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Abstract: Land cover type classification still remains an active research topic while new sensors
and methods become available. Applications such as environmental monitoring, natural resource
management, and change detection require more accurate, detailed, and constantly updated land-cover
type mapping. These needs are fulfilled by newer sensors with high spatial and spectral resolution
along with modern data processing algorithms. Sentinel-2 sensor provides data with high spatial,
spectral, and temporal resolution for the in classification of highly fragmented landscape. This study
applies six traditional data classifiers and nine ensemble methods on multitemporal Sentinel-2
image datasets for identifying land cover types in the heterogeneous Mediterranean landscape of
Lesvos Island, Greece. Support vector machine, random forest, artificial neural network, decision
tree, linear discriminant analysis, and k-nearest neighbor classifiers are applied and compared
with nine ensemble classifiers on the basis of different voting methods. kappa statistic, F1-score,
and Matthews correlation coefficient metrics were used in the assembly of the voting methods.
Support vector machine outperformed the base classifiers with kappa of 0.91. Support vector machine
also outperformed the ensemble classifiers in an unseen dataset. Five voting methods performed
better than the rest of the classifiers. A diversity study based on four different metrics revealed that
an ensemble can be avoided if a base classifier shows an identifiable superiority. Therefore, ensemble
approaches should include a careful selection of base-classifiers based on a diversity analysis.

Keywords: remote sensing; classification ensemble; machine learning; Sentinel-2; geographic
information system (GIS)

1. Introduction

Remote sensing image classification is considered among the main topics of remote sensing that
aims to extract land cover types on the basis of the spectral and spatial properties of targets in a study
area [1]. The land cover/land use mapping is essential for many applications from a local to a global
scale, i.e., environmental monitoring and management, detection of global change, desertification
evaluation, support decision making, urban change detection, landscape fragmentation, and tropical
deforestation [2–4]. A vast amount of remote sensing data is archived and can be accessed freely or
with low cost while new data become available every day for the whole planet. The rapid growth of
computational approaches, the evolution of sensors’ characteristics and the availability of satellite data
have fueled the development of novel methods in image classification. The most widely used methods
are the supervised ones, including the traditional approaches of maximum likelihood and minimum
distance, as well as more recently, the modern machine learning classifiers, especially as pixel-based
classifiers [5–10].
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According to the literature, non-parametric methods tend to perform better compared to the
parametric methods [11,12]. The majority of articles compare machine learning algorithms on the basis
of their accuracy performance and their advantages and disadvantages, aiming to identify the best
algorithm for each classification case [11]. The most used algorithms with a wide range of application
in classification are: Random Forest (RF); Support Vector Machines (SVM), Artificial Neural Networks
(ANN) and Decision Trees (DT). In a recent study by Ghamisi et al. [13], hyperspectral data are
classified with the usage of various classifiers including, amongst others, SVM, RF, ANN, and logistic
regression. The comparison focuses on speed, the setup of various parameters, and the competence of
automation. None of the classifiers have a clear advantage in terms of speed or accuracy. However,
there is a significant number of SVM studies that have ascertained that the SVM algorithm presents a
higher classification accuracy than the other algorithms [14–16]. The mathematical model of the SVM
theory can distribute and separate the data more accurately than methods such as ANN, Maximum
Likelihood Classifier (MLC), and DT [17]. In contrast, Lapini et al. [18] in a forest classification
study based on Synthetic Aperture Radar (SAR) images at a Mediterranean ecosystem of central
Italy, compared six classifiers, i.e., RF, AdaBoost with Decision Trees, k-Nearest Neighbor (KNN),
ANN, SVM, and Quadratic Discriminant. According to their results, in almost all examined scenarios,
RF performed better, while SVM was sensitive to unbalanced classes. In another recent study, authors
compared KNN, RF, SVM, and ANN in a classification of Landsat-8 Operational Land Imager (OLI)
image data of arid desert-oasis mosaic landscapes. ANN performed marginally better that other
classifiers, while the RF had a stabile performance across several aspects, i.e., stability, ease of use and
overall processing time [19].

Some authors suggest a hybrid approach on base classifiers. For example, in a recent work,
Dang et al. [20] suggest that a combination of Random Forest and Support Vector Machine,
namely Random Forest Machine, gives more accurate results than each algorithm separate and
constitutes a promising tool. The study compares the results of Random Forest Machine with those of
Random Forest and Support Vector Machine and observes higher efficiency on accuracy classification
by this new hybrid approach. This new algorithm seems to be a promising tool for future applications.

In another work, RF, KNN, and SVM were compared to a land use/cover study based on
Sentinel-2 Multi-Spectral Instrument (MSI) [16]. Various training datasets of different sizes were tested,
representing the six classes of the study area in the Red River Delta of Vietnam. All classifiers showed
an overall accuracy up to 95% with SVM presenting the highest of all, while remaining less sensitive
to training data size. Comparison of machine learning methods have been recently further explored
in the classification of boreal landscapes with Sentinel-2 data. In particular, the algorithms of SVM,
RF Xgboost, and deep learning have been implemented at the multi temporal image with the higher
accuracy corresponding to the SVM algorithm, with a total accuracy of 75.8% [21]. Sentinel-2 data was
also used in an object based classification by comparing AdaBoost, RF, Rotation Forest, and Canonical
Correlation Forest (CCF) classifiers [22]. Three different datasets were developed. The first dataset
included only the 10 m bands, the second dataset included the bands with 20 m resolution, and the
third dataset included the 10 m and pansharpened version of the 20 m bands. According to the results,
the Rotation Forest and Canonical Correlation Forest outperformed for all datasets.

Except from the usage of unitemporal images, multitemporal classification has been extensively
applied for more accurate results in land use/cover extraction [23–28]. The main reason is the seasonal
variance of the vegetation’s spectral reflectance, which changes according to the season and the growing
stage for each vegetation type. The limited spectral information of a single image can be compensated
by using multiple dates of the same type of images [29]. Kamusoko [30] compared five machine
learning methods KNN, ANN, DT, SVM, and RF in a single date and multidate images of Landsat
5, concluding that multidate and RF method provided the best results among other combinations.
In another study applied in a highly heterogeneous fragmented area and in a homogenous mountain
area, the combination of maximum likelihood and multidate Sentinel-2 data performed better that
SVM. The multidate input dataset was able to distinguish the classes of the highly fragmented area
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despite the spectral similarities between classes [31]. Thus, the multitemporal data are essential for
discriminating the vegetation types, resulting in higher classification accuracy results [32].

Most remote sensing classification studies have relied on a single classifier or a comparison
of a number of them [33–35]. Since all classifiers perform within an accuracy range, an ensemble
approach may show improved accuracy levels and increased reliability in remote sensing image
classification [36]. To this end, several methods are reported in the literature to address the issue of how
to develop an ensemble classifier that combines the decisions from multiple base-classifiers [37–41]
that can be used either on hard or soft classifications [42]. Three categories of methods can be identified
in the literature [36,43]: (i) algorithms that are based on training data manipulation including the
well-known “bagging” and “boosting” [44,45] applied on a single based classifiers, i.e., SVM and
DT [46,47], (ii) algorithms that are based on a chain of classifiers that perform in a sequential mode,
i.e., the output of a classifier is the input for the next one in the chain, and (iii) algorithms that are
based on parallel processing of the base classifiers and the combination of their outputs. The main
method to combine the decisions of the base classifiers is a weighted or unweighted voting [48,49].
The weights usually depend on the majority, the estimated probability and the accuracy metrics of
the base classifiers. Shen et al. [1] compared the producer’s accuracy and overall accuracy and they
concluded that the overall accuracy had stability issues, while the producer’s accuracy performed
better in the classification of different land cover types.

