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Abstract: Formulated as a pixel-level labeling task, data-driven neural segmentation models for
cloud and corresponding shadow detection have achieved a promising accomplishment in remote
sensing imagery processing. The limited capability of these methods to delineate the boundaries
of clouds and shadows, however, is still referred to as a central issue of precise cloud and shadow
detection. In this paper, we focus on the issue of rough cloud and shadow location and fine-grained
boundary refinement of clouds on the dataset of Landsat8 OLI and therefore propose the Refined UNet
to achieve this goal. To this end, a data-driven UNet-based coarse prediction and a fully-connected
conditional random field (Dense CRF) are concatenated to achieve precise detection. Specifically,
the UNet network with adaptive weights of balancing categories is trained from scratch, which can
locate the clouds and cloud shadows roughly, while correspondingly the Dense CRF is employed to
refine the cloud boundaries. Eventually, Refined UNet can give cloud and shadow proposals sharper
and more precisely. The experiments and results illustrate that our model can propose sharper and
more precise cloud and shadow segmentation proposals than the ground truths do. Additionally,
evaluations on the Landsat 8 OLI imagery dataset of Blue, Green, Red, and NIR bands illustrate that
our model can be applied to feasibly segment clouds and shadows on the four-band imagery data.

Keywords: cloud and shadow segmentation; pixel-level labelling; UNet prediction; fully-connected
conditional random field; adaptive weights

1. Introduction

Clouds and corresponding shadows contaminate remote sensing imageries, occlude the
recognition of land cover, and eventually lead to an invalid resolve activity. Cloud and cloud shadow
detection, therefore, is essential for intelligent remote sensing imagery processing and translation.
Currently, it is very challenging to precisely recognize clouds and corresponding shadows in a remote
sensing image even if the rough location of utilizing spectral and spatial features has been sufficiently
developed; it is mainly because the manually-developed solutions are highly dependent on the inherent
features, which leads to segmenting clouds and shadows with reasonable spectral thresholds instead
of risking grouping pixels with low confidence. Accordingly, under- or over-segmentation (shrinkage
or inflation) remains challenging in the cloud and shadow segmentation.

Non-data-driven development of cloud and cloud shadow detection mainly focuses on three
aspects of image features, namely spatial and spectral test, temporal differentiation methods,
and statistical methods [1], in which the spatial and spectral features are mainly taken into
consideration. Recently, data-driven methods [2–4] thrive because of the abundant labeled training
samples and the adaptive feature extraction, which enables automatically typical feature discovery of
clouds and cloud shadows and detects them in automatic ways. Particularly, CNN-based models [5–8]
utilize learnable feature extractors to adaptively learn features within images, and later map them

Remote Sens. 2020, 12, 2001; doi:10.3390/rs12122001 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12122001
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/12/2001?type=check_update&version=2


Remote Sens. 2020, 12, 2001 2 of 28

into high-dimensional space that is suitable to separate; hence, it is possible to establish the automatic
mapping between images and labels using these data-driven methods.

Accordingly, cloud and shadow detection can be formulated as a semantic segmentation task,
which is also solved by the neural segmentation model in which CNN-based models act as backbones.
CNN-based models convolve the multi-band imageries or intermediate feature maps to extract highly
relevant features and eventually categorize each pixel in terms of the output likelihood of classification.
It has achieved a great accomplishment as CNN-based segmentation models dramatically promote the
metrics of cloud and shadow detection.

However, challenges remain in the data-driven cloud and cloud shadow detection, the boundaries
of clouds, for instance, is not able to be recognized precisely. Common convolutional networks enlarge
the receptive fields to comprehend the high-level visual objects, hence produce a coarse result to locate
the aforementioned objects instead of pixel-level labeling. A central issue in precise cloud detection is
to delineate the boundaries of clouds and shadows. Consequently, a refined method for cloud and
shadow segmentation should be proposed to address the aforementioned issue.

In this paper, we focus on the rough cloud and shadow location and fine-grained boundary
refinement on the dataset of Landsat8 OLI and therefore propose the Refined UNet to achieve this
goal. Specifically, the UNet with adaptive weights of balancing pixel categories is trained from scratch,
which can locate the clouds and cloud shadows roughly, while correspondingly the Dense CRF is
employed to refine the boundaries of clouds and shadows. The Refined UNet can eventually give
cloud and shadow proposals sharper and more precisely. In experiments, our Refined UNet was
trained and tested on the Landsat8 OLI dataset in which coarse detection references are given and
can be referred to as ground truths. The experiments and results illustrate that our model can give
more precise cloud and shadow proposals with sharper edges than the ground truths do (Figure 1).
Additionally, evaluations on the Landsat 8 OLI imagery dataset of Blue, Green, Red, and NIR bands
illustrated that our model can be applied to feasibly segment clouds and shadows on the four-band
imagery data.

False-color image UNet×α + refining False-color image UNet×α + refining

False-color image UNet×α + refining False-color image UNet×α + refining

Figure 1. Examples of Refined UNet for cloud and cloud shadow segmentation. It is observed
that Refined UNet can delineate boundaries of clouds and shadows sharper and more precisely,
which overcomes the inflation of given ground truths.
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The main contributions in this paper are listed as follows:

• Refined UNet: We propose an innovative architecture of assembling UNet and Dense CRF to
detect clouds and shadows and refine their corresponding boundaries. The proper utilization of
the Dense CRF refinement can sharpen the detection of cloud and shadow boundaries.

• Adaptive weights for imbalanced categories: An adaptive weight strategy for imbalanced
categories is employed in training, which can dynamically calculate the weights and enhance the
label attention of the model for minorities.

• Extension to four-band segmentation: The segmentation efficacy of our Refined UNet was also
tested on the Landsat 8 OLI imagery dataset of Blue, Green, Red, and NIR bands; the experimental
results illustrate that our method can obtain feasible segmentation results as well.

The rest of the paper is organized as follows. Section 2 investigates and presents some related work
regarding cloud and cloud shadow detection and neural semantic segmentation. Proposed Refined
UNet for cloud and shadow detection is described in Section 3. Section 4 presents the test Landsat8
OLI dataset, implementation details, and experiments for evaluation; it also illustrates experimental
results qualitatively. Section 5 concludes this paper.

2. Related Work

We summarize the related work from two aspects: manual cloud and shadow segmentation in
Section 2.1 and state-of-the-art neural semantic segmentation in Section 2.2.

