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Abstract: The non-Gaussian observation error is a threat for advanced receiver autonomous integrity
monitoring (ARAIM), because the protection level of ARAIM based on the Gaussian distribution
assumption is insufficient to envelope the positioning error (PE), and the probability of hazardously
misleading information (PHMI) is difficult to be satisfied. The traditional non-Gaussian overbounding
method is limited by the correlation among observation errors, and the deteriorated continuity risk
resulting from the conservative inflation factor for overbounding, simultaneously. We propose an
enhanced ARAIM method by position-domain non-Gaussian error overbounding. Furthermore,
the upper bound of the inflation factor is imposed to release the conservativeness of overbounding.
The simulation and the real-world data are utilized to test the proposed method. The simulation
experiment has shown that the global worldwide availability level can be increased to 99.99% by
using the proposed method. The real-word data experiment reveals that the proposed method can
simultaneously satisfy the integrity risk and continuity risk with the boundary of the inflation factor.
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1. Introduction

Receiver autonomous integrity monitoring (RAIM) uses the redundancy of ranging observations
for consistency check, which can be applied to safety-of-life (SOL) navigation services [1,2]. RAIM has
limitations in satisfying vertical guidance services with stricter integrity requirement than the lateral
navigation. With the modernization of global navigation satellite system (GNSS), the frequency
diversity can provide better navigation positioning services and the possibility of utilizing RAIM
to provide global coverage vertical guidance (LPV 200) [3,4]. In order to enable RAIM for vertical
guidance, Blanch et al. proposed the multiple hypothetical solution separations (MHSS) ARAIM
algorithm [5–7].

RAIM was developed based on the assumption that observation errors follow a Gaussian
distribution [8,9]. Under the GPS selective availability (SA) policy, the artificial high-frequency
interference of the satellite clock is the main error source. It is reasonable to assume the observation errors
follow Gaussian observation errors when SA is on [10,11]. At the post era of SA, the observation errors
include satellite orbit and clock errors, ionospheric delay, tropospheric delay, and multipath [12–14].
Therefore, observation errors hardly follow the Gaussian distribution due to the non-Gaussian error
sources such as ionospheric delay and multipath, which cause the protection level (PL) and represent
an instantaneous error envelope of positioning error, unable to bound the positioning error and increase
the integrity risk [12,15].

The overbounding method can be utilized to compensate the non-Gaussian distribution, i.e.,
to replace the non-Gaussian observation error distribution with standard Gaussian distribution [16–18].
There are two groups of overbounding methods. One is the probability density function (PDF)
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overbounding. However, the PDF-based overbounding is difficult to be generalized. The wide
Gaussian PDF with large sigma does not envelope narrow Gaussian PDF with small sigma, because
the wide Gaussian PDF is always greater in the tails and lower at the mean than a narrower Gaussian
PDF [19]. The other one can be generalized as the cumulative distribution function (CDF) overbounding,
in which the single CDF overbounding proposed by DeCleene and the paired-overbounding (PB)
proposed by Rife and Pullen are two typical implementations [19].

Although the CDF overbounding can be effective for compensating the non-Gaussian observation
errors, the PL is inevitably enlarged, and the availability level is reduced. In other words, the CDF
overbounding methods focus on the integrity risk caused by non-Gaussian observation errors but ignore
the impact of the over-conservativeness of overbounding on the continuity risk [20–23]. On the other
hand, the CDF overbounding method assumes that the observation errors are independent of each other.
Nonetheless, due to the presence of receiver noise, tropospheric delay, and multipath, the correlation
among the observation errors cannot be neglected [24,25]. The traditional CDF overbounding ignores
the effect of correlation, which may lead to the inductive error model being insufficient to overbound
the intrinsic error distribution [26,27].