This paper aims to apply a number of machine learning approaches, i.e., DT, Linear Discriminant
Analysis (DIS), SVM, KNN, RF, and ANN to classify multitemporal Sentinel-2 images and add to
whether an ensemble of these base classifiers can further enhance the output accuracy. The classification
is applied to an insular environment at the Mediterranean coastal region. Even if various studies
have been conducted for Mediterranean environments, an ensemble classification on multitemporal
Sentinel-2 data, to the best of our knowledge, has not been examined for this type of ecosystem.
Previous studies were focused either on specific types, i.e., on applying machine learning on forested
areas [50] or wetlands [51]. Our implementation is somehow different. Each one of the base classifiers
uses its own validation dataset rather than a common one, while the final evaluation of the ensemble is
compared to base classifiers by using a common and unseen testing dataset.

2. Materials and Methods

This chapter presents a detailed description of our study area of Lesvos Island, Greece.
A thorough description of the input data and the classification methods is followed by the accuracy
metrics. Finally, the ensemble voting methods, the diversity measures, and the accuracy metrics are
analytically presented.

2.1. Study Area and Data

The island of Lesvos is located at the northeastern Aegean Sea of Greece and covers an area of
1636 km2 and the total length of shore 382 km. The island has a variety of geological formations,
climatic conditions, and vegetation types (Figure 1). The climate conditions are categorized as
“Mediterranean”, with warm and dry summers and mild and moderately rainy winters. Annual
precipitation average is 710 mm; the average annual air temperature is 17 ◦C with high oscillations
between maximum and minimum daily temperatures. The terrain is rather hilly and rough, with a
highest peak of 960 m a.s.l. Slopes greater than 20% are dominant, covering almost two-thirds of the
island. The soils of Lesvos are widely cultivated, mainly with rain-fed crops such as cereals, vines,
and olives.

Due to low productivity, many sites were abandoned 50–60 years ago; after abandonment,
these areas were moderately grazed, and the shrub regeneration has been occasionally cleared by illegal
burning to improve forage production [52]. The vegetation of these areas, defined on the basis of the
dominant species, includes phrygana or garrigue-type shrubs in grasslands, evergreen-sclerophylous
or maquis-type shrubs, pine forests, deciduous oaks, olive groves, and other agricultural lands.
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Figure 1. The Lesvos Island at the north-east Aegean sea (source of location panels: Esri).

In order to perform the classification, three cloud-free satellite images were retrieved in JPEG 2000
format from Copernicus Open Access Hub [53], acquired by the Sentinel-2A (S2A) and Sentinel-2B
(S2B) MSI satellites. The dataset consists of the dates 28/04/2018 (S2A), 12/07/2018 (S2B), and 04/11/2018
(S2A) and the product type is Level-2A. We selected three images of spring, summer, and autumn
for our multitemporal approach. According to previous works, a combination of spring, summer,
and autumn image provides the highest classification accuracy and high class separability [27,54].
Level-2A products are radiometrically, atmospherically and geometrically corrected, providing the
bottom of atmosphere (BOA) reflectance in Universal Transverse Mercator (UTM)/WGS84 projection.
We used 10 bands (Table 1) out of 13 available. The final image composition includes in total 30 bands.

Table 1. Spatial and spectral resolution of Sentinel-2.

Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

Band 2—Blue 490 65 10
Band 3—Green 560 35 10
Band 4—Red 665 30 10

Band 5—Vegetation red edge 705 15 20
Band 6—Vegetation red edge 740 15 20
Band 7—Vegetation red edge 783 20 20

Band 8—Near infrared 842 115 10
Band 8A—Narrow near infrared 865 20 20

Band 11—Shortwave infrared 1610 90 20
Band 12—Shortwave infrared 2190 180 20

2.2. Methodology

The methodology consists of three stages: the ground truth data collection, the classification by
applying six base classifiers including the estimation of accuracy and diversity metrics, and finally the
application of nine ensemble voting methods.

2.2.1. Ground Truth Data Collection

As used by several other studies [55–57] the input dataset was created by visual interpretation of
Google Earth’s very high resolution images among with auxiliary data collected during field trips and
a land cover map that was previously produced on the basis of a Worldview-2 image. A total of 1,119
homogenous polygons were identified and outlined with a total area of 127.4 km2 across the island
(Table 2). Within these polygons, random points were created to extract the values from the 30 layers



Remote Sens. 2020, 12, 2005 5 of 25

of the image composition. The next step was to randomly split the dataset into training and testing
partitions based on the 80% and the 20% of the initial cases. The training dataset was used to train
all base classifiers and was further randomly split into a secondary training and validation dataset
including the 75% and the 25% respectively.

Figure 2 presents the multitemporal spectral responses per class. The data of Figure 2 reveals
significant differences in the spectral signatures within the date range especially in the near infrared (NIR)
region except for pine forest. Furthermore, these data also address the phenology stages of deciduous,
i.e., chestnut trees and agricultural lands. The variation of chlorophyll content in vegetation results
in a significant variation of reflectance especially in infrared bands. These variations cause different
phenological patterns for each vegetation cover type. According to previous studies, the different
phenologies as described by these spectral responses is expected to improve the classification accuracy
values compared to a single-date image especially in study areas where crops and vegetation are the
dominant land cover types [58].

Table 2. Number of pixels per class and dataset.

Class Number of
Polygons

Number of
Training Dataset

Number of
Testing Dataset Total Samples

Olive grove 342 3203 797 4000
Oak forest 72 1309 327 1636

Brushwood 73 4254 1088 5342
Built up 107 984 257 1241

Pinus brutia 113 4257 1090 5347
Chesnut forest 31 778 178 956

Pinus nigra 20 349 82 431
Maquis-type shrubland 107 936 226 1162

Barren land 44 212 61 273
Grassland 127 1327 312 1639

Other broadleaves 8 234 50 284
Agricultural land 54 729 188 917

Aquatic bodies 21 1070 254 1324
Total 1119 19642 4910 24552

2.2.2. Base Classifiers

On the basis of the literature, six base classifiers have been selected for the case study. A widely
used non-parametric approach is the decision tree (DT) classifier characterized also by its intuitive
simplicity [59]. Within DT the input data is recursively split, based on a set of rules, into smaller and
more homogenous groups forming the branches of the tree until the end-nodes, which are the target
values. In our case, these target nodes forming the leaves represent the classes. One of the major
advantages of DT is that it does not have any prerequisites about input data distribution. Moreover,
a good generalization can be achieved by pruning the DT that means to remove some branches
or turning some branches into leaves. Therefore, pruning will increase the accuracy by avoiding
overfitting [11,60].

Another widely used classification approach, which is based on Fisher’s score optimization, is
the DIS [61]. DIS approaches has been extensively used in the classification of hyperspectral data,
either the initial or modified methods [62–64]. One of the major drawbacks of DIS in hyperspectral
classification is that these data are ill-posed when the number of data are less than the number of bands.
In our case, our data are more than sufficient to avoid this phenomenon during the classification of a
30-dimension space.
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Figure 2. Spectral reflectance per class and per date.
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A third method that we applied is the Support Vector Machine (SVM) which aims to find a
hyperplane that separates categorical data in a high dimension space with the maximum possible
margin between the hyperplane and the cases [65]. The cases that are closest to the hyperplane are
called support vectors. However, in most cases, the classes are not linearly separable, hence a slack
variable is included, and a kernel function is used to perform a non-linear mapping into the feature
space. The most widely used kernels in remote sensing applications are the polynomials and radial
basis functions (RBF) [11,66].

