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Abstract: The accuracy of wind speed measurements is important in many applications. In the
present work, error standard deviations of wind speed measured by satellites and National Data Buoy
Center (NDBC) buoys were estimated using triple collocation. The satellites included six altimeters,
three scatterometers, and four radiometers. The six altimeters were TOPEX, ERS-2, JASON-1,
ENVISAT, JASON-2, and CRYOSAT-2, whilst the three scatterometers were QUIKSCAT, METOP-A,
and METOP-B and the four radiometers included SSMI-F15, AMSR-2, WINDSAT, and GMI. Hence,
a total of 14 platform measurements, including NDBC buoy data, were used and the error standard
deviations of each estimated. It was found that altimeters have the smallest error standard deviations
for wind speed measurements followed by scatterometers and then radiometers. NDBC buoys have the
largest error standard deviation. Since triple collocation can simultaneously perform error estimation
as well as calibration for a given reference, this method enables us to perform intercalibration between
platform measurements including NDBC buoy. In addition, the calibration relations obtained from
triple collocation were compared with the calibrations obtained from the widely used reduced major
axis (RMA) regression approach. This method, to some extent, can accommodate measurements in
which both platforms contain errors. The results showed that calibration relations obtained from
RMA and triple collocation are very similar, as indicated by statistical parameters such as RMSE,
correlation coefficient, scatter index, and bias.
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1. Introduction

Global ocean wind speed data measured by a variety of different satellite platforms are now readily
available in the public domain. These include altimeters, scatterometers, radiometers, and synthetic
aperture radar (SAR). The durations of these satellite measurements amount to more than 30 years.
The accuracy of these measurements is critical for a range of applications such as weather forecasting,
the development of wind energy projects, model validations, monitoring of marine disasters, and wind
climatology [1–4].

In order to improve the accuracy of the measurements, the satellite data have previously been
calibrated and validated against in situ measurements by assuming that buoy measurements are the
“ground truth” even though they are not free from errors [1]. However, although global wind data
have been well calibrated and validated, they still contain measurement uncertainty and calibration
inaccuracies. Hence, the estimation of these measurement errors is important.
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Triple collocation is an approach which has been widely used to estimate the errors of a range of
satellite measurements. This method was first introduced by Stoffelen [5] to estimate the wind vector
component errors obtained from three different measurements, namely ERS-1 scatterometer, buoy data,
and a forecast model. He found that NOAA buoys have the largest error variances whilst National
Centers for Environmental Prediction (NCEP) model data have the smallest error variances on the
spatial scale of the model. The method was used to calibrate measurements against a given reference
data set, in this case moored buoys. The method has also been used to validate other satellite products
such as soil moisture products [6–11], land water storage [12], precipitation products [13], atmospheric
columnar integrated water vapor [14], and sea surface salinity [15]. In addition, the method has also
been used to estimate wind speed errors of different satellite measurements [16–19]. Furthermore,
the method has been extended by McColl et al. [20] by estimating the correlation coefficient of the
measurement systems with respect to the unknown truth. This extension of triple collocation has been
used to validate satellite surface albedo products [21].

Although triple collocation can be applied in a straightforward manner to estimate the error of
measurements, the method has to satisfy the following assumptions, or the error estimation will be
invalid. Since the method will involve three different measurements, the errors of each have to be
uncorrelated. Moreover, linear calibration must be appropriate over the whole range of measurement
values [22]. As shown in Young et al. [1] and Ribal and Young [23], high wind speeds of radiometers
and QUIKSCAT scatterometer were calibrated nonlinearly. To address this issue in the application of
triple collocation, we used the calibrated radiometers and QUIKSCAT scatterometer (i.e., linearized
values).

Triple collocation can also be used to determine measurement calibration. Such an approach has
been applied to OCEANSAT-2 calibration [18], ERS-1 scatterometer [5], ASCAT, and QUIKSCAT [24],
and intercalibrations between satellites [19]. It should be noted that in order to calibrate a measurement
using triple collocation, one of the three measurements has to be a reference. Hence, the other
two measurements will be calibrated with respect to the reference. The reference can be in situ
measurements or other satellites such as altimeters. The output of this calibration process will be the
gradient or calibration factor (or scaling) and the offset or bias.

In relation to measurement calibration, there is another well-known method which has been
extensively applied, so-called reduced major axis (RMA) regression [25]. This method is suitable for
the calibration of measurements against reference data, where both measurement and reference contain
errors. Such cases cannot be considered using conventional regression. RMA regression is also a
powerful approach, as major outliers can be removed using robust regression [26]. Unlike conventional
regression, which assumes that only one measurement contains errors, RMA, to some extent,
can accommodate both measurements containing errors. RMA regression minimizes the triangular
area bounded by the vertical and horizontal offsets between data points and the regression line and
the cord of the regression line. This is different to conventional regression which only minimizes the
vertical axis offsets from the regression line. Although both triple collocation and RMA regression
have both been widely used for calibration purposes, we are not aware of a reference which compares
the resulting calibration relations.

Therefore, the present work has two main goals. The first goal is to estimate the random
error standard deviations of wind speed obtained from six altimeters, three scatterometers, and four
radiometers as well as National Data Buoy Center (NDBC) buoy data. We also carry out intercalibrations
between the various measurement platforms. The second goal of this work is to compare the calibration
relationships obtained by applying the triple collocation method to the various satellite platforms with
those obtained by using RMA regression. It should be noted that unlike other works, which usually
involve data from numerical models, here, we only employ satellite data and NDBC buoy data.