The continuity of ARAIM is challenged by the over-conservatism of the traditional CDF
overbounding method in the range-domain. Since the position-domain is more easily associated
with continuity of ARAIM, this concern leads to the presence of the position-domain method [28].
The position-domain methods are found to be effective and release the conservativeness caused by
the incorrect range-domain modeling error by Braff et al. and Zhu et al. [29,30]. However, compared
with the range-domain methods, the position-domain methods are difficult to be generalized due
to the limitation of flexibility caused by a large number of convolution process [28]. Therefore,
the proposed method will consider the limitations in non-Gaussian overbounding to meet integrity
and continuity requirement. In addition, the effect of the overbounding on the continuity has not been
clarified yet. We derive the upper bound of the inflation factor to satisfy the continuity requirement of
position-domain overbounding.

We define the problem of non-Gaussian observation errors on the MHSS ARAIM and the limitations
of the traditional method. Then, an enhanced ARAIM method with position-domain non-Gaussian
error overbounding is proposed. Finally, we present the effectiveness of the proposed method in
dealing with the simulation and the real-world data experiments, then summarize the research findings.

2. Problem Definition

It is obvious that the non-Gaussian observation error is a threat for ARAIM. The non-Gaussian
effect of ARAIM is analyzed at first to prove the importance of compensating for non-Gaussian
observation errors. Then, we describe the limitations of the traditional overbounding method.

2.1. Non-Gaussian Effect

In order to analyze the characteristics of non-Gaussian observation errors, we extract the
observation errors with the raw observation collected from the International GNSS service (IGS)
station (JFNG, located in Hubei, China). The distribution characteristics of observation errors are
shown in Figure 1.

Figure 1 is a QQ (Quantile Quantile) plot of the GPS/BDS (BeiDou Navigation Satellite System)
observation errors at JFNG station, where the red line indicates the standard Gaussian distribution,
and the others indicate the extracted observation error distributions. It can be seen that the extracted
BDS and GPS observation errors have non-Gaussian distribution characteristics. Therefore, it breaks
the ARAIM assumption that the observation errors follow the Gaussian distribution.

The vertical protection level (VPL) of the MHSS ARAIM is divided into two parts: real-time
VPL and prediction VPL, which correspond to the integrity and continuity requirements, respectively.
The VPL can be defined as follow [6,7]:
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{
VPL = max(VPLi)

VPLi = KHMI,iσv,i + Bv,i + Mi
(1)
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Figure 1. QQ plot of normalized observation errors from the JFNG station.

The prediction part Mi related to continuity risk can be expressed as

Mi = KCONT,iσss,i + Bss,i (2)

where VPLi represents the VPL under the fault subset i, the state 0 corresponds to the fault-free case,
σv,i and Bv,i represent, respectively, the standard deviation and mean bias of observation error related
to the integrity under the fault subset i, σss,i and Bss,i are related to continuity, KHMI,i represents the
quantile of Gaussian cumulative distribution related to the integrity risk, KCONT,i is related to continuity
risk, and KHMI,i and KCONT,i are calculated based on the premise that the observation error follows a
Gaussian distribution. When the observation errors are non-Gaussian, the above two parameters are
different from the actual theoretical value and will affect the protection level. The calculation of KHMI,i
and KCONT,i are as follows:  KHMI,i = Q−1(1− PHMIi

2Pap,i
)

KCONT,i = Q−1(1− Pcont,i
2 )

(3)

in which PHMIi is the PHMI assigned to failure mode i, Pcont,i is the continuity risk assigned to failure
mode i, Pap,i is the prior failure probability in the corresponding failure mode, and Q−1 is the inverse of
the unit Gaussian CDF.

The effect of non-Gaussian distribution on KHMI,i and KCONT,i can be divided into two types. In the
first type, the parameters are lower than the theoretical values. It will lead to misleading information
(MI), which indicates that PE, PL are less than the alert limit (AL) and PE is greater than the PL. If the
non-Gaussian phenomenon is serious, this type may lead to hazardously misleading information
(HMI), which indicates that the PL is less than AL and the PE is greater than the AL. In the second
type, the parameters KHMI,i and KCONT,i are higher than the theoretical values. This enlarges the PL,
which reduces the availability level.
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In order to avoid the misleading information caused by the non-Gaussian characteristics of
the observation errors, the effect of the non-Gaussian errors should be compensated to validate the
assumption of Gaussian observation errors.

