different techniques and
acquisition geometries.

2.3. Sentinel-1 TOPS Interferometry

2.3.1. Theoretical Background

Regardless of the SAR acquisition mode, for example, Stripmap or TOPS, the phase of a
differential interferogram pixel ∆φ contains the following range- and azimuth-dependent contributions,
respectively ∆φr and ∆φa:

∆φ = ∆φr + ∆φa = −
4π

λ
vr∆T + 2π fDC∆η (1)

where λ is the radar wavelength, vr represents the range velocity component due to surface motion
(positive towards the satellite), ∆T represents the time difference (temporal baseline) between
acquisitions, fDC is the pixel’s Doppler centroid frequency, and ∆η represents the azimuth position
difference (misregistration) expressed in time units, which is in turn given by:

∆η = ∆ηmotion + ∆ηorb + ∆ηiono (2)



Remote Sens. 2020, 12, 2014 5 of 22

where ∆ηmotion is due to the underlying horizontal surface motion, and ∆ηorb and ∆ηiono represent
respectively the contributions of orbital uncertainties and ionospheric propagation. The azimuth
motion contribution is related to the azimuth velocity component va in an equivalent rectilinear
geometry as follows:

∆ηmotion =
va∆T

Vr
(3)

where Vr is an effective velocity [26], which is in the order of 7100 m/s for remote sensing satellites in
near-polar orbit. Range and azimuth velocities are related to the 3D ice velocity vector, v =

[
vx, vy, vz

]T

as follows: [
vr

va

]
=

[
cos θ cos φ cos θ sin φ sin θ

− sin φ cos φ 0

] vx

vy

vz

 (4)

where angles φ and θ describe the orientation of the line-of-sight (LoS) vector pointing from the pixel
under consideration to the sensor, with the horizontal angle φ measured counter-clockwise from the
y-axis of the map projection and the elevation angle θ measured from the ground to the LoS vector.

In the Stripmap case, fDC in Equation (1) is at most a few hundred Hz for current yaw-steered
SARs, and its variations between adjacent pixels amount to a small fraction of a Hz, causing ∆φa and its
spatial gradient to be negligible compared to ∆φr. However, for the TOPS acquisition mode, due to the
azimuth antenna steering, the instantaneous Doppler centroid magnitude varies from Stripmap-like
values at the burst center to as much as 2.6 kHz at the burst edges [16], where more importantly
also a variation of up to 5.2 kHz occurs within one azimuth pixel. For a 6-day Sentinel-1 image pair,
based on Equations (1)–(3), an azimuth motion va of 10 m/y will cause a maximum intra-burst ∆φa

variation from −0.12π rad at burst start to 0.12π rad at burst end, as well as a phase jump of 0.24π

rad at the azimuth burst boundaries. If such a phase contribution were erroneously interpreted as
being due to ∆φr in Equation (1), this would lead to a maximum vr error of 0.2 m/y. Furthermore,
as pixel phase differences approach +/−π, errors amounting to integer multiples of 2π rad will arise
in the unwrapped DInSAR phase, corresponding to integer multiples of 1.67 m/y in terms of vr.
This example shows that even for slow moving ice sheet areas, with horizontal ice motion magnitudes
in the order of a few tens of m/y, the contribution of the azimuth phase term in Equation (1) should
not be neglected.

The rationale of the algorithm we describe in Section 2.3.2 is to estimate the misregistration due
to ∆ηmotion in Equation (3) to reduce its contribution to Equation (1). The residual DInSAR phase can
then be interpreted as being due to the range term ∆φr alone, as for the Stripmap case, and scaled to
yield the LoS velocity vr. As a by-product, azimuth velocity va can also be accurately retrieved in the
burst overlap regions.

2.3.2. Processing Algorithm

Our TOPS DInSAR algorithm is shown in Figure 2. Most steps are identical to those of a Stripmap
DInSAR processor, albeit for a more complex coregistration approach detailed below. After image
coregistration, the interferogram is formed from the mosaicked SLCs. We applied multilooking with a
15× 3 averaging factor in range/azimuth (about 50× 50 m on the ground) and a 10× 2 decimation.
Phase unwrapping is carried out using a Minimum Cost Flow algorithm with coherence-based
weights [27], masking out results for areas with a coherence below 0.2. Finally, the unwrapped
interferogram is scaled to yield a line-of-sight displacement map. A calibration is performed for each
displacement map using the procedure described in Section 2.4 and Ground Control Points (GCPs)
extracted from the PROMICE multi-year velocity mosaic (cfr. Section 2.1).
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Figure 2. Block diagram showing the interferometric processing chain for a single Sentinel-1 Terrain
Observation by Progressive Scans (TOPS) image pair.

Coregistration is based on a resampling lookup table containing the range and azimuth slave
SLC coordinates corresponding to each master SLC pixel. The lookup table is computed using precise
orbits and a DEM, as in the Stripmap case [28], but also an external ice velocity mosaic, consisting of
maps of the horizontal ice velocity components vx and vy. Within the processor, the latter are scaled to
obtain the displacement between the master and slave acquisitions, and projected onto the azimuth
dimension of the master SLC image using the second line in Equation (4). The resulting azimuth
motion map is then used to refine the slave azimuth coordinates in the resampling lookup table.