Following this introduction, the source of each datasets that is used in this work is described
in Section 2. The details of the triple collocation approach, including revisiting its derivation and its
applications, will be presented in Section 3. This is followed by Section 4 in which the comparison
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calibrations between triple collocation and RMA regression are investigated. Discussion and conclusions
are presented in Sections 5 and 6, respectively.

2. Datasets

In order to conduct this study, data from a number of satellite missions are utilized. These missions
includes six altimeters: TOPEX, ERS-2, JASON-1, ENVISAT, JASON-2, and CRYOSAT-2 (expressed in
the order of launch), three scatterometers: QUIKSCAT, METOP-A, and METOP-B and four radiometers:
SSMI-F15, AMSR-2, WINDSAT, and GMI. Hence a total of 13 satellites are used in this work. Figure 1
shows the periods in which all instruments were active. Details of each satellite are provided in the
following sub-sections, including their respective data sources.

2.1. Altimeter Data

Since 1985, there have been 14 altimeters that have been launched for ocean wind speed and
significant wave height observations. Altimeters measure the radar cross-section, σ, which is the ratio
of the transmitted to received radar energy along a nadir track below the satellite [27]. This radar
cross-section can be related to wind speed using a non-linear function. As the altimeter measures only
over a narrow footprint (approximately 10 km) directly below the satellite, the resolution of altimeter
data along the track is high (measurement every approximately 10 km) but the cross-track separation is
large (of order 500 km) [1]. However, it has been shown by comparison with in situ data that altimeter
measurements are in good agreement with buoy and platform measurements, including at high wind
speeds (>18 m/s) [23].

An extensive data set of calibrated altimeter data has been archived on the Australian Ocean
Data Network (AODN), by Ribal and Young [4]. This archive includes a total of 14 altimeters, namely
GEOSAT, ERS-1, TOPEX, ERS-2, GFO, JASON-1, ENVISAT, JASON-2, CRYOSAT-2, HY-2A, SARAL,
JASON-3, SENTINEL-3A, and SENTINEL-3B (expressed in the order of launch). The database is
updated every six months and presently includes data from 1985 to 31 December 2019. The Ribal and
Young [4] database determines the wind speed, U10 by firstly extracting the 1Hz radar cross-section,
σ0 for each altimeter. The Abdalla [28] relationship between U10 and σ0 is then used to obtain a first
approximation to the wind speed. A further linear least-squares correction based on buoy match-up
data is then applied to produce the 1Hz calibrated altimeter wind speed product.

For the present work, six of these altimeter missions were used, namely TOPEX, ERS-2, JASON-1,
ENVISAT, JASON-2, and CRYOSAT-2 for error estimation and intercalibration based on triple
collocation. This subset of altimeter missions was used as they are of long duration and overlap in
time with the other satellite platform to be used.

2.2. Scatterometer Data

Unlike altimeters, which measure the radar cross-section at nadir along the track, scatterometers
measure radar cross-section over a broad swath. Hence, cross-track resolution is increased significantly
(25 km with a swath up to 1400 km wide) compared to the altimeters, but along-track resolution is
slightly decreased (typically 25 km). The swath configuration of the scatterometers depend on their
antenna configuration [23].

The first scatterometer mission to provide global data was ERS-1, which was launched in 1991.
Following ERA-1 a series of scatterometers have provided continuous global coverage to the present
day. Recently, Ribal and Young [23] have calibrated and cross-validated seven different scatterometers
and archived calibrated and quality controlled data for the period 1992–2018 on the AODN (see the
details including the procedure to obtain the data in Ribal and Young [23]). The Ribal and Young [23]
scatterometer database takes wind speed data from the respective satellite mission repositories for
each scatterometer and then applies a linear least-squares correction based on buoy match-up data
to obtain the final wind speed product. The seven scatterometers in the database are ERS-1, ERS-2,
QUIKSCAT, METOP-A, OCEANSAT-2, METOP-B, and RAPIDSCAT (also expressed in the order
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of launch). The database is also updated every six months and presently includes data from 1992
to 2 April 2020. It should be noted that most of the scatterometers are in sun-synchronous orbits
except RAPIDSCAT. These orbit details are important when considering collocations with other
satellites platforms.

The total duration of the available scatterometer dataset is approximately 27 years. In the present
work, the QUIKSCAT, METOP-A and METOP-B scatterometer missions have been used. This sub-set
was used as the time period overlaps with the other satellite platforms used and the satellite orbits are
such that collocations occur with the other missions. The grid resolution of QUIKSCAT is 12.5 km
while the grid resolution of METOP-A and METOP-B is 25 km.

2.3. Radiometer Data

Similar to scatterometer, radiometer also measures over a swath which is approximately 1400 km
wide with a grid resolution of 25 km [1,29]. Moreover, radiometers are also generally placed in
sun-synchronous orbits. While scatterometers measure radar cross-section, radiometers measure
brightness temperature of the sea surface. This measurement is related to the emissivity and reflectivity
of the ocean surface at the frequency of the radiometer. These properties are in turn related to the
roughness of the water surface and hence the wind stress. The wind stress is then related to the
wind speed assuming a neutrally stable atmospheric boundary layer and a constant value of drag
coefficient [29–32]. Radiometers are particularly impacted by heavy rain, making the recovery of
reliable wind speed measurements problematic in such situations [33]. Although both altimeter and
scatterometer data does degrade in heavy rain events, these instruments are far less impacted than
radiometers, notably ERS and ASCAT which operate at C-band.