2.2. Limitations of Traditional Method

The CDF overbounding method in the range-domain is usually used to compensate for the
effect of the non-Gaussian distribution. We here introduce the traditional CDF overbounding method
and analyze its limitations. The traditional methods include single CDF-overbounding and paired
overbounding methods.

2.2.1. Traditional Method

DeCleene proposed the single CDF-overbounding method, which proves that a set of range-domain
Gaussian bounds can still form a position-domain bound after convolution [15]. The resulting
position-domain error will be bounded according to Equation (4). Each of Go and Ga is a symmetric
unimodal CDF distribution with a zero mean. The method can be described as,{

Go(x) ≥ Ga(x),∀x < 0
Go(x) ≤ Ga(x),∀x ≥ 0

(4)

The single CDF-overbounding is only applicable to zero mean and symmetric and unimodal
distribution, but the empirical observation errors are generally not satisfied. For the limitation of
single CDF-overbounding on observation errors, the paired overbounding was proposed in Rife and
Pullen [19]. The paired overbounding is a set of two bounding functions. This set of bounds consists
of a left bound GL and a right bound GR defined relative to the actual CDF Ga,{

GL(x) ≥ Ga(x),∀x
GR(x) ≤ Ga(x),∀x

. (5)

The paired overbounding allows for error distributions of arbitrary form, but it turns out that the
requirements of Equation (5) are over-conservative [31,32].

2.2.2. Limitations

In order to compensate for the non-Gaussian distribution of the observation errors, the traditional
overbounding method determines an inflated sigma such that the inflated distribution overbounds
all reasonable error distributions out to the probabilities assumed in the computation of the PL.
The inflation factor, finfaltion, is defined as the ratio of the overbounding sigma σoverbound to the actual
sigma σactual as follows:

finfaltion =
σoverbound

σactual
(6)

The traditional CDF overbounding theorem is based on the assumption that the observation errors
are independent of each other. In reality, due to the influence of receiver noise, multipath, or other errors,
there is a certain correlation between the observation errors [24–26]. In addition, if error samples cannot
fully represent the error distribution or have significant non-Gaussian characteristics, the traditional
method will select a more conservative inflation factor to compensate for the non-Gaussian effect.
Therefore, the PL will be inevitably increased and lead to a threat to the continuity of ARAIM.
The traditional method focuses on compensating the integrity risk caused by the non-Gaussian errors
and ignores the balance between non-Gaussian observation errors and the ARAIM continuity. Moreover,
the threat of conservatism on the continuity cannot be identified immediately. The conservatism of the
traditional method is shown in Figure 2.
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Figure 2. (a) Paired overbounding method; (b) Stanford chart of MHSS ARAIM from paired
overbounding. The data from the JFNG station. Figure 2a shows the inflation results of G02
and G24 observation errors from the paired overbounding method. In Figure 2b, the Stanford chart
was used to evaluate the integrity and continuity performance, where the horizontal axes indicate the
absolute value of vertical position errors (VPE); the vertical axes is VPLs. The area beyond the red line
indicates that ARAIM is unavailable.

As seen in Figure 2b, the PLs frequently exceed the alarm limit, and the continuity is frequently
interrupted from the paired overbounding-based ARAIM. Due to the conservatism of the overbounding,
it increases continuity risk of ARAIM. Considering that the protection level is established from the
position-domain, the non-Gaussian error overbounding method based on the position-domain is more
easily associated with continuity risk.

3. Position-Domain Overbounding for ARAIM

Due to the limitations of the traditional CDF overbounding method, an enhanced ARAIM is
proposed to overbound the non-Gaussian observation error in position-domain. It is noted that the
integrity and continuity are satisfied simultaneously with the proposed method.