2.1. Cloud and Shadow Segmentation

In terms of different perspectives of intermediate spectral features from remote sensing imageries,
manually-developed cloud and corresponding shadow segmentation can be grouped into three
categories: spectral tests, temporal differentiation, and statistical methods [1]. Observing the
distribution of spectral data, thresholds were used to detect clouds and shadows limited in a
finite range [9–12]. CFMask [13,14] explored comprehensively the spectral features and provided
a benchmark of cloud and shadow detection. Temporal differentiation methods [15–17] observed the
movement of dynamic clouds and shadows, detecting according to differences between imageries.
Exploiting the statistics of spatial and spectral features, statistical methods [18,19] formulated detecting
the cloud and shadow areas as a pixel-wise classification issue, which are highly relevant to data-driven
methods. In this case, however, accurate or precise labels should be given so the statistical model can
fit the distribution of cloud and shadows. Recently, it is noted that the cloud and shadow detection can
be formulated as a semantic segmentation issue and solved by CNN-based pixel-wise classification
model [1] when the data-driven methods thrived in semantic segmentation tasks on natural images;
this is the main inspiration of formulating our task as well.

2.2. State-of-the-Art Neural Semantic Segmentation

Dense classification tasks, i.e., semantic segmentation tasks, aim to group pixels of an image
into categories semantically, in which pixels of a potential object should be classified into a category.
High-level vision tasks (image classification, object detection, etc) comprehend the high-level semantic
information, whereas the low-level vision task provides a base for fine-grained image understanding.
Accordingly, some representative and state-of-the-art methods are summarized as follows.

Classifiers of natural image segmentation tasks recognize natural objects and classify pixels
accordingly: they take natural images as input and ultimately aim to output labeled predictions.
These classifiers are seldom trained from scratch; they, alternatively, finetune feature extractors or other
components of widely-used pretrained neural classifiers as the backbone networks. Typical backbones
include VGG-16/VGG-19 [2], MobileNets V1/V2/V3 [20–22], ResNet18/ResNet50/ResNet101 [3,23],
DenseNet [4], etc. The aforementioned backbone networks have demonstrated their striking



Remote Sens. 2020, 12, 2001 4 of 28

performance in image classification tasks because of delicate feature extractor designing, which can
effectively be transferred into the segmentation tasks as well.

Based on these backbone networks, neural semantic segmentation networks have significantly
pushed the performance of pixel-level annotation tasks. Fully convolutional networks (FCN) [5]
substituted fully-connected layers with convolutional layers, which can adaptively segment images
with arbitrary sizes. U-Net [6] introduced intermediate feature fusion by concatenating multi-level
feature maps with the same dimensions via shortcut connections, which popularized the reuse of
features in image segmentation tasks. SegNet [7,8] inherited the encoder–decoder architecture and
was applied to efficient scene understanding applications. Jegou et al. [24] extended DenseNet [4]
into semantic segmentation problems due to its excellent performance on image classification tasks.
FastFCN [25] used Joint Pyramid Upsampling to reduce computation complexity.

Explorations have been deep developed on feature mechanisms and data distributions: methods
based on dilated convolution balanced trade-off between the larger receptive fields and kernel sizes,
which implements multi-scale sparse subsampling with a small kernel and different dilated ratios.
Yu et al. [26] proposed a method of multi-scale contextual aggregation using dilated convolutions.
RefineNet [27] exploited fine-grained features to reinforce high-resolution classification in a way
of building long-range residual connections (identity maps). PSPNet [28] aggregated global feature
representations using Pyramid Pooling Module to segment images. Peng et al. [29] suggested that large
kernel matters in the classification and localization tasks simultaneously, and accordingly proposed a
global convolutional network to address mentioned issues. UPerNet [30] was proposed to discover
rich visual knowledge and parse multiple visual concepts at once. HRNet [31] aggregated features
from all the parallel convolutions instead of only from the high-resolution convolutions, leading to
learning stronger feature representations. Gated-SCNN [32] built a two-stream segmentation classifier
using a side branch of dedicated shape processing. Papandreou et al. [33] applied EM [34] to weakly-
and semi-supervised learning for neural semantic segmentation.

DeepLabs initiated a series of segmentation methods along with the development of the
mentioned methods. Using the atrous convolution and CRF, DeepLab V1 [35] initiated a pipeline
aggregating rough classification and boundary refinement, and further DeepLab V2 [36] improved
the performance. DeepLab V3 [37] deceased the use of CRF to improve segmentation performance.
DeepLab V3+ [38] applied the depthwise separable convolution from Xception [39] to the atrous spatial
pyramid pooling modules and decoder, promoting both efficiency and robustness.

Additionally, modeling segmentation as a probabilistic graphical model is gradually becoming
a novel trend under the condition of CNN extracting high-level visual features. CRFasRNN [40]
formulated CRF implementation as an RNN-based layer, which achieved an end-to-end training
and inference of neural network predicting and CRF refining in natural image segmentation tasks.
Deep parsing network [41] addressed the semantic segmentation task by modeling unary terms and
pairwise terms from CNN and approximation of mean-field of additional layers, respectively, yielding a
striking performance on PASCAL VOC 2012. Moreover, a combination of Gaussian Conditional
Random Field (G-CRF) and deep learning architecture [42] is proposed to address the structured
prediction, which inherited several merits including a unique global optimum, end-to-end training,
and self-discovered pairwise terms.

Segmentation methods have carried out comprehensive exploration of semantic object localization,
and have achieved promising performance on the dense classification tasks. The lower-level issues,
however, should be concentrated carefully: splitting objects along with a precise boundary remains
challenging, especially in remote sensing data. Consequently, we rethink the drawbacks of cloud and
shadow detection and focus on the boundary prediction, which drives us to establish a dedicated
model from scratch.
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3. Methodology

In this section, we present the proposed Refined UNet in three subsections: The UNet architecture is
introduced in Section 3.1 and the postprocessing of fully-connected conditional random field is presented
in Section 3.2. The concatenation of UNet prediction and Dense CRF refinement is introduced in
Section 3.3, which is also an overall framework. The entire pipeline of our method is illustrated in
Figure 2.

Figure 2. The entire pipeline of Refined UNet. UNet is first employed to localize clouds and shadows
roughly, and Dense CRF refines the boundaries of clouds and shadows by taking the UNet prediction
as the unary potential.