The forth approach was a k-Nearest Neighbor (KNN) classifier. This algorithm calculates the
distances between an unclassified case and the nearest k training cases and classifies the unclassified
case to the majority class of the nearest k training cases. The user can choose from a variety of
distance metrics, however, the most widely used is the Euclidean Distance which can be applied either
unweighted or with a weight [67].

The next applied classification method was the random forest (RF). The concept of DTs is expanded
and enhanced through the RF algorithm. Multiple DTs are trained on the basis of a subset of the
training data where each one is trained on the basis of its own random sample. A majority vote of
all the DTs defines the final class of each case. One of the advantages is that RF does not make any
assumption about the probability distribution of the input data [13]. A more detailed description of
the RF algorithm in remote sensing applications can be found in [68–70].

Finally, we developed and applied an artificial neural network (ANN) classifier. ANNs have
been very popular and have been extensively used in pattern recognition and in modeling complex
problems. In the last 30 years, ANNs play a fundamental role in remote sensing land cover classification
applications [71–74], while the new trend in the classification of very high resolution images are the
convolutional neural networks (CNN) [75,76]. The CNNs have proven, in the last years, to be
very powerful classifiers in image recognition, object detection, image segmentation, and instance
segmentation [77]. However, CNNs are fundamentally based on spatial-contextual dependencies
of the input data with the majority of them being trained on high resolution RGB images [78,79].
Opposite to patch-based CNNs, pixel-based CNNs have been developed. However, according to the
literature, the common problems of pixel-based classification, i.e., the salt and pepper effect and the
boundary fuzziness effect within the classification result are quite severe in CNN implementations [80].
Other disadvantages of CNNs are the higher processing time and resources. We believe that, for the
pixel-based hard classification of the present multispectral and multitemporal approach, ANNs are
more suitable given also the nature of the other base classifiers. ANNs are characterized by their
architecture, their training algorithm, and their activation function. The most well-known and efficient
type is the Multilayer Perceptron (MLP) with three layers: input, hidden, and output, while ANNs
with one hidden layer are able to map any nonlinear function. Various gradient descent learning
methods have been proposed.

The evaluation, comparison, and voting during the ensemble of the applied methods were based
on the below metrics:

verall Accuracy (OA) =
TP + TN

TP + FP + TN + FN
(1)

User′s accuracy (UA) =
TP

TP + FN
(2)

Producer′s accuracy (PA) =
TP

TP + FP
(3)

kappa =
p0 − pe

1− pe
with (4)

p0 =
TP + TN

TP + TN + FP + FN
and (5)

pe =
(TP + FN) × (TP + FP) + (FP + TN) × (FN + TN)

(TP + TN + FP + FN)2 (6)
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F1− score =
2× TP

2× TP + FP + FN
(7)

MCC =
TP× TN − FP× FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(8)

where TP: true positive, TN: true negative, FP: false positive, and FN: false negative. The overall
accuracy (OA) is a single and very basic summary measure of the probability of a case being correctly
classified and is based on the sum of the diagonal elements of the confusion matrix. User’s accuracy (UA)
and producer’s accuracy (PA) provide an accuracy performance for each class. UA is a performance
measure of the credibility of the output map that is how well the map represents the actual cover types.
On the other hand, PA measures the accuracy of how well the reference data is represented by the map.
UA and PA are related with the commission and the omission errors respectively. The kappa coefficient
on the other hand is a more advanced metric, which compares the observed accuracy against random
chance. Opposite to OA, the kappa coefficient takes also into consideration the non-diagonal elements.
Furthermore, the F1-score is a rather different measure of accuracy, defined as the weighted harmonic
mean of both classification’s precision and recall. It balances the use of precision and recall and
provides a more realistic measure of performance. Finally, the Matthews correlation coefficient (MCC)
is a more balanced metric that takes into account all parts of the confusion matrix and can handle
under-represented classes. Each classifier produced a contingency matrix presenting the classification
results of its validation dataset and the corresponding accuracy metrics. It should be noticed that for
the calculation of the kappa, F1, and MCC for each class, each confusion matrix was converted to
multiple binary matrices based on the ‘one-vs-all’ scheme.

Moreover, four different diversity statistics were calculated on the basis of the results of the base
classifiers to the testing datasets, as depicted by the following 2 × 2 table of the relationship between a
pair of classifiers Ci and Ck (Table 3) [81].

Table 3. Relational table between a pair of classifiers.

Ci Correct (1) Ci Wrong (0)

Ck correct (1) N11 N10

Ck wrong (0) N01 N00

Where N11 is the correctly classified cases by both classifiers, N10 is the correctly classified cases
by Ck classifier, N01 is the correctly classified cases by Ci classifier, and N00 is the incorrectly classified
cases by both classifiers. The diversity measures were the Q-statistic, the disagreement measure,
the double-fault measure, and the inter-kappa statistic given by [36,81–83]:

Inter− kappa measure =
2
(
N11N00

−N01N10
)

(N11 + N10)(N01 + N00) + (N11 + N01)(N10 + N00)
(9)

Qi,k statistic =
N11N00

−N01N10

N11N00 + N01N10
(10)

disagreement measure =
N01 + N10

N11 + N10 + N01 + N00
(11)

double− f ault measure =
N00

N11 + N10 + N01 + N00
(12)

2.2.3. Ensemble Voting Methods

After obtaining results from the six classifiers, an ensemble classifier should be constructed in
order to classify the 4,910 cases of the testing dataset. For each testing case, all the base classifiers
provided a prediction, and we tested nine different voting schemes to further evaluate:
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• ‘Mode’: This voting method selects the suggestion with greater frequency in the six suggestions.
In the cases with equal frequency, it selects the one with the higher sum of kappa.

• ‘Max kappa’: This voting method selects the suggestion with greater kappa.
• ‘Greater Sum of Kappa’: This voting method selects the suggestion with the greater sum of kappa

aggregated on the suggestions. Identical suggestions are summed up and then compared with all
other kappa values.

• ‘Greater Mean Kappa’: This method selects the suggestion with greater average kappa per
suggestion. Identical suggestions are averaged and then compared with all other suggestions.

• ‘Greater Weighted Sum Kappa’: This method calculates the weighted sum of kappa which is the
multiplication of the sum of kappa over the frequency of each suggestion group. Then, it selects
the suggestion with the greater weighted sum of kappa.

• ‘Greater mean F1’: This voting method evaluates the average F1-score per suggestion and selects
the one with the greater average F1. After grouping suggestions, we estimate the average
F1 by group and compare the results. The result will be the one with the one with greater
average F1-score.

• ‘Greater sum F1’: This voting method selects the suggestion with a greater aggregation of F1.
After grouping the suggestions, we calculate the summation of F1 per group and compare the
results. The result will be the suggestion group with the greater sum of F1-score.

• ‘Greater mean MCC’: This voting method evaluates the average MCC per suggestion group and
then selects the one with the greater “mean MCC”. After grouping the suggestions, we average
their MCC value and compare the results. The result will be the suggestion group with the greater
average MCC

• ‘Greater sum MCC’: This last voting method selects the suggestion with the greater average MCC.
After grouping suggestions, we evaluate the summation of MCC per group before evaluating the
result. The result will be the suggestion group with the greater sum of MCC.

For all the above voting methods, the metrics of kappa, F1, and MCC are the ones of the
corresponding metrics calculated for each class of the validation dataset during the training phase.
The final comparison and selection of the best voting method was based on the kappa value. It should
be noticed that even if we have computed the OA, we did not use it during the ensemble phase. Due
to the imbalanced input dataset, the overall accuracy does not have an adequate performance, thus we
used the kappa, the F1-score, and the MCC.