Since external ice velocity mosaics are based on spatially and temporally averaged SAR
and/or optical measurements [8–11], they could fail to account for temporal variations in the ice
motion patterns and other dataset-specific sources of azimuth misregistration, such as ionospheric
streak contributions [29]. These limitations could be avoided in principle by estimating the
azimuth misregistration directly from the image pair at hand, using several available techniques.
We investigated the use of offset tracking and MAI, as proposed respectively by [17,19], and of
Burst-Overlap MAI (BO-MAI), the implementation of which is detailed in Appendix A. For Sentinel-1
data, however, we find that the measurement accuracy of MAI, and even more that of offset tracking,
are too low to be beneficial and are influenced by a swath-dependent azimuth registration bias between
the Sentinel-1A/B imagery, as detailed further in Appendix A. In contrast, an additional refinement
based on BO-MAI, consisting of the steps within the dashed rectangle in Figure 2, was found to provide
a slight improvement (<±0.1 m/y) compared to using the external ice velocity mosaic alone.

An application example of the above-mentioned coregistration approaches is shown in Figure 3.
The wrapped DInSAR phase is shown in Figure 3a in the case of a Stripmap-like coregistration, based
only on a DEM and precise orbits. Substantial phase jumps occur at almost every burst overlap,
often exceeding 0.5–1.5 rad as seen in Figure 4a, which shows the average unwrapped azimuth phase
gradient for sub-swath IW3. Locally the phase discontinuities may exceed several radians. Figure 3b
shows the results when MAI azimuth velocity measurements (Figure A1c in Appendix A) are used to
refine the coregistration. Surprisingly this worsens the phase discontinuities in the slow-moving areas
of the ice sheet, which show roughly the same magnitude at each burst boundary (Figure 4b). This is
due to a bias in the MAI and azimuth offset tracking measurements, when applied to S1A/S1B pairs,
as discussed further in Appendix A. The effects of measurement noise, due to decorrelation, are also
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seen in the top-left area of Figure A1c, while compared to the non-refined coregistration, several
phase jumps located on the fast-flowing ice stream are actually reduced. Figure 3c shows the case of a
refined coregistration based on the PROMICE multi-year velocity mosaic described in Section 2.1. This
approach almost completely eliminates the phase jumps seen in Figure 3a,b (as shown in Figure 4c).
Applying an additional coregistration refinement based on BO-MAI azimuth velocity measurements
(Figure A1d) results in only minor changes that are barely noticeable (Figures 3d and 4d), albeit for the
very first burst overlap in IW3. The case in which the azimuth coregistration is refined with intensity
offset tracking measurements is not shown, since this yields very similar, although slightly noisier,
results to those based on MAI, due to the similar properties of the azimuth velocity measurements
provided by these methods (compare Figures A1b,c).

(a) (b)

(c) (d)

Figure 3. Wrapped DInSAR phase in radar geometry obtained using no azimuth coregistration
refinement (a); a refinement based on Multi-Aperture Interferometry (MAI) (b); on the PROMICE
multi-year velocity mosaic (c); and on the PROMICE multi-year velocity mosaic followed by
Burst-Overlap (BO)-MAI (d). The dashed black rectangle indicates the region investigated in Figure 5.
(Master/slave acquisitions: 22 December 2019 (S1A)/ 28 December 2019 (S1B), track: 112 descending)
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Figure 4. Average azimuth gradient of the unwrapped interferogram phase in sub-swath IW3 for each
of the four processing approaches presented in Figure 3, i.e. using no azimuth coregistration refinement
(a); a refinement based on Multi-Aperture Interferometry (MAI) (b); on the PROMICE multi-year
velocity mosaic (c); and on the PROMICE multi-year velocity mosaic followed by Burst-Overlap
(BO)-MAI (d) . The dashed red lines indicate the location of azimuth burst overlaps, while the dashed
black lines indicate the region investigated in Figure 5.

To assess the impact of the wrapped phase discontinuities on the final DInSAR measurements,
the phase of the interferograms shown in Figure 3 was unwrapped and scaled to obtain LoS velocities.
Figure 5 shows a subset of the LoS velocity map obtained from each of the interferograms shown in
Figure 3, omitting the poorly-performing MAI refinement case. The bottom plot of Figure 5 shows the
line-of-sight velocity across the profile indicated by a dashed line in the three velocity maps. While the
inclusion of the BO-MAI coregistration refinement yields a velocity profile that is indiscernible from
solely applying the external ice velocity mosaic refinement, the non-refined case shows discontinuities
up to 1.5 m/y near the azimuth burst overlaps. For an underlying va of 50 m/y, this is consistent with
the discussion in Section 2.3.1. Note that in this case, the non-refined coregistration does not result
in apparent phase unwrapping errors. In general, however, the unwrapping algorithm cannot be
expected to reliably resolve phase ambiguities across the burst boundaries, and substantial unwrapping
errors, leading to biases in the velocity measurements, may occur when applying the non-refined
coregistration (see Figure S1 in the Supplementary Material).
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Figure 5. TOPS DInSAR line-of-sight velocity in radar geometry for the region within the dashed
rectangle in Figure 3 obtained using no coregistration refinement (a), a refinement based on the
PROMICE multi-year velocity mosaic (b), and on the PROMICE multi-year velocity followed by
BO-MAI (c). Panel (d) shows line-of-sight and azimuth velocity (purple dashed line and right y-axis)
along the profile indicated by the dashed line in (a–c). Azimuth velocities are based on the PROMICE
multi-year mosaic.