3.1. UNet Prediction

UNet has been referred to as an effective structure in image segmentation tasks. Given an
image of which each pixel is grouped into a specific category, UNet architecture can hierarchically
extract low-level features and recombine them into higher-level features in the encoder, while it can
perform the element-wise classification from multiple features in the decoder. Driven by the weighted
cross-entropy loss function, UNet gradually secures the learnable parameters in feature extractors
and infer the expected output which is closer to ground truth. The encoder–decode architecture of
UNet is illustrated in Figure 3, in which down-sampling blocks of “Conv-ReLU-MaxPooling” are
employed to extract features and upsampling blocks of “UpSample-Conv-ReLU” are employed to
infer the segmentation in the same resolution.

Figure 3. UNet structure for localizing the clouds and shadows coarsely.
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To clarify the use of UNet architecture, a mathematical formulation of learning and inference is
given as follows. In the learning phase, given the N-band input x that denotes a multi-band remote
sensing image, UNet f UNet outputs the logits ŷ with respect to x, in which ŷ denotes the corresponding
pixel-wise likelihood.

ŷ = f UNet(x) (1)

Convolutional operator ∗ filters the multi-band input or intermediate feature maps to generate
multi-level features within f UNet of N layers, in which each element φl

p,q,k of the feature map of layer l
are calculated in Equation (2).

φl
p,q,k = ∑

c
∑

i
∑

j
φl−1

p+i,q+j,c × wi,j,c,k + bk (2)

Following convolutional layers, MaxPooling layers are used to enlarge the receptive field so that
high-level features can be captured comprehensively.

f UNet(·) fuses the intermediate feature maps by concatenating them with the same size,
in Equation (3).

φl = [φN−l+1, φl−1] (3)

In our study, a weighted multi-class cross-entropy loss function with an adaptive categorical
weight vector α is proposed to push the network to pay more attention to the minorities of categories.
Specifically, αi ∈ α is proportion to the inverse of total counts Mi of category i and the total counts
of pixels M, namely, minorities in the categories can have higher weights. Thus, the loss function is
calculated in Equation (4).

Lseg(y, ŷ) = −(α� y)T log softmax(ŷ) (4)

in which softmax(·) denotes the softmax function defined by Equation (5).

softmax(ŷ) =
exp(ŷ)

1T exp(ŷ)
(5)

where y denotes a one-hot vector of the label, ŷ is the prediction of f UNet with respect to input x,
and α is the adaptive weight vector of each category. Each element of α is calculated dynamically in
Equation (6).

αi =
1

Mi
max(M) (6)

where αi denotes the adaptive weight of category i and Mi is the total counts of category i.
In the optimization, the gradient descent method is used to optimize the learnable parameters

in UNet, more specifically, kernels of convolutional layers. Particularly, the derivatives of the loss
function with respect to the output ŷ is calculated in Equation (7).

∂Lseg

∂ŷ
= softmax(ŷ)− (α� y) (7)

In the inference phase, UNet outputs the segmentation proposal with the size of p × q × k
indicating that p× q pixels have the possibilities of k categories. The maximums of these k possibilities
are the elementwise classification results.

cp,q = arg max
k

ŷp,q,k (8)

3.2. Fully-Connected Conditional Random Field (Dense CRF) Postprocessing

Generally speaking, UNet can reliably sense the existence of clouds and cloud shadows and
roughly localize them. The boundaries of clouds, however, cannot be precisely pinpointed by UNet.
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The reason for vague boundary segmentation is speculated as follows: multiple max-pooling layers
enlarge the receptive field of the neural network, which improves effectively extracting the high-level
features (i.e., semantic information) and helps high-level vision tasks, for instance, image classification.
However, the use of multiple max-pooling layers brings more invariance in the low-level vision tasks,
which is detrimental to exact boundary detection in cloud segmentation [35]. UNet is still affected in
fine-grained segmentation even if the concatenations attempt to alleviate the lack of high-resolution
features. Considering the disadvantages of UNet prediction, the postprocessing of the fully-connected
conditional random field (Dense CRF) is employed to refine exact cloud boundaries.

The cloud and shadow refinement of Dense CRF is formulated as follows. Element-wise
classification (X, I) can be formulated as a conditional random field (CRF) characterized by a Gibbs
distribution, defined in Equation (9).

P(X = x|I) = 1
Z(I)

exp(−E(x|I)) (9)

in which E(x) denotes the Gibbs energy, G = (V , E) the graph, V = {X1, X2, . . . , XN} the
element-wise classes, I the global observation (image), and Z(I) the normalization term to guarantee
the correct probability.

In the Dense CRF, the corresponding Gibbs energy function is defined in Equation (10).

E(x) = ∑
i

ψu(xi) + ∑
i

∑
i<j

ψp(xi, xj) (10)

in which x denotes the label assignment for all pixels, ψu the unary potential, and ψp the
pairwise potential.

The unary potential ψu(xi) can be given by UNet outputs, while the pairwise potential ψp(xi) is
defined in Equation (11).

ψp(xi, xj) = µ(xi, xj)
K

∑
m=1

w(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi ,fj)

(11)

in which µ(xi, xj) denotes the label compatibility in Dense CRF and fi and fj the feature vectors. In our
case, Potts model µ(xi, xj) = [xi 6= xj] is used as the label compatibility.

Contrast-sensitive two-kernel potentials [43] are used to capture the connectivity of two nearby
pixels with similar spectral features and eliminate the isolated regions, defined in Equation (12).

k(fi, fj) =w(1) exp

(
−
|pi − pj|2

2θ2
α
−
|Ii − Ij|2

2θ2
β

)

+ w(2) exp

(
−
|pi − pj|2

2θ2
γ

)
(12)

in which pi, pj denote the positions, Ii, Ij the spectral features of pixel i and j. The spectral features Ii
and Ij consist of false-color band 5, 4, and 3. Note that θα, θβ, and θγ are three key hyperparameters
controlling the degree of connectivity and similarity, and significantly affect the performance of
the refinement.

In the inference phase, the Dense CRF infers an observation x̂ to find the most likely assignment
(MAP) of P(x): x̂ = arg maxx P(x) where P(x) = 1/Z exp(−E(x)). An efficient solution to Dense
CRF has been provided in [43], in which the approximate inference of the iterative message-passing
algorithm is used to estimate the CRF distribution. The solution facilitates the inference of Dense CRF
in a linear time complexity, which can result in an efficient utility of Dense CRF in segmentation tasks.
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3.3. Concatenation of UNet Prediction and Dense CRF Refinement

The overall framework of our Refined UNet is described as follows. The large size of an
entire high-resolution remote sensing image discourages UNet prediction; predicting patch by patch,
therefore, is a practical solution to the remote sensing image. Cropped into and reconstructed from
tiles, the multi-band remote sensing image is transformed into a segmentation proposal by UNet.
Afterward, Dense CRF can sufficiently process the entire image, which can improve the prediction
coherency on the edges of tiles and eliminate isolated regions. Specifically, the concatenation of UNet
prediction and Dense CRF refinement is described as follows:

• The entire images are rescaled, padded, and cropped into patches with the size of wcrop × hcrop.
The trained UNet infers the pixel-level categories for the patches. The rough segmentation
proposal is constructed from the results.