A calibrated and cross-validated dataset of radiometers from 1991 is described in Young et al. [1].
In relation to the present work, four radiometer missions from this combined dataset were used:
SSMI-F15, AMSR-2, WINDSAT, and GMI. The durations of these selected radiometers are presented in
Figure 1. The raw data for these radiometers were obtained from Remote Sensing Systems (REMSS)
(http://www.remss.com/) [1]. Consistent with the altimeter and scatterometer processing, the wind
speed values obtained from REMSS were calibrated using a linear least-squares correction based on
buoy match-up data [1].

2.4. National Data Buoy Center (NDBC) Buoy Data

In addition to considering error estimation of the satellite data described above, errors for
wind speed data obtained from National Data Buoy Center (NDBC) anemometer data has also been
considered in this study. Although buoy data is usually assumed as the “ground truth”, random errors
and accuracy of such data must also be considered. The NDBC buoy data used in this work were
obtained from the National Oceanographic Data Center (NODC, https://data.nodc.noaa.gov/thredds/
catalog/ndbc/cmanwx/catalog.html), and are publicly available under NOAA’s National Centers for
Environment Information (NCEI). In order to ensure collocated satellite data are not impacted by the
proximity of land, only buoys which are more than 50 km from a coastline were used. NDBC data
include quality flags of 0, 1, 2, and 3, representing quality_good, out_of_range, sensor_nonfunctional,
and questionable, respectively. In order to ensure high quality data, only wind speeds flagged “0” were
used. NDBC data before 2011 do not have quality flags, however, as reported in Ribal and Young [23],
the data indicate few clear outliers. The locations of the buoys used are presented in Figure 2.

http://www.remss.com/
https://data.nodc.noaa.gov/thredds/catalog/ndbc/cmanwx/catalog.html
https://data.nodc.noaa.gov/thredds/catalog/ndbc/cmanwx/catalog.html
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Figure 1. Durations of all satellite data used for the present analysis.

Buoys measure wind speed at the height of anemometer z (Uz), where each buoy has a different
anemometer height. All data were converted to a consistent reference height of 10 m assuming a
neutral stability boundary layer and a logarithmic profile (e.g., [34,35]):

U10 = Uz

√
κ2

Cd

1
ln(z/z0)

, (1)

where κ is the von Kármán constant which is approximately 0.4, Cd and z0 are the drag coefficient and
the roughness length, respectively. In the present work, values of Cd and z0 were assumed as 1.2× 10−3

and 9.7 × 10−5 m, respectively. These values have previously been adopted by Young et al. [1] and
Ribal and Young [4,23]. As noted by Young et al. [1], a different assumption for the value of Cd does
not have a major impact on the final satellite wind speed [36].
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3. Triple Collocation Method

3.1. Derivation of the Calibration Scheme

As previously noted, triple collocation has been widely used to estimate the accuracy of
measurements either from satellites or buoy data. In most previous derivations of triple collocation,
it has been assumed that one or all of the measurement systems have uncorrelated errors, or the
correlation is specified. However, in the present derivation, we will remove this constraint and allow
errors of the three systems to be correlated.

It is assumed that there are three different measurement systems, Xi, i = 1, 2, 3, in which all
measurements are related to the true value T through the following linear relation [16,20,24]:

Xi = ai + biT + ei (2)

where ai and bi (i = 1, 2, 3) are the offset and the slope of the calibration, respectively and ei is the
random measurement error in system i. It is assumed that the random measurement error is free from
bias and hence, 〈ei〉 = 0. Moreover, the variance of random measurement errors,

〈
e2

i

〉
, is assumed not

to be dependent on T over the whole period of wind speed measurements.
X1 is assumed to be the reference, which could be buoys or altimeters or any of the other

measurement system. Hence, the other two systems, namely X2 and X3 are calibrated with respect to
the reference. As a result, Equation (2) becomes:

X1 = T + e1

X2 = a2 + b2T + e2

X3 = a3 + b3T + e3

(3)

Following a similar procedure to Vogelzang and Stoffelen [22] but without specifying the correlation
of the errors of the systems, the slopes of the calibrations of the two systems are given by:

b2 =
C23 − 〈e2e3〉

C13 − 〈e1e3〉
(4)

and
b3 =

C23 − 〈e2e3〉

C12 − 〈e1e2〉
(5)

where
〈
eie j

〉
is the error covariance between system i and system j, Ci j is the covariance

between system i and j, Ci j = cov
(
Xi, X j

)
, Cii = var(Xi), determined from the N data values

as cov
(
Xi, X j

)
= 1

N
∑N

k=1 XikX jk −XiX j. The covariance, Ci j can be related to the first and the second

(mixed) order moments, Mi and Mi j of datasets i and j, where Mi = Xi = 〈Xi〉 =
1
N

∑N
k=1 Xik,

by the relationship
Ci j = Mi j −MiM j (6)

Equation (4) is the same as Equation (13) of Abdalla and Chiara [19] and also Equation (13) of
Su et al. [11], if the error covariances are zero which means that the random errors in the systems
are uncorrelated.