2.4. Calibration and Error Estimation

Since DInSAR measures displacement relative to a reference point, namely the phase unwrapping
seed, a calibration is required for each unwrapped interferogram in order to obtain absolute velocity
estimates and to account for timing and orbit errors present in the radar data. The unknown absolute
phase corresponds to a constant range offset, whereas orbit errors will result in slowly varying errors.
In practice, it is difficult to separate the two effects, and we follow the approach in [30], modeling
the unknown displacement as being due to a constant baseline error, and use GCPs to estimate
the horizontal and vertical components of the error. Usually GCPs are selected in stationary areas
(e.g., bedrock), but this approach has several problems with the present dataset. The region under
consideration is an ice sheet bordered by steep mountainous terrain, with isolated bedrock areas
separated by glaciers. The phase unwrapping algorithm is often not able to correctly unwrap across
steep topography and ice/rock transitions, resulting in many of the stationary areas being prone to
unwrapping errors. If GCPs are selected in such regions, the estimated velocity will be biased with
respect to the ice-covered areas, affecting the overall calibration. Instead, we choose slow-moving
GCPs on the ice sheet (|v|<18 m/y, corresponding to 0.05 m/d) from the PROMICE multi-year mosaic
(Section 2.1), under the assumption that the velocity in such areas does not vary significantly with time.
The error estimate of the calibrated displacement for each pixel is also carried out as described in [30],
based on the interferometric coherence and the uncertainties of the GCP height and velocity estimates.
The selected GCPs are shown in Figure 1a.
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2.5. Fusion of Velocity Measurements

Both DInSAR and intensity offset tracking measure the radar components of ice velocity, DInSAR
providing only the range (LoS) component, vr, and offset tracking providing also the azimuth
(along-track) component, va. In order to calculate the horizontal components of the Cartesian velocity
vector, v =

[
vx, vy, vz

]T , we assume surface parallel flow, according to which vz = ( ∂z
∂x vx +

∂z
∂y vy) [21],

and use all available measurements (DInSAR, intensity offset tracking, or both) and Equation (4) to set
up, for each output pixel, a weighted linear least squares problem, u = Hv + ε, which can be stated as:

vr1

va1
...

vrN
vaN

 =



cos θ1 cos φ1 + sin θ1
∂z
∂x cos θ1 sin φ1 + sin θ1

∂z
∂y

− sin φ1 cos φ1
...

...
cos θN cos φN + sin θN

∂z
∂x cos θN sin φN + sin θN

∂z
∂y

− sin φN cos φN


[

vx

vy

]
+ ε (5)

where vrn is the measured LoS velocity from pair number n and van is the corresponding azimuth
velocity (not available for DInSAR measurements). The angles φn and θn describe the LoS vector for
the master image of pair number n (cfr. Equation (4)). The local height gradient at the pixel under
consideration, ( ∂z

∂x , ∂z
∂y ), is calculated numerically from the available DEM. The noise vector is assumed

normally distributed with zero mean and diagonal covariance matrix Σ:

Σ =


σ2

r1 0 · · · 0
0 σ2

a1 · · · 0
...

...
. . .

...
0 0 · · · σ2

aN

 (6)

with σrn and σan indicating the estimated standard deviations of the range and azimuth measurements
for pair n. The weighted least squares solution to this system is:

v̂ = (HTΣ−1H)HTΣ−1u (7)

and the resulting covariance matrix of the estimate is HTΣ−1H from which the error estimates for v̂
can be retrieved as the diagonal elements.

The formulation above implies that for each pair, both range and azimuth measurements are
available, but in case only DInSAR products are available, u and H will contain only rows with LoS
measurements, and H may become ill-conditioned if the contributing DInSAR pairs are acquired
from nearly parallel tracks. In the absence of azimuth velocity measurements, we thus require both
ascending and descending LoS measurements to produce a valid output.