The nine ensemble models were further statistically compared by applying McNemar’s test [84].
McNemar’s test has been widely used in comparison of classifiers performances [85]. All models were
compared in pairs and the McNemar’s value was given by:

McNemar′ s value =
(|n01 − n10| − 1)2

n01 + n10
(13)

where n01 is the number of samples misclassified only by algorithm A and n10 is the number of samples
misclassified only by algorithm B. The null hypothesis is that both of the classification methods have
the same error rate. McNemar’s test is based on a x2 test with one degree of freedom, where the
critical x2 value with a 95% confidence interval and a 5% level of significance is 3.841. If the computed
McNemar’s value for each pair is more than 3.841, then the null hypothesis is rejected, therefore,
the two classification methods are significantly different.

The ArcGIS 10.2 [86] was used for the spatial processing and visualization of the data, the Matlab
2018a [87] for the base classifications, while the ensemble of the classifiers through the voting methods
was carried out using R, including the packages caret, dplyr, and magrittr [88–91]. Figure 3 presents
the overall workflow of the current research.
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Figure 3. Workflow of the method followed for data classification and ensemble voting.

3. Results and Discussion

Each base classifier was carefully designed and trained under different settings. This section
presents the training results of the base classifiers and the classification ensemble. A diversity analysis
of the base classifiers and a significant test of the voting methods provide a more comprehensive view
of the results.

3.1. Base Classifiers Training

For the training of the DT classifiers we tested 4, 10, and 100 as the maximum number of splits.
The best results obtained with 100 maximum splits based on Gini’s diversity index. The SVM classifier
was trained with three different kernels; linear, RBF, quadratic and cubic. The cubic kernel provided
the best accuracy and was further analyzed. We are aware that our approach is a multiclass imbalanced
problem. It was decided that the best approach was to apply a “one-vs-one” instead of “one-vs-all”
coding scheme in order to reduce the effect of the imbalance problem [92,93]. At the same time,
the kappa, UA, PA, F1, and MCC provide a better interpretation of accuracy in an imbalanced dataset
opposed to the overall accuracy. For the KNN we tested 1, 10, 100 nearest neighbors and the best
results were provided with 10 neighbors. During the training, we applied the Euclidean distance
unweighted and with a weight, but the overall accuracy increased when we used as a weight the
inverse square of the distance for each case. The RF model tested with 30, 40, 50, 70, and 100 trees.
The final model included 30 trees based on overall accuracy. Finally, during ANN training we applied
different architectures with one hidden layer with 16 to 35 hidden nodes. We also tested two gradient
descent learning methods: the Levenberg Marquardt [94] and the scaled conjugate gradient [95].
Each network was trained 10 times with different random initial weights. The model with the best
performance had 16 hidden nodes and was trained with a scaled conjugate gradient for 272 epochs.

The classification accuracy of each classifier was evaluated based on the confusion matrix of
the validation dataset presented in Tables A1–A6. Table 4 shows the user’s (UA), producer’s (PA)
accuracy per class and the OA for each classifier while Figure 4 presents the heat map of UA and PA
where the colors are normalized for each classifier. According to the results, the SVM outperformed
all the classifiers according to the OA and the kappa (Figure 5). In most of the land cover classes,
SVM presented the lower omission and commission errors while the DT and the DIS had the poorest
performance with kappa 0.79 and 0.83, respectively. Aquatic bodies were almost perfectly classified by
all classifiers, while brushwood, built up, Pinus brutia, and agricultural land classes also showed high
accuracy. Figure 6 presents the diversity of UA and PA among all classifiers for each class. The base
classifiers had significant different performances in omission error for other broadleaves, barren land,
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and grassland classes and different performances in the commission error for oak forest, Pinus nigra,
and other broadleaves. It should be noticed that the UA of SVM for other broadleaves is an outlier, i.e.,
its value is more than 1.5 times the interquartile range above the upper quartile.

Table 4. User accuracy (UA) and producer accuracy (PA) per class 1 for the validation dataset during
the training phase of the base classifiers 2.

DT DIS SVM KNN RF ANN

UA PA UA PA UA PA UA PA UA PA UA PA
OG 0.77 0.78 0.84 0.87 0.93 0.92 0.84 0.89 0.90 0.85 0.91 0.88
OF 0.54 0.61 0.52 0.72 0.79 0.85 0.77 0.71 0.72 0.81 0.71 0.72
BW 0.95 0.87 0.91 0.91 0.97 0.96 0.98 0.92 0.97 0.93 0.96 0.94
BU 0.91 0.92 0.86 0.98 0.98 0.97 0.90 0.96 0.98 0.92 0.93 0.93
PB 0.97 0.89 0.99 0.88 0.98 0.98 0.98 0.94 0.98 0.95 0.97 0.93
CF 0.85 0.72 0.85 0.75 0.89 0.90 0.83 0.82 0.89 0.83 0.85 0.80
PN 0.37 0.53 0.46 0.73 0.83 0.82 0.67 0.76 0.66 0.88 0.57 0.79
MS 0.51 0.66 0.65 0.67 0.79 0.75 0.67 0.70 0.72 0.73 0.62 0.70
BL 0.76 0.82 0.85 0.65 0.87 0.96 0.81 0.86 0.72 0.97 0.82 0.85
GL 0.53 0.63 0.79 0.66 0.83 0.84 0.75 0.78 0.71 0.82 0.75 0.80
OB 0.22 0.52 0.19 0.46 0.64 0.76 0.21 0.92 0.34 0.91 0.30 0.53
AL 0.92 0.91 0.90 0.97 0.95 0.98 0.93 0.97 0.93 0.94 0.93 0.93
AB 1 1 1 1 1 1 0.99 1 1 1 1 1

Overall
Accuracy 0.82 0.85 0.93 0.89 0.90 0.89

1 With bold fonts the maximum UA and PA per class. OG: olive grove, OF: oak forest, BW: brushwood, BU: built up,
PB: Pinus brutia, CF: chesnut forest, PN: Pinus nigra, MS: maquis-type shrubland, BL: barren land, GL: grassland, OB:
other broadleaves, AL: agricultural land, AB: aquatic bodies. 2 DT: decision tree, DIS: discriminant, SVM: support
vector machine, KNN: k-nearest neighbors, RF: random forest, ANN: artificial neural network.

Figure 4. User accuracy (UA) and producer accuracy (PA) heatmap for the validation dataset during
the training phase of the base classifiers.

Results are consistent with what has been found in previous studies. Shang et al. [96] applied
SVM, RF and AdaBoost for the classification over an Australian eucalyptus forest. According to their
results all three machine-learning algorithms outperformed the results produced by DIS. DT and DIS
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methods have also shown a poor performance in the comparison for the classification of Sentinel-2
data where RF outperformed followed by SVM and ANN [97]. However, the diversity of the results in
the literature, reveals that the applied methods are data-driven and depended on the classification
scheme, the number of training data and the type input data i.e. whether only the bands are taken into
account or vegetation indices and other auxiliary data are used [19].

Figure 5. Kappa coefficient per class for the validation dataset during the training phase of the
base classifiers.

Figure 6. Distribution of (a) user’s accuracy and (b) producer’s accuracy per land cover class for the
validation dataset.

3.2. Classification Ensemble

During the ensemble, we tested the nine voting methods and the base classifiers with the testing
dataset. Figure 7 shows the k coefficient for the base classifiers and the voting methods applied in the
testing dataset. According to the results, the SVM outperforms not only the base classifiers but also all
the voting methods. However, all the voting methods based on sums as well as the method based on
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the majority of the votes performed better that all the rest of the base classifiers. It is worth mentioning
that DT present the lower k among all classifiers, while DIS has the second to last performance.

