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Abstract: Timely and accurate agricultural information is needed to inform resource allocation and
sustainable practices to improve food security in the developing world. Obtaining this information
through traditional surveys is time consuming and labor intensive, making it difficult to collect data
at the frequency and resolution needed to accurately estimate the planted areas of key crops and their
distribution during the growing season. Remote sensing technologies can be leveraged to provide
consistent, cost-effective, and spatially disaggregated data at high temporal frequency. In this study,
we used imagery acquired from unmanned aerial vehicles to create a high-fidelity ground-truth
dataset that included examples of large mono-cropped fields, small intercropped fields, and natural
vegetation. The imagery was acquired in three rounds of flights at six sites in different agro-ecological
zones to capture growing conditions. This dataset was used to train and test a random forest model
that was implemented in Google Earth Engine for classifying cropped land using freely available
Sentinel-1 and -2 data. This model achieved an overall accuracy of 83%, and a 91% accuracy for maize
specifically. The model results were compared with Rwanda’s Seasonal Agricultural Survey, which
highlighted biases in the dataset including a lack of examples of mixed land cover.
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1. Introduction

Up-to-date agricultural information is needed for planning and forecasting to identify areas at
risk of food insecurity and better inform resource allocation and sustainability efforts in developing
countries. The Food and Agriculture Organization (FAO) of the United Nations in its “Global Strategy
to Improve Agricultural and Rural Statistics, Phase 2, 2020–2025” identified remote sensing as an
important component of its research agenda, calling for new data and methodologies to enable
high-accuracy, high-refresh crop mapping, and crop yield estimation [1–3]. While the potential of
satellite-based remote sensing to provide information on agricultural production has been recognized
since the mid-1970s [4,5], data at a sufficient resolution and revisit frequency for accurately mapping
smallholder agricultural systems have only recently been made freely available with the launch of the
Sentinel satellites.

Crop maps can be generated by applying supervised machine learning (ML) models to satellite
data. Immitzer et al. classified seven crop types (six summer and one winter/bare soil) in Austria
using Sentinel-2 images acquired on a single date using pixel-based (overall accuracy: 83%) and
object-based (overall accuracy: 77%) approaches [6]. Confusion between crop types was attributed
to the sub-optimal timing of the Sentinel-2 image used [6]. Building on this work, Vuolo et al. used
a pixel-based approach for classifying nine crop types over a two-year time frame using data from
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multiple versus single dates [7]. They found that using multi-temporal information improved overall
accuracy (91–95%), and the highest single-date classification accuracies occurred when the summer
crops reached the peak of their development and winter crops were harvested [6,7]. While these results
are promising, analysis of smallholder farms remains a challenge. Higher resolution imagery can be
used to accurately predict maize yields in smallholder agricultural systems [8,9], but these data are
not freely available. Using a hybrid approach, Lebourgeois et al. used an object-based approach to
segment smallholder agricultural systems in Madagascar into crop versus non-crop classes (using
high-resolution Pleiades imagery) before further classifying individual crops (using Landsat 8 and
SPOT-5 imagery) [10]. Clevers et al. also showed that several vegetation indices (i.e., leaf area index,
leaf chlorophyll content, and canopy chlorophyll content) could be derived from the Sentinel-2 bands
available at a 10m spatial resolution, which has important implications for smallholder agriculture [11].

Relying on multispectral information alone is challenging in areas with significant cloud cover
as data from multiple dates may not be available and the most suitable imagery may correspond to
sub-optimal crop separation conditions (especially for rainfed crops). Synthetic aperture radar (SAR)
data are not affected by cloud cover, and backscatter in the VV and VH polarizations correlates with the
normalized difference vegetation index (NDVI) [12] and is sensitive to changes in soil surface conditions
(i.e., fallow, preparation for planting, and active growth) as well as plant phenology [13]. Using
multi-temporal SAR models, Xu et al. were able to identify summer corn, rice, soybean, and peanut
fields at two sites in China with overall accuracies exceeding 90% [14]. With respect to smallholder
agriculture, models using SAR data only show higher accuracies for parcels >2 ha [15], which may
limit their utility in the developing world where fields are often <1 ha.

Multispectral and SAR data can be combined into a single model to take advantage of the strengths
offered by each data source. Sonobe et al. classified six crop types at the parcel level using Sentinel-1
and -2 imagery [16]. They tested four ML algorithms and achieved the highest accuracy (96.8%) using
the kernel extreme learning machine (KELM) [16]. Kussul et al. tested several pixel- and object-based
approaches for identifying a variety of landcover and crop types using Sentinel-1 and Landsat-8
data [13]. They achieved the highest accuracy when assigning parcels based on the dominate pixel class
and demonstrated that accuracies exceeding 90% should be achievable for large parcels. Identifying
individual parcels is difficult and time-consuming in smallholder agricultural systems, which may
limit the utility of these approaches. However, techniques for combining multispectral and SAR data
into a single model are still relevant for identifying cropland, and specifically maize, in Kenya and
Tanzania where smallholder agriculture is predominantly practiced and cloud cover interferes with
the regular availability of Sentinel-2 imagery [17].