3. Results

3.1. SAR-Based Ice Velocity Mosaics

The intensity offset tracking method described in Section 2.2 was applied to all 12-day image pairs
available in Table 1, which amount to three pairs per track. We found this to be the most favorable data
selection for offset tracking, since the ice motion contribution in a six-day time span is often below
the noise floor of offset tracking measurements, especially in the slow-moving regions, and also due
to azimuth and range measurement biases affecting S1A/S1B pairs (cfr. Section 4 and Appendix A).
The resulting horizontal ice velocity magnitude within the Zwally 2.1 drainage basin is shown in
Figure 6a. Figure 6b shows also a different intensity offset tracking result, based solely on range
intensity offset tracking. The two offset tracking results are quite similar, although the following
differences can be noticed: (a) the range/azimuth map (Figure 6a) shows an improved coverage, since
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a single ascending or descending track is sufficient to solve for the horizontal motion components in
Equation (5), whereas an ascending/descending overlap is required for the range offset tracking case
(Figure 6b); (b) the ionospheric streak contribution, for example, around (lat,lon)=(78N,42E), is absent in
the range offset tracking mosaic (Figure 6b); (c) the latter shows a more prominent spatially-correlated
noise pattern, particularly near the southern tip of the NEGIS, due to a known Level-1 processor
block-processing effect affecting the range offsets, as discussed further in Section 4.

Figure 6. Horizontal velocity magnitude for Zwally drainage basin 2.1 [20] (dark blue polygons) based
on (a) range/azimuth intensity offset tracking, (b) range intensity offset tracking, (c) the TOPS DInSAR
approach presented in this paper, (d) the fusion (weighted average) of DInSAR and range/azimuth
intensity offset tracking. The dashed polygons in panel (c) enclose DInSAR results that were discarded
(cfr. Section 4) and not used in the generation of the fused result shown in panel (d).
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Figure 6c shows the velocity magnitude obtained using the TOPS DInSAR approach outlined
in Section 2.3, applied to all available six-day pairs in Table 1, which amount to five image pairs
per track. This is the most favorable data selection for DInSAR, since it maximizes the temporal
coherence and reduces the fringe rate in fast-flowing regions, improving the phase unwrapping results.
The azimuth coregistration refinement (illustrated in Figure 2) was carried out using the PROMICE
multi-year velocity mosaic as an external ice velocity mosaic, whereas the BO-MAI refinement was
omitted since its contribution in this area of interest was found to be below 0.1 m/y. Compared
to the offset tracking results one immediately notes the improvement in resolution, particularly in
slow-moving regions where a much smoother pattern is observed. The DInSAR velocity product
resolution is about 50× 50 m on the ground, while the resolution of the offset tracking velocity
products is, at best, the 560 × 560 m posting of the measurements. The velocity pattern at the
upstream part of NEGIS appears much better resolved in the DInSAR product: the two sub-streams
that merge into NEGIS and are barely visible in the offset tracking results are clearly resolved by
DInSAR. Moving further downstream of NEGIS, one observes the main limitation of DInSAR, namely
that velocity cannot be retrieved reliably on fast-flowing outlet glaciers. In Figure 7, we show the
difference in velocity magnitude as obtained by DInSAR and range/azimuth offset tracking (Figure 6a)
as well as the difference between DInSAR and the PROMICE multi-year velocity mosaic. Large
spatially-correlated differences in velocity magnitude of >30 m/y are observed towards the outlet
glacier fronts, and represent the typical signature of phase unwrapping errors [30]. In order to reduce
the effect of phase unwrapping errors in the final velocity product, we discarded the DInSAR results
within the regions indicated by the dashed polygons in Figure 6c. These polygons were generated
manually, based on the comparison between DInSAR and the PROMICE multi-year velocity mosaic
(Figure 7b).

Figure 7. Velocity magnitude difference between: (a) DInSAR and range/azimuth offset tracking
results (Figure 6a,c, respectively) (b) DInSAR and the PROMICE multi-year velocity mosaic (Figure 1a).
The dashed polygons enclose DInSAR results that were discarded (cfr. Section 4). GPS measurements
used for validation are shown as black dots. Zwally drainage basins [20] are traced in gray.

Figure 6d shows the final ice velocity magnitude mosaic obtained by the fusion of all DInSAR
and range/azimuth intensity offset tracking measurements, as described in Section 2.5. In the interior
parts, DInSAR dominates the fusion result, due to its lower standard deviation, and hence a velocity
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pattern that is virtually identical to Figure 6c is observed. In faster flowing regions, such as some shear
margins and the outer parts of the outlet glaciers, the fusion with offset tracking significantly improves
the measurement coverage compared to DInSAR alone. The final spatial resolution and accuracy
of the ice velocity mosaic is spatially variable, and the uncertainties provided by the framework of
Section 2.5 account for variations in the data coverage, as well as for the difference in accuracy between
DInSAR and offset tracking. Mosaics of the 1-σ uncertainties associated with the horizontal velocity
components, σvx and σvy , are shown in Figure S2.