• Taking as input the entire UNet proposal and a three-channel edge-sensitive image, Dense CRF
refines the segmentation proposal to make the boundaries of clouds and shadows more precise.

We observed in the experiments the efficacy of patch-wise UNet prediction and Dense CRF
refinement.

4. Experiments and Discussion

Experiments were conducted to evaluate the results of our Refined UNet compared to
references. Ablation studies are conducted to verify the efficacy of each component as well.
Experimental data acquisition, implementation details, and evaluation metrics are briefly introduced in
Sections 4.1, 4.2, and 4.3, respectively. In Section 4.4, Refined UNet and novel methods are compared
and evaluated qualitatively and quantitatively. In Section 4.5, the outputs of Refined UNet and
references are visually compared, in which the superiority of boundary refinement can be illustrated.
In Section 4.6, the refinement of Dense CRF is evaluated in against with vanilla UNet predictions.
In Section 4.7, some key hyperparameters are examined to show the effect on the segmentation
performance. In Section 4.8, the effect of adaptive weights for imbalanced categories is evaluated
against fixed weights. In Section 4.9, cross-validation on the four-year dataset is used to explore the
performance consistency. At last, evaluations on four-band imageries and comparisons are conducted
in Section 4.10.

4.1. Experimental Data Acquisition and Preprocessing

In the experiments, Landsat 8 OLI imagery data [11] were employed to train, validate, and test
the performance of our Refined UNet. We chose images in the years of 2013, 2014, and 2015 and
split them into the training set and validation set. Images in 2016 were chosen as the test data for
visualization and numerical evaluation. Cloud and shadow labels were generated from the Pixel
Quality Assessment band, in which the clouds and shadows with confidence were derived from the
CFMask algorithm. Practically, clouds and shadows with high confidence were marked while those
with low confidence were excluded. Class IDs of background, fill values, shadows, and clouds are 0, 1,
2, and 3, respectively; alternatively, we merged classes of land, snow, and water into that of background
because segmentation tasks of clouds and cloud shadows are the key issue we are discussing. Instead
of ground truths, the labels are referred to as references because they are dilated and not accurate
enough at the pixel level. All seven bands were merged as default inputs, as illustrated in Figure 4.
For visual evaluation, Band 5 NIR, 4 Red, and 3 Green were combined as RGB channels to construct
a false-color image. Linear 2% algorithm was performed on the false-color images to enhance the
contrast and visualization. The false-color images were still used as the inputs of Dense CRF because
of its sufficient contrast and evident edges. Additionally, Bands 2 Blue, 3 Green, 4 Red, and 5 NIR
in Landsat 8 OLI data were chosen to combine the inputs of four-band images. We assessed the
segmentation performance compared to seven-band segmentation.
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Band 1 Coastal Band 2 Blue Band 3 Green Band 4 Red

Band 5 NIR Band 6 SWIR 1 Band 7 SWIR 2

Figure 4. Visualization for seven-band Landsat 8 OLI imageries (Path 113, Row 26). In our experiments,
all seven bands were exploited as default inputs.

The training, validation, and test sets are listed as follows. Training set:

• 2013: 2013-04-20, 2013-06-07, 2013-07-09, 2013-08-26, 2013-09-11, 2013-10-13, and 2013-12-16
• 2014: 2014-03-22, 2014-04-23, 2014-05-09, 2016-06-10, and 2014-07-28
• 2015: 2015-06-13, 2015-07-15, 2015-08-16, 2015-09-01, and 2015-11-04

Validation set:

• 2013: 2013-06-23, 2013-09-27, and 2013-10-29
• 2014: 2014-02-18, and 2014-05-25
• 2015: 2015-07-31, 2015-09-17, and 2015-11-20

Test set:

• 2016: 2016-03-27, 2016-04-12, 2016-04-28, 2016-05-14, 2016-05-30, 2016-06-15, 2016-07-17,
2016-08-02, 2016-08-18, 2016-10-21, and 2016-11-06

In the preprocessing, images were padded firstly for slicing. Zeros were assigned to fill
values and surrounding padded values. The padded size was calculated using Equations (13)–(16),
respectively, where wl, wr, hu, and hd denote the left, right, up, and down padding widths and heights.
After padding, we cropped raw image data into 512× 512 patches for training, validation, or test.

wl = b1
2
(wcrop − (wraw mod wcrop))c (13)

wr = wcrop − wl (14)

hu = b1
2
(hcrop − (hraw mod hcrop))c (15)

hd = hcrop − hu (16)

Data normalization used Equation (17) to rescale features into interval [0, 1].

x∗ijk =
xijk −min(x)

max(x)−min(x) + ε
(17)

in which ε is 10−10 to avoid that data are divided by zero.
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4.2. Implementation Details

The UNet model is composed of four “Conv-BN-ReLU” components for down-sampling and four
“UpSample-Conv-BN-ReLU” components for up-sampling. The model was trained from scratch on
the training set, taking as input seven- or four-band imageries and outputting 0– to label each pixel.
It was optimized by ADAM [44] optimizer in which β1, β2, and learning rate were 0.9, 0.999, and 0.001,
respectively.

As the postprocessing, Dense CRF took as input both the entire false-color images and categorical
proposals reconstructed from UNet results and transforms into refined predictions. Empirically,
the default θα, θβ, and θγ were 80, 13, and 3. We further conducted subsequent experiments to
thoroughly test the effect of Dense CRF with regards to the aforementioned hyperparameters.

4.3. Evaluation Metrics

In our four-class pixel-level classification task, precision P, recall R, and F1 score F1 were utilized
to evaluate the efficacy and sensitivity of the cloud and shadow detection. Considering the confusion
matrix Pcm =

[
pij
]

4×4 , i, j ∈ {0, 1, 2, 3}, in which pij denotes the number of observations that should
actually belong to group i and are predicted to group j, precision reports how many correct pixels in the
prediction the method can retrieve, defined in Equation (18); recall reports how comprehensively the
method can retrieve specified pixels, defined in Equation (19); and F1 score is a numerical assessment
taking into consideration both precision and recall, defined in Equation (20).