Table 5 presents the kappa coefficient per class for each classifier for the testing dataset, while the
Figure 8 presents the corresponding heatmap. It is observed that SVM shows a better performance
in almost all classes. The voting methods based on sums and the majority of the votes performed
slightly better in the built-up class. The confusion matrices of the testing dataset of the best classifier
and the best ensemble methods are presented in Tables A7–A9. According to the results, it is evident
that the combination of the classifiers does not provide always a better performance compared to the
base classifiers. In a crop classification study in a fragmented arable landscape by Salas et al. [98],
the authors concluded that when no classifier is clearly performing better than the others then an
ensemble approach can be the best alternative. In our case SVM, RF, ANN, and KNN show a similar
performance, however the SVM method performs better than all the applied voting methods. Therefore,
a diversity study was applied in order to identify any potential dissimilar performance between SVM
and the other base classifiers.

Figure 7. Kappa coefficients of the base classifiers and the voting methods for the testing datasets.

Table 5. Kappa coefficient per class 1 of all classifiers 2 for the testing dataset.

OG OF BW BU PB CF PN MS BL GL OB AL AB

DT 0.72 0.61 0.88 0.90 0.93 0.81 0.40 0.59 0.77 0.54 0.32 0.91 1.00
DIS 0.84 0.59 0.88 0.91 0.91 0.75 0.51 0.64 0.75 0.62 0.05 0.93 1.00

SVM 0.90 0.83 0.94 0.95 0.97 0.87 0.83 0.80 0.87 0.78 0.68 0.99 1.00
KNN 0.84 0.74 0.91 0.89 0.95 0.82 0.72 0.70 0.78 0.71 0.35 0.98 1.00

RF 0.84 0.75 0.93 0.94 0.96 0.84 0.73 0.72 0.84 0.72 0.54 0.96 1.00
ANN 0.86 0.71 0.92 0.94 0.95 0.82 0.53 0.69 0.86 0.70 0.33 0.95 1.00
Mode 0.87 0.76 0.93 0.96 0.95 0.85 0.68 0.74 0.85 0.73 0.40 0.96 1.00
MaxK 0.82 0.74 0.91 0.94 0.90 0.80 0.42 0.69 0.75 0.58 0.00 0.93 1.00
GSK 0.87 0.76 0.93 0.96 0.95 0.84 0.68 0.74 0.85 0.73 0.30 0.96 1.00
GMK 0.79 0.64 0.90 0.93 0.90 0.75 0.42 0.68 0.72 0.58 0.04 0.93 1.00

GWSK 0.87 0.76 0.93 0.96 0.95 0.85 0.68 0.74 0.85 0.73 0.40 0.96 1.00
GMF1 0.78 0.63 0.89 0.89 0.90 0.75 0.40 0.68 0.72 0.54 0.04 0.93 1.00
GSF1 0.87 0.76 0.93 0.96 0.95 0.84 0.68 0.74 0.85 0.73 0.30 0.96 1.00

GMMCC 0.79 0.64 0.90 0.93 0.90 0.75 0.42 0.68 0.73 0.59 0.04 0.93 1.00
GSMCC 0.87 0.76 0.93 0.96 0.95 0.84 0.68 0.74 0.85 0.73 0.35 0.96 1.00

1 With bold fonts the maximum kappa per class. 2 Mode: mode, maxK: max kappa, GSK: greater sum of kappa,
GMK: greater mean kappa, GWSK: greater weighted sum kappa, GMF1: greater mean F1, GSF1: greater sum F1,
GMMCC: greater mean MCC, GSMCC: greater sumMCC.
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Figure 8. Kappa coefficients of the base classifiers and the voting methods for the testing datasets.

Table 6 presents the result of the four diversity statistics for all the possible pairs of the base
classifiers for the testing dataset. According to the inter-kappa measure (Table 6a), all classifiers show
a moderate agreement between them, except for SVM, which shows a fair agreement with DT and DIS
and a moderate agreement with the rest of the classifiers. The high values of the Q-statistic (Table 6b)
and the low values of the disagreement measure (Table 6c) suggest that there is not any significant
diversity of the classifiers. The same conclusion results from the double-fault measure (Table 6d).
However, from Figure 9, it is evident that the SVM presents a diverse performance especially based on
the double-fault and the inter-kappa measures (Figure 9a,d). SVM’s double-fault measures are tightly
grouped while the values are quite low. Furthermore, the group of SVM’s inter-kappa measures are
lower, while the rest of the classifiers have a similar performance. Therefore, from the combination of
the classification performance of the base classifiers with the diversity results is revealed that a voting
method does not provide a better performance when a base classifier has a small but identifiable better
performance than the rest of the classifiers.

Table 6. Diversity measures for all the possible pairs of base classifiers (a) inter-kappa measure,
(b) Q-statistic, (c) disagreement measure, and (d) double-fault measure.

DT DIS SVM KNN RF DT DIS SVM KNN RF

DIS 0.523 - - - - 0.895 - - - -
SVM 0.356 0.367 - - - 0.870 0.871 - - -
KNN 0.540 0.483 0.477 - - 0.930 0.896 0.924 - -

RF 0.583 0.515 0.509 0.671 - 0.962 0.926 0.935 0.971 -
ANN 0.511 0.602 0.493 0.532 0.574 0.915 0.951 0.931 0.922 0.943

(a) (b)

DT DIS SVM KNN RF DT DIS SVM KNN RF

DIS 0.130 - - - - 0.097 - - - -
SVM 0.142 0.132 - - - 0.052 0.050 - - -
KNN 0.113 0.122 0.092 - - 0.086 0.075 0.051 - -

RF 0.099 0.110 0.081 0.064 - 0.087 0.074 0.050 0.078 -
ANN 0.120 0.094 0.089 0.096 0.083 0.083 0.089 0.052 0.068 0.068

(c) (d)
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Figure 9. Distribution of diversity measures for all the possible pairs of base classifiers (a) inter-kappa
measure, (b) Q-statistic, (c) disagreement measure, and (d) double-fault measure.

On the other hand, McNemar’s test of the ensemble methods showed that the voting method based
on greater kappa is significantly different from the rest of the voting methods (Table 7). More specifically,
the x2 exceeds the critical x2 value of 3.84 and thus ‘MaxK’ is statistically significant at a 95% confidence
interval for all the pair comparisons. Interestingly, the rest of the comparisons revealed that the null
hypothesis cannot be rejected according to McNemar’s test, hence the difference in accuracy between
the ensemble methods is not statistically significant.

Table 7. McNemar’s test x2 values for pair comparisons of ensemble methods 1.

MaxK GSK GMK GWSK GMF1 GSF1 GMMCC GSMCC

Mode 13.483 0 1.028 0 1.125 0 1.936 0
MaxK - 13.483 36.860 13.483 36.423 14.095 40.830 13.483
GSK - - 1.028 0 1.125 0 1.954 0
GMK - - - 1.028 0 0.921 3.063 1.028

GWSK - - - - 1.125 0 1.954 0
GMF1 - - - - - 1.028 1.895 1.125
GSF1 - - - - - - 1.787 0

GMMCC - - - - - - - 1.936
1 With bold fonts the McNemar’s test x2 values greater than value 3.84.

4. Conclusions

This work illustrates the potential use of a number of classifiers on identifying land cover
types. The land cover type mapping is essential for the land management of the Mediterranean
ecosystems. Long-term human activities along with geographic and climatic conditions have created
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a heterogeneous fragmented ecosystem that changes rapidly [99]. One of the main disturbances of
Mediterranean ecosystems are wildfires. Land cover type mapping provides valuable information,
i.e., vegetative fuel and socioeconomic inputs in wildfire risk assessment [100,101]. Furthermore,
through remote sensing classification we can identify the change detection, possible land degradations
and empower ecosystem monitoring [102,103].