3.2. Validation

As validation, we compare the horizontal ice velocity measurements from each of the four
SAR-based ice velocity mosaics in Figure 6 to available velocity measurements from EastGRIP GPS
stakes (see Section 2.1). The GPS and radar data are in the same polar stereographic projection, and we
compare the two horizontal components (vx and vy) separately. The results of the GPS comparison
are shown in Figure 8 and a summary of error statistics (where the error is computed as vSAR − vGPS)
is provided in Table 2. For the offset tracking cases we note a slightly better (i.e., lower) standard
deviation of ∆vx when applying only range offsets, while the ∆vy standard deviation is lower when
including azimuth offsets. This is not surprising, as the x and y directions are roughly aligned with the
radar range and azimuth directions, respectively, at polar latitudes. Figure 8 shows the results for the
DInSAR-only case, corresponding to Figure 6c, since the fused ice velocity mosaic in Figure 6d leads
to a virtually identical comparison at the GPS locations, due to DInSAR measurements dominating
the weighted fusion in Equation (5). This is also noted in Table 2, where the difference in error
statistics between DInSAR and the DInSAR/offset tracking fusion is seen to be negligible. As expected,
the DInSAR results show a substantially better agreement with GPS, compared to offset tracking.
The standard deviation for ∆vx and ∆vy is 0.18 and 0.44 m/y—respectively, a factor four and factor
five better than what was obtained with intensity offset tracking. In terms of bias, i.e., the mean of ∆vx

and ∆vy, the DInSAR results show values of virtually zero for the vx component and about −0.4 m/y
for the vy component, which is in the order of the error standard deviation. The low biases indicate
that the DInSAR calibration procedure, utilizing GCPs in slow-moving areas of the ice sheet, has been
successful, at least for the region in the vicinity of the GPS locations. For the offset tracking cases,
biases of 2.8 m/y in range and −5.2/−9.5 m/y in azimuth are observed. The individual range and
azimuth offsets were not calibrated, as we found a calibration based on a slowly-varying polynomial
to generally introduce more errors than it resolves. The bias and standard deviation for ∆vy is higher
for range-only offset tracking due to the reduced sensitivity to motion in the y direction, which is
roughly aligned with azimuth.

Table 2. GPS comparison statistics. Columns show mean and standard deviation of ∆vx and ∆vy, which
indicate the difference in velocity between SAR and GPS measurements, for each of the horizontal
velocity components in m/y. 61 co-located GPS and SAR measurements were used in each case.

Method ∆vx Mean ∆vx Std. ∆vy Mean ∆vy Std.

PROMICE 2016–2019 −0.51 0.31 −0.83 0.74
OTR (range/azimuth) 2.80 0.80 −5.22 2.31

OTR (range only) 2.80 0.77 −9.53 2.64
DInSAR only 0.00 0.18 −0.41 0.44

DInSAR+OTR (range/azimuth) 0.02 0.18 −0.47 0.44

Figure 9 shows velocity magnitude profiles following the black and orange lines indicated in
Figure 1b, for the range/azimuth offset tracking results (Figure 6a) and for DInSAR (Figure 6c) along
with the PROMICE multi-year velocity mosaic. The profiles pass through several of the GPS locations
and demonstrate the difference in terms of measurement bias between the DInSAR and offset tracking
measurements (red and blue lines, respectively). Also, the difference in spatial resolution and error
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variance between the different processing methods is apparent, with the offset tracking measurements
varying several m/y over very short distances, while the DInSAR measurements generally show a
smoother pattern. To verify the quality of the azimuth motion information used to refine the DInSAR
coregistration, we also compare the PROMICE multi-year velocities with the GPS data. Although these
are also based on intensity offset tracking, measurements have been averaged over several years, thus
showing a smaller variance compared to the campaign offset tracking case. Compared to DInSAR
however, the PROMICE multi-year mosaic shows a worse agreement with the GPS (see Table 2) and a
worse spatial resolution, as seen in Figure 9.

Figure 8. GPS comparison for the two horizontal velocity components vx (left column) and vy

(right column) obtained via range/azimuth offset tracking (top row), range/range offset tracking
(middle row), and DInSAR (bottom row). 61 GPS retrievals, acquired by EastGRIP, were used.

Figure 9. Velocity magnitude profiles for DInSAR (Figure 6c), range/azimuth offset tracking (Figure 6a),
and the PROMICE multi-year mosaic (Figure 1a) along the black line (a) and the orange line (b) in
Figure 1b.
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4. Discussion

We have demonstrated a DInSAR processing scheme for Sentinel-1 TOPS ice velocity retrieval
over a large drainage basin in Northeast Greenland. As expected, TOPS DInSAR provides accurate
high resolution measurements in the slower-moving regions of the ice sheet, while offset tracking
must still be used to obtain measurements over fast-flowing outlet glaciers. In general, refinement of
the azimuth coregistration using the external PROMICE multi-year velocity mosaic was successful
in reducing phase discontinuities at burst boundaries. For some image pairs we noted residual
phase discontinuities even after applying such a refinement (e.g., Figure S3c), most likely due
to ionospheric effects and to small biases in the PROMICE multi-year product towards the ice
sheet interior (cfr. Figure 7b). The BO-MAI refinement often succeeded in reducing such residual
discontinuities (e.g., Figure S3d), although the impact on the resulting velocity measurements was
small (∼0.1 m/y) in all the test cases we processed, which is why we denote BO-MAI as an optional
step in our processing approach.