Pi =
pii

∑C
i=1 pij

(18)

Ri =
pii

∑C
j=1 pij

(19)

F1i = 2× Pi · Ri
Pi + Ri

(20)

In addition, Wilcoxon signed-rank test [45] was used to test if the differences between the two
methods are significant.

4.4. Comparisons of Refined UNet and Novel Methods

We first compared our Refined UNet to its backbone net UNet [6], which is usually exploited in
natural image segmentation. Besides, the novel PSPNet [28] with ResNet-50 as the backbone net was
retrained from scratch on the training set and its results are also taken into consideration. The same
strategy of adaptive weights for imbalanced categories was used in the training of these methods.
Qualitative and quantitative results are presented in Figure 5 and Table 1.

Figure 5 shows the visualization results of PSPNet, UNet, and Refined UNet. It can be seen
that our Refined UNet outperforms PSPNet in terms of visual detection of clouds and shadows:
some clouds and shadows are missing in the detection of PSPNet, whereas UNet over-detects clouds
and shadows. Refined UNet overcomes the drawbacks of over-detection and delineates the boundaries
of clouds and shadows more precisely, compared to UNet. The cutting edges of tiles, on the other
hand, are also neutralized in the results of Refined UNet, while those gaps of PSPNet are not properly
sealed. In summary, our Refined UNet can effectively label rough clouds and shadows and refine their
boundaries more precisely.
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(a) (b) (c) (d)

Figure 5. Visualizations of cloud and cloud shadow segmentation (L8, Path 113, Row 26): (a) false-color
image; (b) PSPNet; (c) UNet (the backbone net); and (d) refined UNet. Bands 5 NIR, 4 Red, and 3 Green
are combined together as RGB channels to construct a false-color image for visualization.

Table 1 shows the quantitative assessments with respect to PSPNet, UNet, and Refined UNet.
Precision Pi assesses the efficacy of how many pixels the method can correctly detect in its prediction of
class i, while recall Ri indicates the efficacy of how many pixels the method can sensitively capture in all
pixels of a specified class i. F1 score F1i takes into consideration both the specificity and the sensitivity
by computing the average of Pi and Ri. In the detection of clouds and shadows, Refined UNet balances
the performance of precisions and recalls, while PSPNet only achieves superior precisions due to its
negligence of clouds and shadows with low confidence. It is concluded that Refined UNet can achieve
superiority of balancing precision and recall in the precise detection of clouds and shadows.
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Table 1. Average scores of accuracy, precision, recall, and F1 of PSPNet, the backbone (UNet),
and Refined UNet. The top results are highlighted in bold.

Class No. Class Name Evaluation PSPNet (%) UNet (%) Refined UNet (%)

Accuracy+ 84.88 ± 7.59 93.04 ± 5.45 93.51 ± 5.45
0 Background Precision+ 65.49 ± 19.62 93.34 ± 4.88 90.33 ± 7.04

Recall+ 98.57 ± 2.18 81.52 ± 15.3 85.58 ± 17.4
F1+ 77.06 ± 15.04 86.35 ± 11.04 86.92 ± 12.18

1 Fill Values Precision+ 100 ± 0 100 ± 0 99.89 ± 0.06
Recall+ 95.97 ± 0.19 100 ± 0 100 ± 0
F1+ 97.94 ± 0.1 100 ± 0 99.94 ± 0.03

2 Shadows Precision+ 46.81 ± 24.98 34.74 ± 14.77 36.28 ± 20.4
Recall+ 7.83 ± 5.95 54.31 ± 18.72 21.51 ± 11.91
F1+ 12.74 ± 9.14 40.43 ± 14.74 24.63 ± 11.49

3 Clouds Precision+ 94.09 ± 17 87.28 ± 18.78 87.57 ± 19.11
Recall+ 48.22 ± 22.81 95.96 ± 3.63 96.03 ± 3.17
F1+ 60.99 ± 22.56 90.12 ± 13.77 90.22 ± 14.09

4.5. Comparisons of References and Refined UNet

Next, we report the segmentation results and compare our results to the references from
qualitative and quantitative perspectives. Figure 6 entirely illustrates the false-color visualizations,
the segmentation references the results of Refined UNet, and the differences between them. We can
generally conclude that our method can detect clouds comprehensively and precisely: in the visual
assessment, almost all pixels of clouds can be detected correctly. The clouds and shadows can
be considerably retrieved by the Refined UNet, especially for the interior pixels indicating clouds
and shadows. Sharper boundaries of clouds and shadows are delineated and the pixels indicating
differences are highlighted on the boundaries of clouds and shadows, which can illustrate the effect of
Dense CRF refinement. In terms of the superior results, one of the merits of the Refined UNet, thus,
is concluded: Refined UNet can almost detect all clouds and shadows with high confidence, and refine
the boundaries of clouds, highlighted in difference visualization. We attribute this superiority to the
nature that the UNet model can roughly locate clouds and shadows and Dense CRF can detect the
explicit boundaries, which generates accurate and refined results.

Nevertheless, the drawback of refinement cannot be totally ignored: Refined UNet might
over-refine the boundaries of shadows, which leads to missing the detection of some shadows.
The difference images illustrated that in some cases, Dense CRF is strong in refinement so it inevitably
erases some weak shadows, which shows its aggression. In fact, it appears to be a trade-off between
specificity and sensitivity of the model, and, in our cases, the precision should be the first priority.

We further evaluated locally, by zooming into some areas and observing the rough location and
refinement of the detection. Figure 7 visually confirms the superiority of refining the boundaries of
clouds and shadows. Combining entirely and locally visual assessment, we conclude that our Refined
UNet can accurately locate clouds and shadows and precisely capture boundaries.
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(a) (b) (c) (d)

Figure 6. Visualizations of cloud and cloud shadow segmentation (L8, Path 113, Row 26): (a) false-color
image; (b) reference; (c) our Refined UNet; and (d) differences between references and our results.
Bands 5 NIR, 4 Red, and 3 Green are combined together as RGB channels to construct a false-color image
for visualization. We mark the differences between clouds by red pixels and shadows by green.

We also evaluated our method from the quantitative perspective, in which precision, recall, and F1
score were employed to assess the performance of detection. Precision Pi assesses the efficacy of how
many pixels the method can correctly detect in its prediction of class i, while recall Ri indicates the
efficacy of how many pixels the method can sensitively capture in all pixels of a specified class i.
F1 score F1i takes into consideration both the specificity and the sensitivity by computing the average
of Pi and Ri. Before evaluating, we hypothesize that precisions should be higher while recalls should
be lower because of the fact of these indicators. Table 2 confirmed our hypothesis.