Similarly, the offsets of the calibration relationships of two systems are given by

a2 = M2 − b2M1 and a3 = M3 − b3M1 (7)
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The error variances can be written as:

σ2
1 = C11 −

(C12−〈e1e2〉)(C13−〈e1e3〉)
C23−〈e2e3〉

σ2
2 = C22 −

(C12−〈e1e2〉)(C23−〈e2e3〉)
C13−〈e1e3〉

σ2
3 = C33 −

(C23−〈e2e3〉)(C13−〈e1e3〉)
C12−〈e1e2〉

(8)

Equations (8) contain six unknowns, namely three error covariances on the right-hand side of the
equations and three error variances on the left-hand side, with only three equations. In order to make the
problem tractable, additional assumptions are required. The simplest assumption is to assume that the
error covariances of all measurement systems are zero. This assumption will remove three unknowns and
yields a system of three equations in three unknowns. However, this assumption does not always hold,
an illustration of such a case can be found in Stoffelen [5], Vogelzang et al. [24] and Abdalla and Chiara [19].
It should be noted that Equation (8) reduces to Equation (4) of Nearing et al. [37] when it is assumed
that all errors from the measuring systems are uncorrelated, e.g.,

〈
eiej

〉
= 0, where i, j = 1, 2, 3 and i , j.

Error standard deviations are obtained by taking the square root of error variances.

3.2. Control Conditions for Data Collocation

In order to estimate the error of any measurements using triple collocation, one has to find matchups
of three different measurement systems, with given collocation conditions (CC). When NDBC buoys
are included in the triple collocation, then, as mentioned above, only buoys which have a reported
anemometer height and are more than 50 km from the coastline are used. In order to find matchups of
three measurements, both spatial and temporal separation criteria were adopted [19]. A one-degree
spatial separation criteria, for which only measurements less than approximately 100 km (1 degree)
from the selected buoy were considered. Similarly, a 60-min temporal separation criterion, where
only measurements which occurred within 60-min of the buoy recording data, was used. In addition,
a minimum of five wind vector cells were required within a 100 km radius region around the buoy.
Finally, large variability in the satellite data wind speed were excluded, by rejecting matchup data for
which σ(U10)/U10 > 0.2, where σ(U10) and U10 are the standard deviation and mean, respectively,
of wind speed measurements within a radius of 100 km from the buoy. Similar criteria have been applied
for the matchups between satellites. It should be noted that all altimeter, radiometer, and scatterometer
data used in this analysis have had a land mask applied to ensure there are no matchups potentially
contaminated by land.

3.3. Wind Speed Errors

Error standard deviations of the six altimeters, three scatterometers, and four radiometers shown
in Figure 1 were determined using triple collocation. In addition, as indicated above, the random error
standard deviation of NDBC buoy will also be estimated. Since the selected satellites do not operate
at the same time, the combinations of the three platforms cannot be selected randomly. The possible
combinations of the measurement platforms which meet the matchup criteria are shown in Table 1.

In order to estimate the error variances, it is assumed that the random errors in the three different
measurements are uncorrelated. For the present datasets, this is believed to be a reasonable assumption,
as each system senses the wind using independent processes (i.e., nadir radar cross-section—altimeter;
off-nadir multiple-look radar cross-section—scatterometer; brightness temperature—radiometer;
anemometer—buoys). The assumption of uncorrelated errors is more questionable, when model
reanalysis data is used in which satellite wind speeds have been assimilated into the model. Hence,
all error covariances are assumed approximately zero and Equation (8) can be simplified to:

σ2
1 = C11 −

C12C13
C23

σ2
2 = C22 −

C12C23
C13

σ2
3 = C33 −

C23C13
C12

(9)
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Figure 3a,b show examples of the wind speed error standard deviations, σi, calculated based on
yearly data for two sets of collocation triplets [TOPEX (alt.), QUIKSCAT (scat.), SSMI-F15 (rad.)] and
[JASON-1 (alt.), QUIKSCAT (scat.), SSMI-F15 (rad.)]. It is clear that the error standard deviations,
σi, are almost constant over the observation period, indication no significant changes in the errors,
σi, as a function of time, as expected. Moreover, Figure 3c,d show the corresponding number of
observations used to estimate the random errors per year in Figure 3a,b It is important to note that it is
not recommended to calculate the error variances based on monthly data, as the number of observations
will be relatively small over such periods, leading to unrepresentative statistics [19]. It should be noted
that these annual statistics are calculated from all triplet matchups and hence implicitly account for
seasonal variations in wind speed and zonal variations across the globe.

Applying Equation (9), the error standard deviations (σi) for all cases are summarized in Table 1
(in parentheses). Note that, as previously mentioned, error standard deviations are defined as the
square root of error variances. The number of matchups is typically a few hundred thousand but
after applying the quality control conditions (see data collocation section), the quality data is typically
reduced to approximately 20% of this figure. Stoffelen [5] has proposed a condition for quality control
of triple collocation where some collocation triplets can be rejected as they are clear outliers. In the
present work, we used robust regression with reduced major axis regression to exclude the outliers
from the triplets [4]. Testing indicated this produced results very similar to the method of Stoffelen [5].
The number of excluded outliers for each triplet are presented in Table 1 (column labelled “O”).
All outliers are excluded in determining the error variances. The resulting number of “clean” data
collocation values used for error estimations as summarized in Table 1 (column labelled “C”).

Table 1. All possible triplet-collocated datasets and their random error standard deviations shown
in the parentheses. N is the number of matchups after quality assurance criteria are applied, O is the
number of outliers, and C=N-O is the number of observations used to estimate the error variances.