3.1. Methodology

Considering that the range-domain observation errors are correlated, the observation errors are
divided into the Gaussian error, non-Gaussian error, and correlated non-Gaussian error, which can be
expressed as

M(x) = Mg,n(x) + Mng,n(x) + Mng,mn(x) (7)

where M(x) represents the observation error, Mg,n(x) represents the Gaussian part, Mng,n(x) represents
the non-Gaussian part, and Mng,mn(x) represents the correlated non-Gaussian error part between the
two satellites m, n. The observation error composition can be found from (7), and the variance of
observation error can be expressed as

σ2
a = ST

z W−1Sz =
N∑

n=1

S2
z,nσ

2
g,n +

N∑
n=1

S2
z,nσ

2
ng,n + 2

N∑
n < m
n = 1

Sz,nSz,mσng,mnσng,nm (8)

where σa represents the standard deviation of observation error in the position-domain, S =

(GTWG)
−1

GW is the weighted least squares projection matrix, W is the weighted matrix, σg,n is
the standard deviation of Gaussian error, σng,n is the satellite non-Gaussian error standard deviation,
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and σng,mn is the correlated non-Gaussian error standard deviation. Since the weight matrix W is a
positive-definite matrix and considering the correlated non-Gaussian errors among satellites,{

σng,nm = σng,mn

σng,mn ≤
√
σng,nσng,m

(9)

where 1 ≤ m ≤ N, 1 ≤ n ≤ N, the variance of the non-Gaussian errors can be expanded as,

σ2
ng =

N∑
n=1

S2
z,nσ

2
ng,n + 2

N∑
n < m
n = 1

Sz,nSz,mσng,mnσng,nm ≤
N∑

n=1
S2

z,nσ
2
ng,n + 2

N∑
n < m
n = 1

∣∣∣Sz,nSz,m
∣∣∣σng,nσng,m

= (
N∑

n=1

∣∣∣Sz,nσng,n
∣∣∣)2

(10)

Equation (10) can be used to compensate the correlation non-Gaussian errors. The non-Gaussian
part is inflated into Gaussian errors through the upper bounding of non-Gaussian error. Based on
the compensated non-Gaussian errors, the standard deviation σa can be further be converted to σo

as follows:

σa =
√(
σ2

ng + σ2
g

)
≤ σg + σng ≤

√√√ N∑
n=1

S2
z,nσ

2
g,n +

N∑
n=1

∣∣∣Sz,nσng,n
∣∣∣ = σo (11)

The standard deviation σa containing the non-Gaussian part can be characterized by Gaussian-type
errors of the standard deviation σo. The proposed method decomposes the observation error, and the
observation error model is mapped to the position-domain to be overbounded without convolution.
Therefore, the limitation of flexibility in the traditional position-domain method can be ignored in the
proposed method.

The protection level VPLo by non-Gaussian overbounding can be expressed as{
VPLo = max(VPLoi)

VPLoi = KHMI,iσo,i + Bv,i + Moi
(12)

where VPLoi represents the VPL corresponding fault subset i, and σo,i and Moi represent, respectively,
the standard deviation and prediction part corresponding fault subset i through overbounding.

The proposed method compensates the effect of non-Gaussian errors due to the correlation among
observations through position-domain non-Gaussian overbounding. Therefore, it meets the ARAIM
assumption that observation errors follow the Gaussian distribution. Moreover, the enhanced ARAIM
with position-domain overbounding should meet integrity and continuity requirement. It is necessary
to further explore and verify the integrity and continuity performances of the proposed method.

3.2. Integrity Proof

System integrity defines the primary constraint on overbounding. To protect integrity, the PHMI
through overbounding must be less than the actual PHMI requirement. The construction of VPLRT,oi

related to integrity risk holds;

VPLRT,ai = KHMI,iσai + Bv,i ≤ KHMI,iσoi + Bv,i = VPLRT,oi. (13)

It can be found that the VPLRT,oi treated by non-Gaussian overbounding is the upper bound of
the actual protection level VPLRT,ai.