A key aspect in developing well-performing ML models is the quality of ground-truth data [2].
Continental- or regional-scale cropland data maps can be used to generate a large amount of
ground-truth data quickly, but these types of maps cannot be rendered with a high degree of
accuracy for the developing world because of sparse and/or missing data [18]. Sites managed by
the Joint Experiment for Crop Assessment and Monitoring (JECAM) [19] can be valuable sources
of data for studies conducted in nearby areas [10,12,13] as these sites are rigorously monitored for
the purposes of generating time series datasets. For smallholder agricultural systems, information
is traditionally obtained by observers on the ground [6–9,14,16–18]. Aside from practical limitations
such as the challenge of surveying hilly or remote areas with limited road systems, this practice is time
consuming, is labor intensive, and does not lend itself to easy standardization and automation.

In recent years, unmanned aerial vehicles (UAVs) have become widely available and inexpensive,
and companies providing UAV services are now present in many developing countries. UAVs can
acquire high-resolution georeferenced images of large areas quickly and at low cost [20,21]. For
example, in this study, images of an area of 80 ha with a minimum ground resolution of 10 cm were
acquired in 2 to 3 h. UAV imagery can be georeferenced with high accuracy, reliably registering
locations of even the smallest fields in the satellite grid. The aerial view gives the analyst the ability to
accurately label intercropped fields, a task that is especially difficult for surveyors on the ground [22].
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Although UAV-acquired images have previously been employed to gain information about agricultural
production on a local scale [23–28], their use as a source of ground-truth data for satellite-based crop
analytics has not yet been widely investigated [29].

Building on the strengths of UAVs for capturing on-demand, accurate agricultural information,
the objective of this study was to determine the best practices for using UAV-based ground-truth data
to create regional-scale cropland data maps for smallholder agricultural systems. To be cost-effective
for use in the developing world, cropland data maps must be easy to maintain and update as new
information becomes available. To this end, a second objective of this work was to implement all
necessary models in open source platforms using freely available satellite data. In order to test the
feasibility of this approach, we conducted a pilot study in Rwanda during 2019 Season A (September
2018–February 2019). Given the significant cloud cover during the growing season, we chose to focus
the training, testing, and implementation of the model on relatively cloud-free Sentinel-2 (S2) images
recorded in January 2019 when many crops reached their maturity [30] and tended to exhibit the
most pronounced differences in their spectral signatures. We tested the model on a subset of the
ground-truth dataset that was not used for training. We compared the areas under specific crops with
the areas reported by the agricultural survey for 2019 Season A, obtaining agreement for maize and
beans to within 10% on a country scale.

2. Materials and Methods

2.1. Study Site

This pilot study was conducted in Rwanda (Figure 1), a small country (approximately
25,300 km2 [30]) located in sub-Saharan Africa. Rwanda is characterized by a temperate tropical
highland climate, with annual precipitation ranging between 1000 and 1400 mm, depending on the
region, and daily temperatures ranging from 15 to 27 ◦C.

Approximately 75% of the total land area in Rwanda is devoted to agriculture [30], which
represents 24% of Rwanda’s gross domestic product [31]. Fields in Rwanda are small (often <1 ha) and
intercropped, although larger mono-cropped fields (consolidated land use areas) do exist. The crop
calendar reflects two main seasons: Season A extends from September through February, and Season B
extends from March through June [30]. The starts and ends of the agricultural seasons depend on the
type of crop, the region of the country, and the onset of rain. The major crops grown in Rwanda are
maize (16%), beans (23%), bananas (19%), and roots and tubers such as cassava (15%), potatoes (4%),
and sweet potatoes (7%) [30].

2.2. Ground-Truth Data

For the ground-truth dataset, we collected high-resolution imagery (minimum ground resolution
of 10 cm) in a series of UAV flights that were conducted at six locations in different agro-ecological
zones (AEZs) [32,33] (Figure 1). AEZs in Rwanda are mainly divided along the lines of elevation
(higher elevation in the west and north and lower elevation toward the east), rainfall (higher in the
west and lower in the east), and temperature (higher in the east and lower in the west) [33]. Sites
within these AEZs were selected based on accessibility and the presence of (1) consolidated land use
areas where field sizes are larger and generally only a single crop is grown; (2) smaller, intercropped
fields that represent the dominant practice of smallholder agriculture; and (3) natural areas. Flights
covered approximately 80 ha in each location and were conducted on three dates during the peak of
the 2019 Season A growing season. This information is summarized in Table 1.
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Figure 1. Agro-ecological zone map of Rwanda with unmanned aerial vehicles (UAV) flight sites and
districts marked (Soucre: Chew et al. [34]).