Aside from the improvement in spatial resolution and accuracy, the TOPS DInSAR velocity
measurements also appear to be more immune to various data and/or processing artifacts affecting
range and azimuth registration, but not the DInSAR phase. These include: (a) A sub-swath dependent
bias (in the order of 15–30 m/y) affecting the MAI and azimuth offset tracking measurements from
Sentinel-1A/1B or 1B/1A 6-day image pairs (see Appendix A); (b) An ∼10 m/y bias affecting
range offset tracking measurements from Sentinel-1A/1B or 1B/1A 6-day image pairs (Figure S6c
and Table S1, and Figure S8c and Table S3), which is consistent with the 15 cm average range
misregistration observed between S1A and S1B SLC products in corner reflector experiments [31];
(c) An artifact observed in all range offset tracking measurements, presumably due to block-processing
approximations of the Level-1 Sentinel-1 processor [32], which is the main cause of the "patchy"
appearance of the slow-moving areas in the southern part of the Zwally 2.1 drainage basin in
Figure 6a,b. Examples of the latter artifact are shown in Figures S6 and S8.

TOPS DInSAR velocity retrievals allow for improved analysis of ice dynamics and drainage.
As the noise level in DInSAR retrievals is far lower than that obtained with offset tracking, it is
generally not necessary to perform data stacking in order to achieve reliable velocity estimates.
Hence, assuming frequent Sentinel-1 coverage, accurate velocity estimates can be generated on a
sub-monthly time scale for the interior ice sheet, allowing for analysis with high spatial and temporal
resolution, for example, monitoring intra-seasonal variations in ice dynamics. The improved ice
velocity measurements also allow for improved estimates of strain rates in very high spatial and
temporal resolution, thereby resolving the shear margins of fast flowing ice streams, where strain rates
increase an order of magnitude over spatial scales of a few 100 m [23]. Ice velocity measurements are
additionally applied in the evaluation of both surface mass balance (SMB) products and numerical ice
sheet models. With more accurate estimates of the interior ice sheet velocity pattern, validation of SMB
products and numerical ice sheet models becomes increasingly reliable [14,33,34].

The vast majority of the Greenland ice sheet moves with velocities <200 m/y and thus
measurement accuracy and resolution could be greatly improved for ice sheet-wide velocity retrievals
by routinely applying DInSAR along with intensity offset tracking. A pre-requisite to achieve DInSAR
measurements of the quality described in this paper, is the availability of overlapping ascending
and descending six-day acquisition pairs. In Greenland, this is currently limited to the winter
acquisition campaigns and to areas of special interest, such as NEGIS, although the additional capacity
provided by the forthcoming Sentinel-1C satellite could allow an increased availability of such data.
From the processing point of view, the main challenges to be addressed in the design of an operational
TOPS DInSAR/offset tracking processing scheme covering the entire Greenland ice sheet lie in (1)
automatically discarding DInSAR measurements in areas prone to phase unwrapping errors; (2)
consistently calibrating the DInSAR measurements; and (3) efficiently carrying out phase unwrapping
of interferograms consisting of a large number of adjacent data slices, which can be challenging from
the computational resource point of view, especially if network-based algorithms such as [27] are used.
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A final note concerns the availability of external ice velocity mosaics to be used for the azimuth
coregistration refinement in Figure 2. Although in this paper we relied on the PROMICE multi-year
velocity mosaic, any Greenland-wide ice velocity mosaic of comparable accuracy could be used,
such as those made available by [8–11]. If such a multi-year velocity mosaic is not available for
a region of interest, one could in principle apply offset tracking (or MAI) to estimate the azimuth
velocity prior to performing DInSAR. As mentioned in Section 2.3.2, however, the accuracy of
offset tracking/MAI measurements based on only a single image pair was found to be too low to
yield an adequate coregistration refinement. Hence, one would need to process an ensemble of
acquisitions for the offset tracking/MAI azimuth velocity measurements to reach a noise level low
enough to provide improvements over the simple geometric coregistration. Finally, since the fused
DInSAR/offset tracking measurements show a better agreement with GPS compared to the PROMICE
multi-year mosaic (cfr. Section 3.2), once the first ice sheet-wide velocity mosaics exploiting Sentinel-1
TOPS DInSAR are generated, these can be used as improved external ice velocity mosaics for the
coregistration refinement within subsequent data processing.

5. Conclusions

Ice velocity measurements are frequently used for a host of different glaciological and
climatological applications. With the launch of the Sentinel-1 satellites, the scientific community
has been provided with an extensive SAR data coverage of the polar ice sheets. The contribution of this
study is to demonstrate how the Sentinel-1 TOPS data archive can be further exploited by applying
DInSAR processing in ice velocity retrieval. We present ice velocity measurements for the Zwally 2.1
Greenland drainage basin, applying TOPS DInSAR in the interior and intensity offset tracking over
fast-flowing outlet glaciers. In comparison with available GPS measurements, the DInSAR ice velocity
retrieval shows an accuracy that is four times better than that obtained by offset tracking, with standard
deviations of 0.18 and 0.44 m/y in the x and y directions, respectively. Furthermore, the resolution of
the DInSAR measurements are about 50 × 50 m on the ground, which is an order of magnitude better
than what can be obtained with offset tracking.