Integrity risk is the likelihood of the positioning error exceeding the error bound without raising
an alert to the user [33]. Therefore, the integrity risk constraint of MHSS ARAIM under the fault subset
i can be described as

P(
∣∣∣∆xi

v

∣∣∣ ≥ Loi
∣∣∣i∣∣∣) ≤ PHMIi

Pap,i
(14)
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and
N−1∑
i=0

(
P(

∣∣∣∆xi
v

∣∣∣ ≥ Loi
∣∣∣i∣∣∣) × Pap,i

)
≤

N−1∑
i=0

(
PHMIi

Pap,i
× Pap,i

)
= PHMIreq, (15)

where 4xi
v represents the vertical positioning error under subset i, and the state 0 corresponds to the

fault-free case. Loi represents the subset related to integrity risk under fault subset i, and it corresponds
to the VPLRT,ai and VPLRT,oi. PHMIreq is the PHMI budget, which is distributed into all the modes.
Further, the following equation can be obtained:

N−1∑
i=0

(
P(

∣∣∣∆xi
v

∣∣∣ ≥ VPLRT,ai
∣∣∣i∣∣∣) × Pap,i

)
= PHMIa

N−1∑
i=0

(
P(

∣∣∣∆xi
v

∣∣∣ ≥ VPLRT,oi
∣∣∣i∣∣∣) × Pap,i

)
= PHMIo

(16)

where PHMIa represents the PHMI corresponding to the real error distribution, and PHMIo represents
the PHMI processed by non-Gaussian overbounding.

By a combination of Equations (13), (15), and (16), we can get the relationship of PHMI as

PHMIo ≤ PHMIa ≤ PHMIreq. (17)

Compared with the PHMIa, it can be found that the PHMIo through overbounding is more
stringent. Both of them are constrained by PHMIreq. This condition implies that the overbounding
must be conservative in the position-domain. Therefore, the proposed enhanced method can always
meet the predefined integrity risk requirement.

3.3. Overbounding Boundary for Continuity

In addition to the integrity constraint, the overbounding must also satisfy secondary constraints
on continuity. If the overbounding turn out to be over-conservative, the increased VPL will exceed the
vertical alert limit (VAL). The availability loss will impact the continuity of the ARAIM. Therefore,
we will explore the boundary of inflation factor for the position-domain overbounding, where the
continuity can be satisfied.

In order to satisfy the continuity risk, the protection level with non-Gaussian overbounding needs
to hold [6,7].

P(∃i
∣∣∣∣∣∣4xi

v

∣∣∣+ Loi ≥Moi) ≤ Pcont,i (18)

where 4xi
v represents the vertical positioning error under subset i. As the predicted solution separation

under non-Gaussian overbounding, it is a Gaussian distribution with standard deviation σos,i and bias
Bsi. Moi represents the PL related to continuity risk under fault subset i.

Under the implementation of Equation (18), the Moi in fault subset i has met the requirement
of continuity risk. If the current inflation factor is replaced by a more conservative value, the PL
of fault subset i will be larger than that of Moi; in principle, the actual continuity risk will be more
severe, which can still meet the continuity risk requirement. However, it does not mean that an
over-conservative inflation factor can be selected. When the inflation factor is over-conservative,
the increased PL will frequently exceed the limit. The lack of availability will lead to the continuity
not being able to be satisfied. Therefore, there is an upper bound on the PL that meets continuity risk
in each fault subset i, i.e., sup(Moi) = VAL, where the sup is supremum operator.