No.
Altimeters/NDBC

(Error Standard
Deviation (m/s))

Scatterometers
(Error Standard
Deviation (m/s))

Radiometers
(Error Standard
Deviation (m/s))

N O C

1. TOPEX (0.524) QUIKSCAT (0.391) F15 (0.794) 35,795 228 35,567
2. ERS-2 (0.605) QUIKSCAT (0.473) F15 (0.673) 15,143 77 15,066
3. JASON-1 (0.571) QUIKSCAT (0.387) F15 (0.771) 94,779 825 93,954
4. ENVISAT (0.545) QUIKSCAT (0.463) F15 (0.637) 27,136 305 26,831
5. JASON-2 (0.538) METOP-A (0.546) AMSR-2 (0.682) 23,677 218 23,459
6. JASON-2 (0.284) METOP-A (1.022) WINDSAT (0.723) 34,424 219 34,205
7. JASON-2 (0.574) METOP-A (0.643) GMI (0.602) 27,297 306 26,991
8. JASON-2 (0.547) METOP-B (0.547) AMSR-2 (0.667) 23,592 210 23,382
9. JASON-2 (0.257) METOP-B (1.011) WINDSAT (0.725) 21,100 157 20,943
10. JASON-2 (0.578) METOP-B (0.635) GMI (0.607) 26,889 318 26,571
11. CRYOSAT-2 (0.505) METOP-A (0.555) AMSR-2 (0.710) 13,487 172 13,315
12. CRYOSAT-2 (0.310) METOP-A (0.899) WINDSAT (0.670) 19,745 180 19,565
13. NDBC (0.833) METOP-A (0.542) WINDSAT (0.725) 58,313 814 57,499
14 NDBC (0.840) METOP-B (0.523) WINDSAT (0.698) 39,389 636 38,753

Where a platform is present in multiple triplets in Table 1, the mean error standard deviation is
computed for each platform by averaging the error standard deviation for each triplet. The average result
is then reported in Table 2. This table includes the average error standard deviation for both satellite
systems and NDBC buoys. The four platform groups, namely altimeters, scatterometers, radiometers,
and NDBC buoys are found to have average error standard deviations of 0.519 m/s, 0.603 m/s, 0.679 m/s,
and 0.837 m/s, for altimeter, scatterometer, radiometer, and NDBC buoy, respectively. This indicates that
altimeters have the smallest random errors for wind speed measurements, followed by scatterometers
and then radiometers. It should be noted that, although altimeters generally show smaller error
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standard deviation than scatterometers, as is revealed in Table 1, the QUIKSCAT scatterometer has
high quality measurements.

Table 2. Average random error standard deviations for measurement systems.

No. Satellite
Measurements

Mean Error Standard
Deviation (m/s)

Mean Error Standard Deviation
for Platform Type (m/s)

1. TOPEX 0.524

0.519

2. ERS-2 0.605
3. JASON-1 0.571
4. ENVISAT 0.545
5. JASON-2 0.463
6. CRYOSAT-2 0.407

7. QUIKSCAT 0.428
0.6038. METOP-A 0.701

9. METOP-B 0.679

10. SSMI-F15 0.719

0.679
11. AMSR-2 0.686
12. WINDSAT 0.708
13. GMI 0.604

14. NDBC 0.837 0.837
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3.4. Calibrations Based on Triple Collocation 

Figure 3. Error standard deviations, (σi), (m/s) per year for (a) TOPEX, QUIKSCAT, and SSMI-F15;
(b) JASON-1, QUIKSCAT, and SSMI-F15; (c) The number of matchups used per year for the case
(a); (d) The number of matchups used per year for the case (b). The results in (a) and (b) show
that the error standard deviations are approximately constant over time, a requirement of the triple
collocation approach.

The results also show that NDBC buoys have the largest error standard deviations. This result is
similar to what has been reported by Stoffelen [5] where NDBC buoys had larger error variances than
ERS scatterometer and the NCEP forecast model. Stoffelen argued that the main reason for NDBC
buoys having relatively large error variances is due to the spatial representativeness error: the buoys
measure small-scale signals that are not detected by the other systems. That is, the NDBC buoy data
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are point measurements averaged over a short period of time, whereas the satellite and model products
are averages over the relatively large satellite footprint or model grid square.

As noted above, Figure 3 shows two selected cases for the error standard deviation wind speeds
calculated on a yearly basis. Both cases use altimeters as the reference. As can be seen from the figures,
the average random errors are almost the same as obtained when using all the data and reported in
Tables 1 and 2. For completeness, it should be noted that the triplet-collocations between TOPEX,
QUIKSCAT and SSMI-F15 have some matchups in 1999 but there are a total of only 16 matchups
which passed the quality assurance process, hence the yearly estimated error standard deviation for
1999 has been excluded. However, these matchups have been included when estimating the total
error variances.

3.4. Calibrations Based on Triple Collocation

Starting from Equation (3), it is assumed that X1 is the reference, which in this case would be an
altimeter or in situ buoys. Hence, the calibration relations for scatterometers and radiometers against
the reference can be written as

X∗2 =
X2

b2
−

a2

b2
(10)

and
X∗3 =

X3

b3
−

a3

b3
, (11)

respectively, where a2, a3, b2 and b3 are given in Equations (4), (5) and (7). Xi and X∗i are uncalibrated
and calibrated data, respectively.