In Table 2, the average precisions of backgrounds, fill values, and shadows are higher while clouds
are slightly lower. We attribute the higher precisions to the Dense CRF refinement: it dramatically
purifies the detection of shadows. The lower precision of clouds with high standard deviations may
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be caused by the misclassification of snow pixels, which strongly affects the performance of cloud
detection. We will further investigate the differentiation of cloud and snow pixels to promote precisions.

2016-04-12 False-color image Reference UNet×α + refinement

False-color image Reference UNet×α + refinement

False-color image Reference UNet×α + refinement

False-color image Reference UNet×α + refinement

Figure 7. Local examples of cloud and shadow segmentation (L8, Path 113, Row 26). From left to
right are false-color images, references, and results of Refined UNet. Bands 5 NIR, 4 Red, and 3 Green
are combined together as RGB channels to construct a false-color image for visualization. Visually,
Refined UNet can obtain more precise contours of clouds and shadows compared to references,
which leads to finer detection results. Some patches of shadows, however, might be eliminated due to
the over-refinement, which should be further taken into consideration and solved in the future.

Table 2. Average scores of accuracy, precision, recall, and F1 for multiple UNet models with Dense
CRF refinement. The top results are highlighted in bold.

Class No. Class Name Evaluation UNet (%) UNet×5 (%) UNet×10 (%) UNet×15 (%) UNet×20 (%) UNet×α (%)

Accuracy+ 92.92 ± 6.68 92.89 ± 6.6 92.15 ± 6.89 91.81 ± 6.51 90.85 ± 6.85 93.51 ± 5.45
0 Background Precision+ 90.58 ± 7.73 91.75 ± 6.94 94.64 ± 4.72 95.23 ± 4.47 95.80 ± 3.98 90.33 ± 7.04

Recall+ 81.60 ± 26.76 80.11 ± 27.31 76.06 ± 28.00 75.01 ± 23.87 70.46 ± 27.14 85.58 ± 17.40
F1+ 83.15 ± 24.10 82.42 ± 25.37 80.24 ± 27.68 81.25 ± 20.76 77.20 ± 27.35 86.92 ± 12.18

1 Fill Values Precision+ 99.91 ± 0.05 99.89 ± 0.06 99.89 ± 0.06 99.88 ± 0.06 99.90 ± 0.04 99.89 ± 0.06
Recall+ 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00
F1+ 99.95 ± 0.03 99.94 ± 0.03 99.94 ± 0.03 99.94 ± 0.03 99.95 ± 0.02 99.94 ± 0.03

2 Shadows Precision+ 48.69 ± 40.98 44.20 ± 23.46 36.64 ± 20.75 27.62 ± 13.33 23.39 ± 10.36 36.28 ± 20.40
Recall+ 1.01 ± 1.54 13.44 ± 11.37 21.55 ± 15.82 27.38 ± 16.51 35.92 ± 17.02 21.51 ± 11.91
F1+ 1.91 ± 2.86 18.78 ± 13.51 25.16 ± 16.28 26.25 ± 13.47 27.67 ± 12.23 24.63 ± 11.49

3 Clouds Precision+ 82.02 ± 19.64 81.99 ± 19.45 79.68 ± 19.94 80.52 ± 19.74 80.78 ± 19.82 87.57 ± 19.11
Recall+ 98.95 ± 0.81 99.03 ± 0.73 99.25 ± 0.63 99.20 ± 0.69 99.13 ± 0.71 96.03 ± 3.17
F1+ 88.19 ± 15.24 88.26 ± 14.97 86.84 ± 15.51 87.38 ± 15.37 87.50 ± 15.32 90.22 ± 14.09
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4.6. Effect of the Dense CRF Refinement

An ablation study on the Dense CRF was conducted to test its effect. Dense CRF focuses
on splitting along boundaries so that it can further obtain a finer segmentation result in the task.
In addition to refining the contours precisely, Dense CRF can be used to eliminate isolated predictions
(misclassification noises) and smooth gaps of slices practically. Figures 8 and 9 qualitatively show the
results with and without Dense CRF refinement. As shown in the figures, the boundaries of clouds
and shadows are refined, and the isolated misclassification regions and slicing gaps are removed as
well, which demonstrates the superiority of our Refined UNet. We also realize that the strong Dense
CRF might also erase some small shadow patches with vague boundaries or some plausible shadow
patches, which should be solved in the future.

(a) (b) (c) (d)

Figure 8. Examples of segmentations with or without Dense CRF refinement (L8, Path 113, Row 26):
(a) false-color image; (b) reference; (c) UNet×α; and (d) UNet×α + Refinement. Bands 5 NIR, 4 Red,
and 3 Green are combined together as RGB channels to construct a false-color image for visualization.
The refinement of Dense CRF can precisely delineate the boundaries of clouds and shadows; in addition,
it can remove the isolated classification errors and smooth the gaps caused by slice-wise processing.
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2016-04-12 False-color image UNet×α UNet×α + refinement

False-color image UNet×α UNet×α + refinement

False-color image UNet×α UNet×α + refinement

False-color image UNet×α UNet×α + refinement

Figure 9. Comparisons of segmentations with or without Dense CRF refinement in local areas (L8, Path
113, Row 26). From left to right are false-color images, results of UNet×α, and UNet×α + Refinement.
Bands 5 NIR, 4 Red, and 3 Green are combined together as RGB channels to construct a false-color
image for visualization. In local areas, it is confirmed that the refinement of Dense CRF can precisely
delineate the contours of clouds and shadows; in addition, it can remove the isolated classification
errors and smooth the gaps caused by slice-wise processing.

4.7. Hyperparameter Sensitivity with Respect to Dense CRF

We examined the performance of Dense CRF postprocessing by varying the spatial and spectral
ranges in the appearance and smooth kernels θα, θβ, and θγ, which is shown in Figures 10–12.
According to Krahenbuhl and Koltun [43], a proper θγ yields a slight visual improvement, which is
visually demonstrated by Figure 12. Higher θα and θβ, on the other hand, provide more visual
improvement and remove more isolated regions. However, they can over-refine the cloud and shadow
regions as well. In summary, these parameters should be learned using more accurately labeled data
or controlled manually.
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2016-04-12 θα = 1 θα = 31 θα = 61

θα = 91 θα = 121 Reference

2016-04-12 θα = 1 θα = 31 θα = 61

θα = 91 θα = 121 Reference

Figure 10. visualizations with regards to θα of Dense CRF postprocessing. The candidate values of θα

vary from 1 to 121 while θβ and θγ are secured to 11 and 3. Isolated regions can be removed if a higher
θα is used.
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2016-04-12 θβ = 1 θβ = 11 θβ = 21

θβ = 31 θβ = 41 Reference

2016-04-12 θβ = 1 θβ = 11 θβ = 21

θβ = 31 θβ = 41 Reference

Figure 11. Visualizations with regards to θβ of Dense CRF postprocessing. The candidate values of θβ

vary from 1 to 41 while θα and θγ are secured to 91 and 3. Isolated regions can be removed if a higher
θβ is used.