In our DInSAR processing approach, image coregistration is refined by applying a correction
in azimuth based on an external ice velocity mosaic and optionally an additional correction in
burst overlaps using BO-MAI. With this refined coregistration approach, the TOPS-specific DInSAR
challenges mainly related to phase discontinuities at the burst boundaries are overcome and the
resulting DInSAR measurements are affected by the same coherence and phase unwrapping limitations
that apply to Stripmap-mode DInSAR. Concerning the routine application of the method presented
in this paper to the entire Greenland ice sheet, the main challenges lie in the integration of DInSAR
and offset tracking measurements in areas which are more prone to phase unwrapping errors, and in
the calibration of the DInSAR measurements. Also, these challenges, however, are well-known
and are actually simplified compared to the Stripmap case, due to the wide coverage of the TOPS
acquisition mode.
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s1, Figure S1: Line-of-sight velocity unwrapping error demonstration, Figure S2: 1σ uncertainties for the fused
DInSAR and offset tracking mosaic, Figure S3: Wrapped interferograms demonstrating capabilities of BO-MAI
coregistration refinement, Figure S4: Azimuth phase gradient for IW2 in S3, Figure S5: Azimuth velocity for
descending image pair, Figure S6: Line-of-sight velocity for descending image pair, Figure S7: Azimuth velocity
for ascending image pair, Figure S8: Line-of-sight velocity for ascending image pair, Table S1: GPS comparison
for descending image pair, Table S2: Bias estimates for descending image pair, Table S3: GPS comparison for
ascending image pair, Table S4: Bias estimates for ascending image pair.
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Appendix A. Azimuth Ice Velocity Measurements with Sentinel-1

The methods available to measure azimuth ground motion with Sentinel-1 TOPS data include:
offset tracking, either based on coherence maximization [38] or on image amplitude as described in
Section 2.2; Spectral Diversity, also known as MAI [39,40]; the method referred to in this paper as
BO-MAI [41–43]. The latter two techniques exploit ∆φa in Equation (1), by generating the following
double-difference interferogram, the phase ∆φMAI of which is given by:

∆φMAI = arg {(MuS∗u)(MlS∗l )
∗} (A1)

where ∗ denotes the complex conjugate, M and S denote master and slave SLC, and u and l denote
forward- and backward-squinted acquisitions, respectively. An estimate of the azimuth misregistration
∆η in Equation (2) is given by:

∆η =
∆φMAI

2π( fu − fl)
(A2)

where fu and fl are the azimuth center frequencies of the forward- and backward-squinted SLCs,
respectively. In MAI, the latter are generated via azimuth band-pass filtering of the master and slave
acquisitions, exploiting the limited available azimuth bandwidth, which is about 325 Hz [16]. BO-MAI
instead is applicable only within the azimuth burst overlap regions, where it exploits the large Doppler
frequency separation created by the azimuth antenna steering. This varies between 4.4 kHz and
5.2 kHz depending on the image sub-swath [16], and thus provides a sensitivity to azimuth motion,
which is an order of magnitude higher compared to MAI based on Equation (A2).

For the MAI implementation, the master and slave SLC images were deramped (i.e., basebanded),
following the procedure described in [44], prior to band-pass filtering to generate forward- and
backward-looking azimuth sub-bands. These were selected to have a bandwidth of 162 Hz (i.e., half
the available azimuth bandwidth) each and a frequency separation of 162 Hz. The MAI processing
approach described in [45] was then used, generating a full-resolution MAI interferogram and
multi-looking with a factor of 20× 5 in range and azimuth respectively, corresponding to 70× 70 m on
the ground. Finally, an adaptive phase filtering was carried out [46], with filter strength parameter
α = 0.8 and spectral estimation window size of 64× 64 in range and azimuth, respectively. Phase
unwrapping was not carried out since for Sentinel-1 6-day image pairs, azimuth velocities would have
to be larger than ∼ 1300 m/y in order to require phase unwrapping, and for such high displacements
loss of coherence would hinder the retrieval of meaningful measurements anyway.

BO-MAI was implemented by forming the double-difference interferogram from the forward
and backward squinted acquisitions for each azimuth burst overlap. A multi-looking of 12× 3 in
range/azimuth was applied (corresponding to about 50 × 50 m on the ground), followed by an
adaptive filtering [46] with filter strength α = 0.8 and spectral estimation window size of 8 × 8
in range/azimuth. The term ( fu − fl) in Equation (A2) was computed as the local difference in the
instantaneous Doppler centroid frequencies within the burst overlap. Due to the much larger frequency
separation in Equation (A2), ice motion of about 40 m/y is sufficient to cause the BO-MAI phase for a
6-day pair to exceed π rad, which would require phase unwrapping even for slow moving regions of
the ice sheet. To avoid this delicate processing step, we generate the double-difference interferogram in
Equation (A1) after applying the external ice-velocity mosaic to refine the coregistration lookup table,
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as shown in Figure 2. This removes the bulk of the azimuth motion contribution, so that BO-MAI can
be applied to the residual interferometric phase without the need for unwrapping. The final azimuth
velocity estimate is obtained by adding back the motion contribution from the external ice velocity
mosaic to the BO-MAI measurements.