Combined with the VPL construction process from Equation (12), the boundary of inflation factor
in each fault subset i can be obtained as

sup( fo,i) =
VAL− Bvi − Bsi

KHMI,iσa,i + KCONT,iσas,i
. (19)
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Therefore, the boundary flimit of inflation factor can be defined as

flimit = min(sup( fo,i)), i = 1, 2..., N. (20)

Under the constraint of continuity risk, the boundary condition is obtained from Equation (20).
The relationship between the boundary and the inflation factor can be used as an “observer”. We can
utilize the observer to judge continuity performance of the proposed method. When inflation factor
finfaltion satisfies the boundary, the proposed algorithm can meet the requirements of integrity risk and
continuity risk simultaneously. If finfaltion breaks through the boundary, the threat on the continuity can
be identified. Therefore, it avoids the integrity risks caused by continuing to use the proposed method.

4. Experiment and Discussion

In order to demonstrate the ability of the proposed method to provide better performance,
we tested the vertical protection level performance of the ARAIM methods based on LPV-200 RNP
parameters introduced in [1,33]. The parameter settings of the experiment are shown in Table 1.
We conducted the simulation experiment and the real-world experiment, respectively.

Table 1. Parameter settings.

Parameter Value

σGPS−URA,int (integrity) 0.5 m
σGPS−URA,cont (continuity) 0.25 m
σBDS−URA,int (integrity) 0.9 m
σBDS−URA,int (continuity) 0.45 m

bint (integrity) 0.75 m
bcont (continuity) 0.1 m

integrity risk 1× 10−7

continuity risk 2× 10−6

Pap (GPS) 1× 10−5

Pap (BDS) 1× 10−5

4.1. Simulation Result

A simulated GPS/BDS dual constellation was used to simulate and implement global vertical
protection level performance for 10 days with a sampling interval of 30 s, which generated 28,800
positioning samples. Considering the actual operation of the current GPS and BeiDou system,
the operational data of 32 GPS satellites and 34 BeiDou satellites were simulated. The simulation was
implemented worldwide uniformly with a 5-degree interval in longitude and a 2.5-degree interval
latitude (which gave 5329 locations).

In the simulation, the ARAIM based on paired overbounding was compared with the proposed
ARAIM. For the convenience of later analysis, they were indicated as the PB-ARAIM method and the
PDM-ARAIM method, respectively. Because the observation errors can be customized in simulation
experiments, the tropospheric and multipath were set to be correlated as non-Gaussian errors. The

standard deviation of the Gaussian part for tropospheric delay was 0.12× 1.001
√

0.002001 + sin2(θ),

and the standard deviation of the Gaussian part for multipath error was 0.13 + 0.53e−θ/10, where θ is
satellite elevation.

The global VPL variations of PB-ARAIM, PDM-ARAIM are shown in Figure 3 with three satellite
prior failure probabilities, i.e., 10−3, 10−4, and 10−5. It can be seen that most of the PB-ARAIM-based
VPLs were significantly larger than those of the PDM-ARAIM method regardless of the locations,
because the PB-ARAIM was over-conservative in compensating for the effect of non-Gaussian errors.
Moreover, it should be noted that both methods could achieve the best VPL results in the Asia Pacific
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region and low-latitude region. This is because of the better satellite geometry from BeiDou in
those region.
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Figure 3. 99.5% VPL of ARAIM; 99.5% VPL represents a 99.5% value in ascending order of VPL
calculations at any location in the world during the simulation. The subfigure (a), (c), (e) indicate the
results from the PB-ARAIM method, and the satellite’s prior failure probabilities are 10−3, 10−4, 10−5,
respectively. The subfigure (b), (d), (f) indicate the results from the PDM-ARAIM method, and the
satellite’s prior failure probabilities are 10−3, 10−4, 10−5, respectively. The color bar of figure represents
the different VPL value.

The 99.5% VPL global simulation result of different ARAIM methods are listed in Table 2.
The average 99.5% VPL represents the global average 99.5% VPL, and the availability level indicates
the rate of global users whose VPL is lower than VAL.

Table 2. Performance of ARAIM under GPS/BDS dual constellation.