Remote Sens. 2020, 12, 2001 19 of 28

2016-04-12 θγ = 1 θγ = 3 θγ = 5

θγ = 7 θγ = 9 Reference

2016-04-12 θγ = 1 θγ = 3 θγ = 5

θγ = 7 θγ = 9 Reference

Figure 12. Visualizations with regards to θγ of Dense CRF postprocessing. The candidate values of θγ

vary from 1 to 9 while θα and θβ are secured to 91 and 11. It can hardly be seen that there is a significant
visual improvement if θγ varies.

4.8. Effect of the Adaptive Weights Regarding Imbalanced Categories

The adaptive weights with regard to imbalanced categories were employed to promote the
performance of cloud and shadow detection. By observing imagery data of the whole year, the clouds
and shadows may be minorities in summer and autumn, which needs to dynamically balance the
training samples. Hence, the adaptive weights are required to balance. Figures 13 and 14 show the
comparisons between segmentation results with the fixed weights and the adaptive weight. Fixed
weights drive UNet to predict more shadows even though it seems that the model would over-detect:
it captures more pixels that should not be grouped into the category of shadows. Note that more
cloud shadows of isolated pixels are also detected in our case. Adaptive weights adjust the prediction
dynamically, fit the distribution of cloud and shadow pixels, and push the model to classify properly.
We conclude that our method can achieve a good performance in finely detecting clouds and shadows,
in terms of visual assessments.
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2016-04-12 UNet UNet×5 UNet×10

UNet×15 UNet×20 UNet×α

UNet + refinement UNet×5 + refinement UNet×10 + refinement

UNet×15 + refinement UNet×20 + refinement UNet×α + refinement

Figure 13. Effect of the fixed and adaptive classification weights (L8, Path 113, Row 26). Bands 5
NIR, 4 Red, and 3 Green are combined together as RGB channels to construct a false-color image for
visualization. Fixed weights of ×5, ×10, ×15, and ×20 for cloud shadow can drive the UNet to retrieve
more pixels but lead to severe classification biases. The adaptive weight ×α dynamically adjust the
classification performance to retrieve more proper pixels.
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False-color image UNet UNet×5 UNet×10

UNet×15 UNet×20 UNet×α

UNet + refinement UNet×5 + refinement UNet×10 + refinement

UNet×15 + refinement UNet×20 + refinement UNet×α + refinement

Figure 14. Effect of the fixed and adaptive classification weights in local areas (L8, Path 113, Row 26).
Bands 5 NIR, 4 Red, and 3 Green are combined together as RGB channels to construct a false-color
image for visualization. We zoom into some local areas to observe the differences between classifiers
driven by fixed weights of ×5, ×10, ×15, and ×20 and the adaptive weight ×α.

Quantitative assessments were used to demonstrate the superiority of our method. F1 score was
used to numerically demonstrate it since it considers both precision and recall. In Tables 2 and 3,
we find that the UNet with adaptive weights significantly outperforms the models with fixed weights
in terms of F1 scores, which also supports the conclusion of qualitative assessments.
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Table 3. Average scores of accuracy, precision, recall, and F1 for multiple UNet models without Dense
CRF refinement. The top results are highlighted in bold.

Class No. Class Name Evaluation UNet (%) UNet×5 (%) UNet×10 (%) UNet×15 (%) UNet×20 (%) UNet×α (%)

Accuracy+ 93.1 ± 6.45 93.02 ± 6.29 91.91 ± 6.81 91.59 ± 6.41 90.47 ± 6.84 93.04 ± 5.45
0 Background Precision+ 92.84 ± 5.81 94.50 ± 5.13 96.72 ± 2.98 97.87 ± 1.72 97.94 ± 1.73 93.34 ± 4.88

Recall+ 81.83 ± 24.23 78.88 ± 24.23 73.91 ± 25.79 73.23 ± 20.10 67.95 ± 25.57 81.52 ± 15.30
F1+ 84.91 ± 20.54 83.83 ± 21.25 80.78 ± 24.42 82.15 ± 16.06 76.87 ± 25.55 86.35 ± 11.04

1 Fill Values Precision+ 99.99 ± 0.00 99.98 ± 0.01 99.99 ± 0.01 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00
Recall+ 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00
F1+ 99.99 ± 0.00 99.99 ± 0.01 99.99 ± 0.01 99.99 ± 0.00 99.99 ± 0.00 99.99 ± 0.00

2 Shadows Precision+ 63.65 ± 38.27 46.68 ± 20.38 34.72 ± 15.54 28.56 ± 12.45 25.40 ± 11.44 34.74 ± 14.77
Recall+ 5.35 ± 6.17 30.36 ± 20.30 39.33 ± 22.31 49.08 ± 19.79 57.49 ± 21.22 54.31 ± 18.72
F1+ 9.38 ± 10.27 34.15 ± 18.25 35.66 ± 16.76 35.45 ± 14.54 34.67 ± 14.56 40.43 ± 14.74

3 Clouds Precision+ 80.39 ± 19.34 80.80 ± 19.24 78.98 ± 19.79 80.62 ± 19.47 80.65 ± 19.82 87.28 ± 18.78
Recall+ 99.43 ± 0.87 99.49 ± 0.62 99.59 ± 0.59 99.42 ± 0.67 99.21 ± 0.79 95.96 ± 3.63
F1+ 87.45 ± 15.10 87.77 ± 14.82 86.57 ± 15.41 87.59 ± 15.07 87.49 ± 15.15 90.12 ± 13.77

4.9. Cross-Validation over the Entire Dataset

We further evaluated the performance consistency of our Refined UNet by the cross-validation
upon the image set of each year. For all images used above, five images for each year were selected
and are listed as follows. For the four cross-validations, images of two years were used as the training
set, one year as the validation set, and the last one as the test set. The quantitative results are reported
in Table 4. The accuracy, precision, recall, and f1 score can demonstrate the performance consistency
of our Refined UNet: all of them can perform well on labeling pixels of background, fill values,
and clouds, in terms of precisions. Labeling the pixels of shadows, however, should be improved as
plenty of detection algorithms do.