Figure A1 presents azimuth velocity measurements for the scene shown in Figure 3, which have
been derived from the azimuth projection of the PROMICE multi-year mosaic (a), intensity offset
tracking (b), MAI (c), and BO-MAI (d). The BO-MAI measurements are spatially discontinuous, since
they can only be carried out in the burst overlap regions, and clearly show the best agreement with the
PROMICE multi-year mosaic. All measurements based on a single image pair, namely Figure A1b–d,
are clearly affected by ionospheric streaks [29], which are instead significantly reduced in the PROMICE
multi-year mosaic (Figure A1a) due to temporal and spatial averaging. A substantial part of the scene
also shows significant loss of coherence for the MAI and offset tracking cases. Table A1 presents a
comparison between each of the azimuth velocity retrievals shown in Figure A1 and the azimuth
projection of the available GPS velocity measurements. The BO-MAI approach shows an accuracy that
is comparable to the PROMICE multi-year mosaic, despite being based on only a single image pair
(note also that only seven GPS measurements are co-located with burst overlaps for this image pair).
Offset tracking and MAI are seen to yield substantially poorer accuracy, with standard deviations
being in the order of 10 m/y.

Offset tracking and MAI also show an unexpected swath-dependent bias compared to BO-MAI
and to the PROMICE multi-year mosaic, which is confirmed by the GPS comparison shown in Table A1.
A similar azimuth bias was observed for all the processed 6-day pairs (Table 1), i.e., pairs consisting
of one image from Sentinel-1A and one from Sentinel-1B, whereas it was never observed for 12-day
pairs, i.e., S1A-S1A or S1B-S1B pairs (Figures S5 and S7). The magnitude of the bias depends on the
sub-swath and was found to be between 15 and 30 m/y for 6-day image pairs, based on the average
differences with respect to the PROMICE multi-year mosaic (see Table A2). The sign of the bias changes
depending on whether the master image was acquired from Sentinel-1A or -1B (cfr. Figure S7, Tables
S3 and S4), suggesting that it is caused by a relative azimuth misregistration between the S1A and
S1B SLC products. Indeed our findings are consistent with the corner reflector experiment described
in [31], which reports an average azimuth misregistration of 39 cm between S1A and S1B SLC products,
based on reflectors located mainly within sub-swath IW1 and partly within IW2. This corresponds to
an azimuth velocity bias of 23.7 m/y for a 6-day temporal baseline.

Concerning DInSAR, the use of the MAI measurements in Figure A1c within the coregistration
refinement step in Figure 2 surprisingly increases the phase-discontinuities at the burst boundaries
(Figure 3b) compared to a purely geometric coregistration approach (Figure 3a). Such discontinuities
are instead reduced by using the azimuth-projected PROMICE multi-year mosaic (Figure A1a) and
BO-MAI (Figure A1d), as shown in Figure 3c,d, respectively. A possible interpretation is that the
S1A/S1B SLC azimuth misregistration bias concerns only the image amplitude, namely the observable
in the corner reflector experiments and in intensity offset tracking, but not the image phase, which is
the observable in BO-MAI and in DInSAR. The reason for observing this bias with MAI, which is also
a phase-based technique, could be due to the effect of band-pass filtering, which creates a coupling
between the existing amplitude misregistration and the interferometric phase.
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(a) (b)

(c) (d)

Figure A1. Azimuth velocity in radar geometry obtained from (a) re-projection of the PROMICE
multi-year velocity mosaic; (b) azimuth intensity offset tracking on a single Sentinel-1 image
pair; (c) Multi-Aperture Interferometry on a single Sentinel-1 image pair; and (d) Burst-Overlap
Multi-Aperture Interferometry on a single Sentinel-1 image pair. The measurements in (b–d) are
obtained from the same image pair shown in Figures 3–5. Black circles indicate GPS locations.

Table A1. GPS comparison statistics for the azimuth velocities shown in Figure A1. Columns show
mean and standard deviation of ∆vaz, which indicates the difference in velocity between SAR and GPS
measurements in m/y. 61 co-located GPS and SAR measurements were used in each case, except for
BO-MAI, as only 7 GPS measurements lay inside burst overlaps.

Method ∆vaz Mean ∆vaz Std.

PROMICE multi-year (offset tracking) 0.91 0.72
Azimuth offset tracking −22.02 13.63

Multi-Aperture Interferometry (MAI) −18.24 8.92
Burst-Overlap MAI (BO-MAI) −0.79 1.10



Remote Sens. 2020, 12, 2014 20 of 22

Table A2. Mean difference in azimuth velocity for each sub-swath between the offset tracking, MAI,
and BO-MAI results in Figure A1b–d and the PROMICE multi-year mosaic in Figure A1a. All values
are in m/y.

∆vaz Mean

Method IW1 IW2 IW3

Offset tracking (6-day) −29.94 −16.80 −19.65
MAI (6-day) −26.20 −13.63 −15.02

BO-MAI (6-day) −1.13 1.11 0.73
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