An ensemble approach with nine voting methods has been developed for increased accuracy over
classification algorithms using multi-temporal Sentinel-2 data from a mixed Mediterranean ecosystem.
Each base classifier was trained with its own dataset in order to create the accuracy metrics that were
used within the voting methods. All the base classifiers and the ensemble methods were applied to
an unseen testing dataset. The result shows that the combination of multiple classifiers based on the
examined voting schemes does not always provide a better performance in land cover classification.
The SVM algorithm outperformed all the classifiers and was proven as the most accurate approach
especially for this quite unbalanced dataset.

The diversity measures can explain the outperformance of SVM. The double-fault measure clearly
shows that SVM significantly differs from the rest of the classifiers. Therefore, diversity measures
should be thoroughly examined before building an ensemble method. The diversity metrics can be
evidence in identifying possible overperformance within base classifiers hence an ensemble may not
be always necessary. On the other hand, possible underperformances can be identified leading to the
exclusion of some base classifiers. To sum up, our voting methods were influenced by the number of
classifiers with a lower performance opposed to SVM. Hence, the accuracy of the ensembles are lower
than the best base classifier, probably due to the ‘curse of conflict’ problem [104].

Potential further improvements of this methodology should include the incorporation of additional
base algorithms and more ensemble methods. Moreover, opposed to pixel-based approaches, ensembles
of segmentation approaches can be explored including traditional segmentation algorithms and CNNs.
An interesting potential improvement of this work should be the comparison of multiple Mediterranean
areas based on the very same ensemble of algorithms. Nevertheless, this work has proven that
contemporary computational approaches along with advanced algorithmic measures show potential
for land cover classification of unbalanced data.
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Appendix A

Table A1. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the decision tree (DT) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 617 82 23 0 10 0 1 9 0 46 0 1 0 789 0.78
OF 47 178 1 0 1 8 2 30 0 5 14 4 0 290 0.61
BW 39 0 1012 10 0 0 0 0 4 92 0 1 0 1158 0.87
BU 4 2 2 225 0 0 0 1 9 1 0 1 0 245 0.92
PB 33 2 0 0 1034 3 47 26 0 0 11 0 0 1156 0.89
CF 1 16 0 0 2 164 0 35 0 0 10 0 0 228 0.72
PN 3 0 0 0 13 0 32 10 0 0 2 0 0 60 0.53
MS 5 29 0 0 3 12 5 119 0 0 6 0 0 179 0.66
BL 0 0 0 9 0 0 0 0 41 0 0 0 0 50 0.82
GL 51 16 26 1 0 2 0 0 0 177 0 7 0 280 0.63
OB 1 0 0 0 2 5 0 3 0 0 13 1 0 25 0.52
AL 0 2 0 1 0 0 0 1 0 10 2 167 0 183 0.91
AB 0 0 0 0 0 0 0 0 0 0 0 0 267 267 1

Total 801 327 1064 246 1065 194 87 234 54 331 58 182 267
PA 0.77 0.54 0.95 0.91 0.97 0.85 0.37 0.51 0.76 0.53 0.22 0.92 1 OA = 0.82

kappa 0.73 0.55 0.88 0.91 0.91 0.77 0.43 0.56 0.79 0.55 0.31 0.91 1 kappa = 0.79

Table A2. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the discriminant (DIS) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 674 63 9 1 3 0 0 8 0 17 0 0 0 775 0.87
OF 17 171 0 0 0 9 0 20 0 3 13 5 0 238 0.72
BW 32 1 967 10 0 0 0 0 6 42 0 0 0 1058 0.91
BU 0 0 2 212 0 0 0 0 2 0 0 0 0 216 0.98
PB 42 3 0 0 1053 0 44 31 0 1 18 0 0 1192 0.88
CF 1 27 0 0 0 164 0 16 0 0 8 3 0 219 0.75
PN 3 3 0 0 5 0 40 4 0 0 0 0 0 55 0.73
MS 5 36 0 0 4 20 3 152 0 0 7 0 0 227 0.67
BL 0 1 1 23 0 0 0 0 46 0 0 0 0 71 0.65
GL 26 14 85 0 0 0 0 0 0 263 1 10 0 399 0.66
OB 1 8 0 0 0 1 0 3 0 0 11 0 0 24 0.46
AL 0 0 0 0 0 0 0 0 0 5 0 164 0 169 0.97
AB 0 0 0 0 0 0 0 0 0 0 0 0 267 267 1

Total 801 327 1064 246 1065 194 87 234 54 331 58 182 267
PA 0.84 0.52 0.91 0.86 0.99 0.85 0.46 0.65 0.85 0.79 0.19 0.9 1 OA = 0.85

kappa 0.83 0.58 0.89 0.91 0.91 0.79 0.56 0.64 0.73 0.7 0.26 0.93 1 kappa = 0.83
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Table A3. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the support vector machine (SVM) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 743 35 8 0 4 0 0 7 0 13 1 1 0 812 0.92
OF 23 259 0 0 0 4 0 15 0 2 1 1 0 305 0.85
BW 5 1 1033 2 0 0 0 0 2 38 0 0 0 1081 0.96
BU 3 0 0 242 0 0 0 0 5 0 0 0 0 250 0.97
PB 6 0 0 0 1039 0 14 4 0 0 1 0 0 1064 0.98
CF 0 2 0 0 0 172 0 13 0 0 5 0 0 192 0.9
PN 1 0 0 0 12 0 72 2 0 0 1 0 0 88 0.82
MS 3 24 0 0 7 16 1 186 0 0 10 1 0 248 0.75
BL 0 0 0 2 0 0 0 0 47 0 0 0 0 49 0.96
GL 17 6 23 0 0 0 0 0 0 275 1 6 0 328 0.84
OB 0 0 0 0 3 2 0 7 0 0 37 0 0 49 0.76
AL 0 0 0 0 0 0 0 0 0 3 1 173 0 177 0.98
AB 0 0 0 0 0 0 0 0 0 0 0 0 267 267 1

Total 801 327 1064 246 1065 194 87 234 54 331 58 182 267
PA 0.93 0.79 0.97 0.98 0.98 0.89 0.83 0.79 0.87 0.83 0.64 0.95 1 OA = 0.93

kappa 0.91 0.81 0.95 0.97 0.97 0.89 0.82 0.76 0.91 0.82 0.69 0.96 1 kappa = 0.91

Table A4. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the k-nearest neighbors (KNN) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 673 45 2 4 1 0 2 7 0 22 0 2 0 758 0.89
OF 34 253 0 0 0 15 0 34 0 5 11 2 0 354 0.71
BW 27 1 1038 15 0 0 0 0 3 50 0 0 0 1134 0.92
BU 2 1 0 221 0 0 0 0 7 0 0 0 0 231 0.96
PB 17 1 0 0 1047 0 24 13 0 2 9 0 2 1115 0.94
CF 0 2 0 0 0 161 0 17 0 0 16 0 0 196 0.82
PN 1 0 0 0 10 0 58 6 0 0 1 0 0 76 0.76
MS 9 20 0 0 6 18 3 157 0 0 9 1 0 223 0.7
BL 0 0 1 6 0 0 0 0 44 0 0 0 0 51 0.86
GL 38 3 23 0 0 0 0 0 0 247 0 7 0 318 0.78
OB 0 0 0 0 1 0 0 0 0 0 12 0 0 13 0.92
AL 0 1 0 0 0 0 0 0 0 5 0 170 0 176 0.97
AB 0 0 0 0 0 0 0 0 0 0 0 0 265 265 1