• 2013: 2013-04-20, 2013-06-07, 2013-07-09, 2013-08-26, and 2013-09-11
• 2014: 2014-03-22, 2014-04-23, 2014-05-09, 2014-06-10, and 2014-07-28
• 2015: 2015-06-13, 2015-07-15, 2015-08-16, 2015-09-01, and 2015-11-04
• 2016: 2016-03-27, 2016-04-12, 2016-04-28, 2016-05-14, and 2016-05-30

Table 4. Average scores of accuracy, precision, recall, and F1 of Refined UNet on cross-validation of the
four-year image set.

Class No. Class Name Evaluation 2013 (%) 2014 (%) 2015 (%) 2016 (%)

Accuracy+ 88.35 ± 9.4 93.23 ± 8.87 92.36 ± 4.14 89.1 ± 3.48
0 Background Precision+ 89.22 ± 7.35 95.98 ± 2.43 95.33 ± 3.29 93.56 ± 4.16

Recall+ 79.29 ± 28.77 84.73 ± 26.05 85.91 ± 12.32 65.24 ± 28.75
F1+ 82 ± 22.23 87.93 ± 18.74 89.98 ± 7.53 73.12 ± 25.75

1 Fill Values Precision+ 99.98 ± 0.01 99.96 ± 0.03 99.95 ± 0.04 99.96 ± 0.03
Recall+ 100 ± 0 100 ± 0 100 ± 0 100 ± 0
F1+ 99.99 ± 0.01 99.98 ± 0.02 99.98 ± 0.02 99.98 ± 0.01

2 Shadows Precision+ 7.25 ± 5.3 6.96 ± 9.76 26.65 ± 17.78 15.26 ± 6.28
Recall+ 18.95 ± 17.61 5.16 ± 6.17 45.99 ± 14.27 54.4 ± 12
F1+ 6.33 ± 3.2 5.59 ± 7.76 31.38 ± 14.82 23.65 ± 9.06

3 Clouds Precision+ 90.63 ± 19.24 85.74 ± 17.37 92.57 ± 6.32 93.52 ± 8.05
Recall+ 76.06 ± 36.04 89.51 ± 14.2 92.31 ± 9.67 84.35 ± 17.64
F1+ 75.57 ± 31.36 85.77 ± 11.19 91.97 ± 4.23 87.59 ± 11.21

4.10. Evaluation on Four-Band Imageries

We assessed the segmentation performance of our Refined UNet on the four-band imagery
dataset. Bands 2 Blue, 3 Green, 4 Red, and 5 NIR were employed to construct the four-band dataset.
Qualitative and quantitative results are illustrated and indicated in Figures 15 and 16 and Table 5,
respectively. In the experimental results, the performance on the four- and seven-band data are
different in terms of the visual assessment: visual differences are easily sensed, especially for shadow
detection. We further verified the performance quantitatively.
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(a) (b) (c) (d)

Figure 15. Segmentation results of four-band and seven-band models (L8, Path 113, Row 26):
(a) false-color image for visualization; (b) reference; (c) results of the four-band model; and (d) results
of the seven-band model. Bands 5 NIR, 4 Red, and 3 Green are combined together as RGB channels
to construct a false-color image for visualization. Visually, few differences can be found between the
two models.
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2016-04-12 False-color image Four-band result Seven-band result

False-color image Four-band result Seven-band result

False-color image Four-band result Seven-band result

False-color image Four-band result Seven-band result

Figure 16. Segmentation results of four-band and seven-band models in some local areas (L8, Path
113, Row 26). From left to right are false-color images, results of the four-band model, and results
of the seven-band model. Bands 5 NIR, 4 Red, and 3 Green are combined together as RGB channels
to construct a false-color image for visualization. Some differences between shadow detections are
detected.

The quantitative assessment is shown in Table 5. In addition to visual differences, the numerical
differences of shadow detection are significant in terms of F1 score, which also supports the observation
of visual assessments. We speculate that some missing bands play a key role in detecting cloud
shadows. Conversely, the differences in cloud detection are weak in terms of F1 score, so we can
conclude that the model is able to be applied to four-band cloud segmentation tasks. The causes of
significant differences will be explored in the future.
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Table 5. Average scores of accuracy, precision, recall, and F1 in the comparison between four and
seven-band models; * highlights the significant differences (p-value < 0.05) in Wilcoxon signed-rank
test. The top results are highlighted in bold.

Class No. Class Name Evaluation Band 2 to 5 (%) Band 1 to 7 (%)

Accuracy+ 93.43 ± 6.56 93.51 ± 5.45
0 Background Precision+ 89.52 ± 7.99 90.33 ± 7.04

Recall+ 84.31 ± 25.85 85.58 ± 17.40
F1+ 84.56 ± 21.81 86.92 ± 12.18

1 Fill Values Precision+ 99.89 ± 0.07 99.89 ± 0.06
Recall+ 99.99 ± 0.00 99.99 ± 0.00
F1+ 99.95 ± 0.03 99.94 ± 0.03

2 Cloud Shadows Precision+ 41.36 ± 24.98 36.28 ± 20.40
Recall+ 9.03 ± 9.10 21.51 ± 11.91
F1+ 13.99 ± 13.1 24.63 * ± 11.49

3 Clouds Precision+ 85.49 ± 19.89 87.57 ± 19.11
Recall+ 97.17 ± 2.37 96.03 ± 3.17
F1+ 89.50 ± 14.61 90.22 ± 14.09

5. Conclusions

Cloud and cloud shadow segmentation remains a challenging task in intelligent remote sensing
imagery processing, and its urgent requirement leads to the prosperous development of learning
methods given the circumstances that tremendous pairs of training samples and corresponding labels
are given. In this paper, we investigate the efficacy of UNet prediction and Dense CRF refinement
in cloud and shadow segmentation tasks, and further propose an innovative architecture, refined
UNet, to localize clouds and sharpen boundaries. Specifically, UNet learns the features of clouds and
shadows and intends to give proposals. The Dense CRF refines the boundaries of clouds and shadows
to predict more precisely. Landsat 8 OLI datasets were used in experiments to demonstrate that our
method can localize and refine the segmentation of clouds and shadows, which is illustrated in terms
of experimental results for 2016. We shall improve our work by categorizing pixels into more classes
and achieve a more sufficient segmentation, explore the approximate inference methods or learning
methods for Dense CRF, and ultimately concatenate altogether neural network-based classifiers and
Dense CRF layers to gain a more efficient end-to-end framework.
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