Similarly, intercalibration relations between scatterometers and radiometers are given by

X∗3 = a4 + b4X3 (i f X2 is the re f erence) (12)

or
X∗2 =

X2

b4
−

a4

b4
(i f X3 is the re f erence) (13)

where a4 = a2 −
a3b2
b3

and b4 = b2
b3

.
By using the measurements from the altimeter as reference, the offset, ai, and slope, bi, coefficients

in Equations (10) and (11) were calibrated. Values from the calibrating operation are reported in
Table 3 for all the platforms investigated. Likewise, using Equation (13) and choosing the radiometer
as reference, the scatterometer can be calibrated. In this case the values of offset, a4, and slope, b4,
are summarized in Table 4, along with the altimeter used (right column Table 4), for all the platforms
investigated. Note that TP, E2, J1, EV, J2, and C2 in the table are abbreviated forms of altimeters TOPEX,
ERS-2, JASON-1, ENVISAT, JASON-2, and CRYOSAT-2, respectively. Likewise, for scatterometers
and radiometers, QS, MA, MB, F15, AM, and WS are abbreviated forms of QUIKSCAT, METOP-A,
METOP-B, SSMI-F15, AMSR-2, and WINDSAT, respectively. Moreover, index i has values of 2 and
3 which represent scatterometer and radiometer. As mentioned earlier, the altimeters are taken as
the reference.
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Table 3. Calibration coefficient slopes (bi) and offsets (ai) for the triplet collocated altimeter (X1),
scatterometer (X2) and radiometer (X3) wind speed. Empty cells mean no collocation has been
performed and altimeter is the reference. All other parameters as noted above.

Altimeters
Scatterometers Radiometers

QS MA MB F15 AM WS GMI

TP
a2 −0.2964 a3 −0.0062
b2 0.9918 b3 0.9448

E2
a2 −0.0847 a3 −0.0794
b2 0.9785 b3 0.9722

J1 a2 −0.0911 a3 0.1769
b2 0.9787 b3 0.9394

EV
a2 −0.2669 a3 −0.0729
b2 0.9706 b3 0.9455

J2

a2 0.1408 a3 −0.1341
b2 0.9270 b3 0.9442
a2 0.2169 a3 0.1607
b2 0.9180 b3 0.9235
a2 0.5471 a3 0.3564
b2 0.8909 b3 0.9137
a2 0.1276 a3 −0.1429
b2 0.9331 b3 0.9445
a2 0.4693 0.2270
b2 0.8977 0.9183
a2 0.2287 0.1409
b2 0.9225 0.9257

C2

a2 0.5259 0.4919
b2 0.9214 0.9167
a2 0.6916 0.8028
b2 0.9036 0.8898

Table 4. Calibration coefficients slope (b4) and offsets (a4) for intercalibrations between scatterometers
(X2) and radiometers (X3) wind speed in which radiometer is the reference. Empty cells mean no
calibration has been performed. All other parameters as noted above.

Radiometers
Scatterometers Altimeters

Used in TripletQUIKSCAT METOP-A METOP-B

SSMI-F15

a4 −0.2899
TOPEXb4 1.0498

a4 −0.0047
ERS-2b4 1.0065

a4 −0.2755 JASON-1
b4 1.0418

a4. −0.1921
ENVISATb4 1.0265

AMSR-2

a4 0.2725 0.2688 JASON-2
b4 0.9818 0.9879

a4. 0.0315
CRYOSAT-2b4 1.0052

WINDSAT

a4 0.1996 0.2474 JASON-2
b4. 0.9750 0.9775

a4 −0.1237
CRYOSAT-2b4 1.0156

GMI
a4 0.0571 0.0883 JASON-2
b4 0.9940 0.9966
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4. Comparison Calibrations between Reduced Major Axis (RMA) and Triple Collocations

In order to compare the calibration relations obtained from triple collocation and reduced major
axis regression, two different cases were considered. Firstly, NDBC buoy data were considered as
the reference and then scatterometer and radiometer were calibrated with respect to the reference.
Secondly, intercalibrations between scatterometer and radiometer were performed. For the latter case,
radiometer was considered as the reference.

As previously applied [1,4,23,36], reduced major axis (RMA) regression can accommodate two
different measurements, both of which contain random errors [25]. This regression approach minimizes
the triangular region, bounded by the vertical and horizontal lines between data points and the
regression line, and the cord of the regression line. This differs from traditional regression which
assumes that one of the measurements does not contain any errors and hence only minimizes the
vertical offsets from regression line. Moreover, standard least squares regression analysis is very
sensitive to outliers, which can be removed using robust regression [26]. Robust regression removes
outliers using iteratively reweighted least-squares [26]. In this method, for each point, robust regression
assigns a weight with values between 0 and 1. The weights for all points are obtained and then all
values with weights which were less than 0.01 were defined as outliers and removed from subsequent
analysis before applying the RMA regression analysis.

In order to compare the resulting calibration relations between RMA and triple collocation, four
different statistical parameters were evaluated. These statistical parameters are bias (B), root-mean
square error (RMSE), Pierson’s correlation coefficient (ρ), and scatter index (SI). These parameters
were calculated using the following equations in which M and O stand for model and observation,
respectively, and N is the number of data used [4,23,38].