Total 801 327 1064 246 1065 194 87 234 54 331 58 182 267
PA 0.84 0.77 0.98 0.9 0.98 0.83 0.67 0.67 0.81 0.75 0.21 0.93 0.99 OA = 0.89

kappa 0.84 0.72 0.93 0.92 0.95 0.82 0.71 0.67 0.84 0.74 0.34 0.95 1 Kappa = 0.87
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Table A5. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the random forest (RF) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 724 54 8 0 4 0 3 14 0 38 1 1 724 847 0.85
OF 22 235 0 0 0 7 0 18 0 3 3 2 22 290 0.81
BW 21 1 1027 3 0 0 0 0 3 49 0 0 21 1104 0.93
BU 4 1 2 242 0 0 0 0 12 0 0 2 4 263 0.92
PB 10 0 0 0 1049 0 27 15 0 0 7 0 10 1108 0.95
CF 1 6 0 0 0 173 0 14 0 0 15 0 1 209 0.83
PN 1 0 0 0 3 0 57 3 0 0 1 0 1 65 0.88
MS 5 24 0 0 8 14 0 169 0 0 10 0 5 230 0.73
BL 0 0 0 1 0 0 0 0 39 0 0 0 0 40 0.97
GL 13 4 27 0 0 0 0 0 0 234 0 8 13 286 0.82
OB 0 0 0 0 1 0 0 1 0 0 20 0 0 22 0.91
AL 0 2 0 0 0 0 0 0 0 7 1 169 0 179 0.94
AB 0 0 0 0 0 0 0 0 0 0 0 0 0 267 1

Total 801 327 1064 246 1065 194 87 234 54 331 58 182 801
PA 0.9 0.72 0.97 0.98 0.98 0.89 0.66 0.72 0.72 0.71 0.34 0.93 0.9 OA = 0.90

kappa 0.85 0.75 0.93 0.95 0.96 0.85 0.75 0.71 0.83 0.74 0.5 0.93 0.85 Kappa = 0.88

Table A6. Confusion matrix for the validation dataset during the training phase of the base classifiers
for the artificial neural network (ANN) model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 717 55 7 2 5 0 0 3 0 28 0 1 0 818 0.88
OF 25 220 0 1 0 9 0 37 0 3 8 2 0 305 0.72
BW 11 0 1044 3 0 0 0 0 3 43 0 2 0 1106 0.94
BU 1 1 7 225 0 0 0 0 8 0 0 0 0 242 0.93
PB 8 0 0 0 1034 0 39 12 0 0 13 0 0 1106 0.93
CF 0 3 0 0 0 163 0 24 0 0 11 3 0 204 0.8
PN 1 0 0 0 12 0 52 0 0 0 1 0 0 66 0.79
MS 5 23 0 0 10 16 1 143 0 0 7 0 0 205 0.7
BL 0 1 0 8 0 0 0 0 51 0 0 0 0 60 0.85
GL 23 5 27 1 0 0 0 1 0 243 0 3 0 303 0.8
OB 0 2 0 0 1 3 0 9 0 0 18 1 0 34 0.53
AL 1 1 0 1 0 0 0 0 0 7 3 169 0 182 0.93
AB 0 0 0 0 1 0 0 0 0 0 0 0 279 280 1

Total 792 311 1085 241 1063 191 92 229 62 324 61 181 279
PA 0.91 0.71 0.96 0.93 0.97 0.85 0.57 0.62 0.82 0.75 0.3 0.93 1 OA = 0.89

kappa 0.87 0.7 0.94 0.93 0.94 0.82 0.65 0.64 0.83 0.76 0.37 0.93 1 Kappa = 0.87
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Table A7. Confusion matrix for the test dataset of the SVM model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 740 35 7 2 6 1 0 10 1 21 0 1 0 824 0.90
OF 27 271 0 1 0 2 0 9 0 5 1 0 0 316 0.86
BW 8 0 1031 3 0 0 0 0 0 34 0 0 0 1076 0.96
BU 0 0 1 246 0 0 0 0 10 0 0 0 0 257 0.96
PB 2 0 0 0 1062 0 15 3 0 1 4 0 0 1087 0.98
CF 0 1 0 0 0 152 0 11 0 0 5 0 0 169 0.90
PN 0 0 0 0 10 0 66 0 0 0 0 0 0 76 0.87
MS 4 12 0 0 9 17 1 189 0 1 6 0 0 239 0.79
BL 0 0 0 4 0 0 0 0 50 0 0 0 0 54 0.93
GL 15 4 49 1 0 0 0 0 0 250 0 2 0 321 0.78
OB 1 2 0 0 3 6 0 4 0 0 34 0 0 50 0.68
AL 0 2 0 0 0 0 0 0 0 0 0 185 0 187 0.99
AB 0 0 0 0 0 0 0 0 0 0 0 0 254 254 1

Total 797 327 1088 257 1090 178 82 226 61 312 50 188 254 4910
PA 0.93 0.83 0.95 0.96 0.97 0.85 0.80 0.84 0.82 0.80 0.68 0.98 1 OA = 0.92

kappa 0.9 0.83 0.94 0.95 0.97 0.87 0.83 0.8 0.87 0.78 0.68 0.99 1 Kappa = 0.91

Table A8. Confusion matrix for the test dataset of the Greater Weighted Sum of Kappa ensemble model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 727 42 5 3 4 0 1 7 1 25 0 0 0 815 0.89
OF 20 244 0 0 0 2 0 13 0 6 5 0 0 290 0.84
BW 15 0 1037 3 0 0 0 0 3 35 0 1 0 1094 0.95
BU 0 0 1 248 0 0 0 0 8 0 0 0 0 257 0.96
PB 6 0 0 0 1074 0 26 9 0 2 7 0 0 1124 0.96
CF 0 3 0 0 0 159 0 16 0 0 12 0 0 190 0.84
PN 0 0 0 0 1 0 55 0 0 0 0 0 0 56 0.98
MS 9 28 0 0 10 17 0 179 0 1 5 0 0 249 0.72
BL 0 0 1 2 0 0 0 0 49 0 0 0 0 52 0.94
GL 20 7 44 1 0 0 0 0 0 241 0 4 0 317 0.76
OB 0 1 0 0 1 0 0 2 0 0 19 0 0 23 0.83
AL 0 2 0 0 0 0 0 0 0 2 2 183 0 189 0.97
AB 0 0 0 0 0 0 0 0 0 0 0 0 254 254 1

Total 797 327 1088 257 1090 178 82 226 61 312 50 188 254 4910
PA 0.91 0.75 0.95 0.96 0.99 0.89 0.67 0.79 0.80 0.77 0.38 0.97 1 OA = 0.91

kappa 0.87 0.76 0.93 0.96 0.95 0.85 0.68 0.74 0.85 0.73 0.40 0.96 1 Kappa = 0.89
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Table A9. Confusion matrix for the test dataset of the Mode ensemble model.

Reference

OG OF BW BU PB CF PN MS BL GL OB AL AB Total UA

Pr
ed

ic
te

d

OG 727 42 5 3 4 0 1 7 1 25 0 0 0 815 0.89
OF 20 244 0 0 0 2 0 13 0 6 5 0 0 290 0.84
BW 15 0 1037 3 0 0 0 0 3 35 0 1 0 1094 0.95
BU 0 0 1 248 0 0 0 0 8 0 0 0 0 257 0.96
PB 6 0 0 0 1074 0 26 9 0 2 7 0 0 1124 0.96
CF 0 3 0 0 0 159 0 16 0 0 12 0 0 190 0.84
PN 0 0 0 0 1 0 55 0 0 0 0 0 0 56 0.98
MS 9 28 0 0 10 17 0 179 0 1 5 0 0 249 0.72
BL 0 0 1 2 0 0 0 0 49 0 0 0 0 52 0.94
GL 20 7 44 1 0 0 0 0 0 241 0 4 0 317 0.76
OB 0 1 0 0 1 0 0 2 0 0 19 0 0 23 0.83
AL 0 2 0 0 0 0 0 0 0 2 2 183 0 189 0.97
AB 0 0 0 0 0 0 0 0 0 0 0 0 254 254 1

Total 797 327 1088 257 1090 178 82 226 61 312 50 188 254 4910
PA 0.89 0.84 0.95 0.96 0.96 0.84 0.98 0.72 0.94 0.76 0.83 0.97 1 OA = 0.91

kappa 0.87 0.76 0.93 0.96 0.95 0.85 0.68 0.74 0.85 0.73 0.40 0.96 1 Kappa = 0.89
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70. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
71. Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data.