Pap Category PB-RAIM PDM-ARAIM

10−5
Average 99.5% VPL/m 20.67 16.62

Availability 96.06% 99.99%

10−4
Average 99.5% VPL/m 22.52 17.86

Availability 89.96% 99.74%

10−3
Average 99.5% VPL/m 24.16 18.96

Availability 82.53% 98.89%

As shown in Table 2, the PDM-ARAIM method could provide better VPL performance and higher
availability level regardless of satellite failure probability. When the satellite prior failure probability
was increased from 10−5 to 10−3, it could be observed that the PB-ARAIM-based availability level
decreased dramatically. Specifically, the 99.5% VPL of PDM-ARAIM could be reduced by 5.2 m relative
to PB-ARAIM when satellite prior failure probability was 10−3. Furthermore, it could be observed that
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both the PB-ARAIM- and PDM-RAIM-based VPL performance deteriorated when the satellite prior
failure probability was increased. Nonetheless, the PDM-ARAIM-based availability level could be
increased by 16.36% more than the PB-ARAIM when the satellite prior failure probability was 10−3.
This result demonstrates the superior performance of PDM-ARAIM in dealing with high satellite failure
rate. The superior performance of the PDM-ARAIM could be attributed to the better position-domain
compensation for non-Gaussian errors, as well as the accurate characterization of the correlation
among observation errors. In contrast, the PB-ARAIM method could suffer from over-conservative
performance, as induced from the traditional overbounding process.

Figure 4 shows the boundary and inflation factor of global simulation based on the PDM-ARAIM.
The acceptable inflation factor in mid-latitude regions was smaller, which means better performance
could be obtained. Moreover, with the increasing of prior satellite failure probability, more cases
of the inflation factor exceeding the boundary were identified. This is consistent with the result of
global VPL distribution in Figure 3. This shows that the relationship between the boundary and the
inflation factor could be used as an “observer”, which could present the continuity performance of
the proposed method, because the boundary was determined on the basis of meeting the continuity
requirement. This was the upper bound of conservative inflation factors. It can be seen from Figure 4
that the inflation factors of most areas were within the boundary, which indicated the position-domain
overbounding method could meet the continuity requirement. However, there were partial areas that
did not meet the continuity. This was because the boundary would become stricter for the areas with
poor satellite geometry. Therefore, in order to guarantee the system integrity, the cases where thee
inflation factors exceeded the boundary would appear frequently.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 4. Boundary and inflation factor distribution of global simulation based on the PDM-ARAIM
method. The subfigure (a), (c), (e) indicate the actual inflation factor, and the satellite’s prior failure
probabilities are 10−3, 10−4, 10−5, respectively. The subfigure (b), (d), (f) indicate the boundary of
inflation factor, and the satellite’s prior failure probabilities are 10−3, 10−4, 10−5, respectively.
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4.2. Real-World Data Result

A real-world experiment was carried out to test the PDM-ARAIM method by utilizing single
point positioning (SPP) with GPS/BDS dual-frequency ionosphere-free (IF) observation combinations.
The data came from the IGS organization and the time span of data collection was 3 days with a
sampling interval of 30 s, which generated 11,520 samples. Since BDS had initial operation capability
(IOC) in the Asia-Pacific area, four IGS stations were selected in the Asia-Pacific region, namely JFNG,
SIN1, PNGM, and CUT0. The station distribution is shown in Figure 5. The real-world experiment
was carried out given the parameters listed in Table 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 16 
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Figure 5. Distribution of selected IGS stations.

In the real-world data experiment, the ARAIM without non-Gaussian overbounding was
added to be compared with the PDM-ARAIM, indicated as NARAIM. In order to test the different
ARAIM methods, the Stanford chart was used to evaluate the integrity and continuity performance.
Horizontal axes indicates the absolute value of vertical position errors, while VPLs were plotted in the
vertical axes.