B =
1
N

N∑
i=1

(Mi −Oi) (14)

RMSE =

√√√
1
N

N∑
i=1

(Mi −Oi)
2 (15)

SI =

√
1
N

∑N
i=1(Mi −Oi − B)2

1
N

∑N
i=1 Oi

(16)

ρ =
cov(M, O)√

cov(M)cov(O)
(17)

Two triplet combinations were considered as examples: (a) METOP-A (scatterometer), WINDSAT
(radiometer) and NDBC and (b): METOP-B (scatterometer), WINDSAT (radiometer) and NDBC.
The calibration of the scatterometers and a radiometer with respect to NDBC buoy data are given by
Equations (10) and (11). Similarly, the calibration relations of the scatterometers with respect to the
radiometer are obtained from Equation (13). For simplicity, the figures below do not show the results
involving METOP-B.

Figure 4 shows the comparisons between calibration relations obtained from RMA regression and
triple collocation between METOP-A and NDBC data. As can be seen from the figure, the calibration
relations differ slightly in terms of slope and offset. However, the statistical parameters [Equations (14)–(17)],
are very similar, with the correlation coefficient agreeing to four decimal places. The RMSE values differ
by only 1.19 cm/s and the scatter index values differ by only 0.14%. It should be noted that the RMA
regression calibration relation between METOP-A and NDBC buoy data is almost the same as that
previously found by Ribal and Young [23], the small differences due to slightly different collocation
datasets. Similar good agreement between the two approaches were also found for METOP-B (figure is
not shown). The detailed calibration relations are shown in Table 5. In Figure 4 (and subsequently in
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Figures 5 and 6) the outliers randomly scatter outside two lines which run parallel to the RMA regression
line. The reason for this structure is that we chose an arbitrary value of 0.01 for the robust regression
weight to define the outliers. The lines parallel to the RMA regression result represent this limit.
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Figure 4. Calibration of METOP-A wind speed against National Data Buoy Center (NDBC) buoy
data using reduced major axis (RMA) and triple collocation. The contours represent the normalized
density of data points, with contours drawn at 0.9, 0.7, 0.5, . . . , 0.1, 0.07, 0.04 (maximum value is one).
Dots represent outliers excluded from RMA regression using robust regression. U∗10 refer to calibrated
values of wind speed and U10 to uncalibrated values. n and nout are the number of clean (i.e., not
outliers) collocated measurements and the number of outliers, respectively.

Similarly to Figure 4, Figure 5 shows the comparison of the calibration relations obtained from
RMA regression and triple collocation approaches between WINDSAT and NDBC buoy data. Again,
the agreement between the approaches is excellent, with the correlation coefficients being the same
to four decimal places, an RMSE difference of 0.47 cm/s and the scatter index difference of only
0.06%. In addition, the calibration relations obtained from triplet-collocated NDBC buoy, METOP-B
and WINDSAT are almost the same as obtained from triplet-collocated NDBC buoy, METOP-A and
WINDSAT as shown in Table 5. This follows the findings of Ribal and Young [23] that the calibration
relationships for METOP-A and METOP-B are almost identical.

As noted above, this approach can also calibrate the scatterometers METOP-A and METOP-B with
respect to the radiometer WINDSAT. As shown in Figure 6 (METOP-A with respect to WINDSAT),
the calibration relations obtained from RMA regression and triple collocation are again very similar,
with the offsets having the same sign. In terms of statistical parameters, the correlation coefficient is
the same to 4 decimal places and RMSE and scatter index differ by 0.73 cm/s and 0.09%, respectively.
A similar result was obtained when METOP-B was calibrated with respect to WINDSAT, with the
details provided in Table 5.
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Figure 6. Calibration of METOP-A wind speed with respect to WINDSAT using RMA and triple
collocation. The contours represent the normalized density of data points, with contours drawn at
0.9, 0.7, 0.5, . . . , 0.1, 0.07, 0.04 (maximum value is one). Dots represent outliers excluded from RMA
regression using robust regression. U∗10 refer to calibrated values of wind speed and to uncalibrated
values. n and nout are the number of clean (i.e., not outliers) collocated measurements and the number
of outliers, respectively.
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Table 5. Comparison of calibration relations obtained from RMA regression and triple collocation (TC).
MA, MB, and WS are abbreviated forms of METOP-A, METOP-B, and WINDSAT, respectively. U∗10 is
the calibrated value and U10 is the uncalibrated data. Also shown are the confidence limits on the RMA
regression, number of points, N, and the percentage of outliers from the robust regression.

Scat Method Calibration Relation 95% Limit
Slope

95% Limit
Offset N %

Outliers Ref.

MA
RMA U∗10 = 1.040U10 − 0.199 1.037 to 1.043 −0.225 to −0.173

57,499

0.91

NDBCTC U∗10 = 1.010U10 + 0.050

WS
RMA U∗10 = 1.061U10 − 0.513 1.058 to 1.065 −0.543 to −0.483 0.84

TC U∗10 = 1.052U10 − 0.431

MA
RMA U∗10 = 0.979U10 + 0.306 0.976 to 0.982 0.283 to 0.328 0.34

WS
TC U∗10 = 0.960U10 + 0.458

MB
RMA U∗10 = 1.028U10 − 0.129 1.024 to 1.032 −0.161 to −0.096

38,753

1.10

NDBCTC U∗10 = 0.990U10 + 0.182

WS
RMA U∗10 = 1.055U10 − 0.479 1.051 to 1.060 −0.517 to −0.442 1.06

TC U∗10 = 1.039U10 − 0.344

MB
RMA U∗10 = 0.972U10 + 0.353 0.969 to 0.975 0.326 to 0.381 0.35

WS
TC U∗10 = 0.953U10 + 0.507

Examination of Table 5 shows that triple collocation and RMA regression produce very similar
calibration relations across all the satellites. Therefore, in order to calibrate a measurement system
with respect to another system, it appears sufficient to only employ RMA regression, unless one
is interested in error estimation of the systems. Calibrating a measurement system with respect to
another system using RMA regression requires only two systems which can lead to a higher number
of matchups, whereas the requirements of three independent measurements with triple collocation
typically results in a much smaller collocation dataset. Finally, triple collocation has to satisfy the
requirements that the random measurements are uncorrelated and that the errors are not a function of
time (both requirements met for the present data).