Int. J. Remote Sens. 2008, 29, 617–663. [CrossRef]
72. Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural networks in remote sensing. Int. J. Remote Sens. 1997, 18,

699–709. [CrossRef]
73. Yuan, H.; Van Der Wiele, C.; Khorram, S. An Automated Artificial Neural Network System for Land Use/Land

Cover Classification from Landsat TM Imagery. Remote Sens. 2009, 1, 243–265. [CrossRef]
74. Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification.

Int. J. Remote Sens. 2003, 24, 4907–4938. [CrossRef]
75. Längkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A. Classification and Segmentation of Satellite Orthoimagery

Using Convolutional Neural Networks. Remote Sens. 2016, 8, 329. [CrossRef]
76. Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification:

Transfer Learning Analysis. Remote Sens. 2019, 12, 86. [CrossRef]
77. Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation

Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [CrossRef]
78. Zuo, Z.; Shuai, B.; Wang, G.; Liu, X.; Wang, X.; Wang, B.; Chen, Y. Convolutional recurrent neural networks:

Learning spatial dependencies for image representation. In Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 18–26.

79. Zhao, W.; Du, S. Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension
Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

80. Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN
and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506–531. [CrossRef]

81. Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and their relationship with the
ensemble accuracy. Mach. Learn. 2003, 51, 181–207. [CrossRef]

82. Petrakos, M.; Atli Benediktsson, J.; Kanellopoulos, I. The effect of classifier agreement on the accuracy of the
combined classifier in decision level fusion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2539–2546. [CrossRef]

83. Thomas, G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of
Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157.

84. Edwards, A.L. Note on the “correction for continuity” in testing the significance of the difference between
correlated proportions. Psychometrika 1948, 13, 185–187. [CrossRef]

85. Kavzoglu, T. Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2
Imagery. In Handbook of Neural Computation; Academic Press: London, UK, 2017; ISBN 9780128113196.

http://dx.doi.org/10.1109/TGRS.2008.2005729
http://dx.doi.org/10.1109/TGRS.2012.2199323
http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.jag.2009.06.002
http://dx.doi.org/10.1016/S0034-4257(01)00209-7
http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1080/01431160701352154
http://dx.doi.org/10.1080/014311697218700
http://dx.doi.org/10.3390/rs1030243
http://dx.doi.org/10.1080/0143116031000114851
http://dx.doi.org/10.3390/rs8040329
http://dx.doi.org/10.3390/rs12010086
http://dx.doi.org/10.3390/rs12101667
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1080/01431161.2018.1513666
http://dx.doi.org/10.1023/A:1022859003006
http://dx.doi.org/10.1109/36.964992
http://dx.doi.org/10.1007/BF02289261


Remote Sens. 2020, 12, 2005 25 of 25

86. Environmental Systems Research Institute. ESRI ArcGIS Desktop: Release 10; Environmental Systems Research
Institute: Redlands, CA, USA, 2013.

87. The Mathworks Inc. The Mathworks Inc.: Massachusetts. 2018. Available online: https://www.Mathworks.
com/Products/Matlab (accessed on 10 February 2020).

88. R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core
Team: Vienna, Austria, 2017.

89. Wickham, H.; Francois, R. The Dplyr Package; R Core Team: Vienna, Austria, 2016.
90. Bache, S.M.; Wickham, H. Package ‘magrittr’—A Forward-Pipe Operator for R. Available online: https:

//CRAN.R-project.org/package=magrittr (accessed on 10 February 2020).
91. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
92. Anthony, G.; Gregg, H.; Tshilidzi, M. Image classification using SVMs: One-Against-One vs One-against-All.

In Proceedings of the 28th Asian Conference on Remote Sensing 2007, ACRS 2007, Kuala Lumpur, Malaysia,
12–16 November 2007.

93. Daengduang, S.; Vateekul, P. Enhancing accuracy of multi-label classification by applying one-vs-one support
vector machine. In Proceedings of the 2016 13th International Joint Conference on Computer Science and
Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1–6.

94. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math.
1963, 11, 431–441. [CrossRef]

95. Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533.
[CrossRef]

96. Shang, X.; Chisholm, L.A. Classification of Australian Native Forest Species Using Hyperspectral Remote
Sensing and Machine-Learning Classification Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 2481–2489. [CrossRef]

97. Pirotti, F.; Sunar, F.; Piragnolo, M. Benchmark of machine learning methods for classification of a sentinel-2
image. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 335–340. [CrossRef]

98. Salas, E.A.L.; Subburayalu, S.K.; Slater, B.; Zhao, K.; Bhattacharya, B.; Tripathy, R.; Das, A.; Nigam, R.;
Dave, R.; Parekh, P. Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and
limited field data. Int. J. Image Data Fusion 2020, 11, 33–56. [CrossRef]

99. Gauquelin, T.; Michon, G.; Joffre, R.; Duponnois, R.; Génin, D.; Fady, B.; Bou Dagher-Kharrat, M.; Derridj, A.;
Slimani, S.; Badri, W.; et al. Mediterranean forests, land use and climate change: A social-ecological
perspective. Reg. Environ. Chang. 2018, 18, 623–636. [CrossRef]

100. Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Kallos, G.; Matsinos, Y. Integrating new methods and tools in
fire danger rating. Int. J. Wildl. Fire 2007, 16, 306. [CrossRef]

101. Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Matsinos, I. Identifying wildland fire ignition factors through
sensitivity analysis of a neural network. Nat. Hazards 2009, 50, 125–143. [CrossRef]

102. Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L. The impact of Land Use/Land Cover Changes on
land degradation dynamics: A Mediterranean case study. Environ. Manag. 2012, 49, 980–989. [CrossRef]

103. Otero, I.; Marull, J.; Tello, E.; Diana, G.L.; Pons, M.; Coll, F.; Boada, M. Land abandonment, landscape,
and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecol. Soc.
2015. [CrossRef]

104. Song, C.; Pons, A.; Yen, K. Sieve: An Ensemble Algorithm Using Global Consensus for Binary Classification.
AI 2020, 1, 16. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.Mathworks.com/Products/Matlab
https://www.Mathworks.com/Products/Matlab
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/S0893-6080(05)80056-5
http://dx.doi.org/10.1109/JSTARS.2013.2282166
http://dx.doi.org/10.5194/isprsarchives-XLI-B7-335-2016
http://dx.doi.org/10.1080/19479832.2019.1706646
http://dx.doi.org/10.1007/s10113-016-0994-3
http://dx.doi.org/10.1071/WF05091
http://dx.doi.org/10.1007/s11069-008-9326-3
http://dx.doi.org/10.1007/s00267-012-9831-8
http://dx.doi.org/10.5751/ES-07378-200207
http://dx.doi.org/10.3390/ai1020016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Data 
	Methodology 
	Ground Truth Data Collection 
	Base Classifiers 
	Ensemble Voting Methods 


	Results and Discussion 
	Base Classifiers Training 
	Classification Ensemble 

	Conclusions 
	
	References