Figure 6 is the Stanford chart of different ARAIM methods based on the collected real-world data.
Note that the cases with less than five satellites in view were neglected. The results of different ARAIM
methods are listed in Table 3. It can be seen that the results of SIN1 and PNGM were better than those of
the other stations. This was because the SIN1 and PNGM stations are located in the mid-latitude region,
which has better satellite geometry. Moreover, the VPL of NARAIM was less than the VAL, and VPE
was less than the VAL, which led to the contribution of MI. The MI probability of the NRAIM was
0.57%, 0.91%, 1.65%, and 0.36% for JFNG, SIN1, PNGM, and CUT0, correspondingly. However, the MI
cases of PB-ARAIM and PDM-ARAIM were absent, which could be attributed to the non-Gaussian
error compensation. This is due to the fact that the overbounding describes a Gaussian envelope to
protect integrity, which prevents the non-Gaussian representation of the actual error distribution.
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Table 3. Performance of ARAIM under GPS/BDS dual constellation.

Station JFNG SIN1 PNGM CUT0

NARAIM
PMI 0.57% 0.91% 1.65% 0.36%

Availability 100% 100% 100% 100%

PB-RAIM
PMI 0% 0% 0% 0%

Availability 96.41% 100% 100% 95.72%

PDM-ARAIM
PMI 0% 0% 0% 0%

Availability 99.99% 100% 100% 100%

We compared the ARAIM availability in order to demonstrate the ability of the different methods.
The NARAIM method computes smaller PLs, which has better availability but constitutes misleading
information. With the PB-ARAIM, the availability of JFNG and CUT0 stations were only 96.41% and
95.72%, respectively. Since the PB-ARAIM formed a more conservative Gaussian bound to protect
integrity, it would lose part continuity as the cost, which would affect availability. In contrast, we can see
from Table 3 that the PDM-ARAIM with JFNG and CUT0 stations maintained the availability of 99.99%
and 100%, respectively. This shows the superiority of the proposed position-domain overbounding
method, which had the better balance between guaranteeing the integrity and the ARAIM availability.
Especially in the mid latitude area, the performance improvement was more obvious.

Now we turn to the boundary and inflation factor of the proposed method. It can be seen from
Figure 7 that the inflation factor of JFNG, SIN1, PNGM, and CUT0 was limited by the boundary,
respectively. We could judge that position-domain overbounding met the continuity requirement
through the relationship between boundary and inflation factor. However, the PDM-ARAIM was
relatively conservative for the poor satellite geometric distribution areas, which could be shown as the
smaller boundary. In order to ensure the integrity in such areas, the PDM-ARAIM was more likely to
decrease the system continuity and availability relative to the good satellite geometric distribution
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areas. One solution to this issue is the switch of other navigation sources to avoid the continuity
interruption caused by the PDM-ARAIM. Obviously, when the globalization of the BeiDou system is
completed, the continuity of the proposed method can further be improved.
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5. Conclusions

The proposed PDM-ARAIM method compensates the non-Gaussian distribution of observation
errors by position-domain overbounding. The proposed method not only takes account of the correlated
non-Gaussian errors but also releases the conservativeness of the traditional CDF overbounding method
to improve the continuity performance of ARAIM. The proposed method also provides a boundary
of inflation factor. The relationship between the boundary and the inflation factor can be used
as an “observer”, which can present the performance of the PDM-ARAIM method. Under the
constraint of boundary, the proposed method can meet the requirements of integrity risk and continuity
risk simultaneously.

The effectiveness of the proposed method is tested by the simulation and real-world data,
respectively. The results show that the PDM-ARAIM method can achieve the best performance. It can
effectively suppress the integrity risk caused by non-Gaussian characteristics of observation errors
and increase the global availability level to 99.99%. However, the PDM-ARAIM can be relatively
conservative for the poor satellite geometric distribution. Future work should focus on improving the
proposed method under the satellite-constrained cases. In addition, with the completion of the BeiDou
global constellation, the performance of the method can be further verified.
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