5. Discussion

5.1. Triple Collocation

Triple collocation is a powerful tool to estimate error variances of measurements. It is very
straightforward to apply, as long as the required assumptions are satisfied. Triple collocation requires
one of the datasets to be specified as the reference. The other datasets are then calibrated against the
reference. As altimeters have the highest along-track resolution (of order 10 km), they were designated
as the reference for this work. The scatterometers and radiometers were then calibrated with respect
to the altimeters (and NDBC buoy data in some cases) and the random error variances determined
for all systems. For the three satellite systems, it was found that altimeters have the smallest error
variances followed by scatterometers with radiometers having the largest error variances. NDBC buoy
data were found to have larger error variances than any of the satellite systems.

These results are perhaps surprising, as altimeters are generally not considered the platform
of choice for the measurement of wind speed. However, we are aware of no systematic studies
which actually confirm this. These results are believed to be the first quantitative assessment of
the magnitude of random error variances between the platforms. The reason for the smaller error
variances for altimeters cannot be determined from this analysis. However, it presumably relates to the
imaging mechanisms used to determine wind speed from each platform. As altimeter measurements
are always made at nadir, radar power is at a maximum, resulting in a high signal-to-noise ratio.
In contrast radiometer and scatterometer measurements are obtained across a broad swatch, and the
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signal-to-noise ratio may be much lower. Therefore, a comparison is being made between altimeter
nadir measurements and radiometer/scatterometer off-nadir data with different noise characteristics.

As noted above, the larger error variances reported for buoy data are most likely due to the fact
that buoy data are point measurements measured over a short time, whereas satellite values are an
average over the measurement footprint.

Figure 7 shows contour plots of data density for selected comparison cases, both before and after
triple collocation calibrations were applied. As can be seen from the figure, although the correlation
coefficients remain the same, there were changes in the values of RMSE, scatter index, and biases once
the data are calibrated. As expected, the most significant change was bias, which is approximately zero
after the calibrations relations were applied. This indicates that the calibration using triple collocation
produces the expected outcomes.
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Figure 7. Comparisons of selected cases of matchup data before and after triple collocation calibrations
were applied. The contours represent the normalized density of data points, with contours drawn at
0.9, 0.7, 0.5, . . . , 0.1, 0.07, 0.04 (maximum value is one).

5.2. Comparison of Calibration Approaches

As shown above, triple collocation and RMA regression produce very similar calibration
relationships. However, there are some practical considerations which need to be taken into account
when choosing a method.

If one is interested in estimating error variances, then triple collocation is the only available
method to use. This is due to the fact that triple collocation can perform error estimations as well as
calibration. However, as argued by Abdalla and Chiara [19], the method requires a few thousand
collocated measurements to produce robust results. Therefore, most studies generally include a
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numerical model as one of the data sources for triple collocation. For example, METOP-B, CRYOSAT-2,
and SSMI-F16 were operational at the same time but their respective orbits meant that there are no
three-way matchups. In contrast, a huge number of matchups (more than 172,000) can be obtained if
only two measurements are included such as METOP-B and CRYOSAT-2 or METOP-B and SSMI-F16.
In this case, triple collocation is not a feasible solution.

Although reduced major axis (RMA) regression cannot be used to estimate error variances for
a measurement, it also does not require a priori assumptions about the nature of the errors (e.g.,
uncorrelated random errors). Hence, RMA regression is a good solution if one is only interested in
measurement calibration. It should be noted that neither approach will produce good results if the
calibration is nonlinear, as has been noted at high wind speed. In such cases, a nonlinear or piecewise
linear calibration can be applied [23,39].

6. Conclusions

Random error standard deviations of wind speed from 14 different measurement platforms have
been estimated in the present work using triple collocation. The measurement platforms include six
altimeters, three scatterometers, four radiometers, and NDBC buoys. Of all 13 satellite measurement
systems, it is found that radiometers have the largest error standard deviations followed by scatterometers,
with altimeters having the smallest error standard deviations. NDBC buoy data which is usually assumed
as “ground truth” has error standard deviations larger than all the satellite systems. However, it is
believed that the apparent low accuracy of the buoy is due to spatial representativeness errors.

Since triple collocation can simultaneously perform error estimation as well as calibration for a
given reference, intercalibrations between satellites including NDBC buoy data have been carried out.
Furthermore, calibration relations obtained from triple collocation have been compared with calibration
relations obtained from reduced major axis (RMA) regression. It was found that the calibration relations
obtained from the two approaches are very similar. Four different statistical parameters, namely RMSE,
correlation coefficient, scatter index, and bias, have been evaluated and all show consistent results
between the two calibration approaches.

The present work has not attempted to estimate error standard deviations for wind directions.
Stoffelen [5] has qualitatively presented errors for wind direction for NDBC buoy data, not surprisingly
showing that wind direction errors are larger at light winds. As only buoys and scatterometers measure
wind direction, such an analysis could not be performed with the present datasets.
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