Table 1. UAV flight site information (note: imagery from 17 of the 18 flights was used in future analysis;
the round #1 flight conducted at the Ngarama site was excluded).

Location Agro-Ecological Zone Flight #1 Flight #2 Flight #3

Kaberege Birunga 27 December 2018 29 January 2019 19 February 2019

Kinyaga Central Plate/Eastern
Plateau 12 December 2018 24 January 2019 21 February 2019

Kabarama Mayaga and
Peripheral Bugesera 10 December 2018 21 January 2019 16 February 2019

Cyampirita Eastern Savanna and
Central Bugesera 17 December 2018 25 January 2019 18 February 2019

Ngarama Buberuka Highlands – 30 January 2019 20 February 2019

Rwakigarati Congo-Nile Watershed
Divide/Kivu Lake Border 27 December 2018 31 January 2019 22 February 2019

The UAV flights were conducted by Charis Unmanned Aerial Solutions (Kigali, Rwanda). The
RGB (red, green, blue) camera and UAV selections were based on the site requirements on the day
of the flight. The DJI Zenmuse X5S (DJI, Shenzhen, China) camera was used with the DJI Inspire
(DJI, Shenzhen, China) drone in all of the round #2 and round #3 flights and one round #1 flight. The
senseFly S.O.D.A. (senseFly SA, Cheseaux-sur-Lausanne, Switzerland) camera was used with the Ebee
plus (senseFly SA, Cheseaux-sur-Lausanne, Switzerland) drone in three round #1 flights. The SONY
ILCE-6000 (SONY, New York, NY, USA) camera was used with the Parrot Disco (Parrot, Paris, France)
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drone in one round #1 flight. Georeferencing was accomplished using either a Continuously Operating
Reference Station (CORS) with real time kinematic (RTK)-based correction or ground control points.

The orthomosiac images for each UAV flight were created using the Pix4D (Version 4.2) software
package. For labeling, the orthomosaic RGB images from each flight (nominal resolution of 3 to 10 cm)
were imported into a custom viewer that used ESRI’s ArcGIS API for JavaScript and ArcGIS Enterprise
(ESRI, Redlands, CA, USA). The viewer was designed to support multiple users simultaneously,
tracking the user and date of entry. The 10 × 10-m Sentinel pixel grid was overlaid on the UAV images
in the viewer. To avoid labeling locations corresponding to S2 pixels covered by clouds in the images
of interest, we created a shapefile representing these clouded pixels and applied it to mask the clouded
locations in the viewer. Grid cells were labeled according to the dominant landcover (i.e., at least 75%
of the cell was the same class), and cells were not labeled in clouded areas. For this pilot study, we
limited the number of classes to four strategic crops (accounting for approximately 73% of the total
cropped area in Season A), a “catch-all” class for other crops and grasslands, a class for trees and
woodlands, and a catch-all class for non-vegetative land covers. The classes are as follows:

1. Maize;
2. Beans (bush beans and climbing beans);
3. Cassava;
4. Bananas (all varieties);
5. Other vegetation (OtherVeg) representing grassland and crops not in class 1 through 4;
6. Trees representing small tree stands, forest, and woodlands;
7. Non-vegetative (NonVeg) land cover representing bare ground, buildings, structures, and roads.

Figure 2 shows examples of labeled sections of UAV images for each of the selected classes. Each
example corresponds to an area of 10 × 10 m on the ground. The number of ground-truth examples for
each of the six UAV flight sites is detailed in Table 2. Emphasis was placed on labeling points from
the Kaberege, Kinyaga, Kabarama, and Cyampirita sites for which cloud-free satellite images were
available during the peak of the growing season; the Ngarama and Rwakigarati sites were heavily
clouded then. Within the cloud-free sites, we tried to balance the number of labeled examples. In
total, we created 1251 labeled data points. These data points were originally labeled by researchers
who were trained by Mr. Noel Ujeneza who is a Rwandan agricultural expert and a co-author of this
study. Mr. Ujeneza also accompanied the UAV operators to the test sites on several occasions and
reviewed the labeled cells for accuracy. Furthermore, we cross-referenced the labeled cells between the
December and January flight dates to ensure that the ground cover designation was consistent (note:
in the February flights, it was apparent that harvest had already occurred in many areas, and we did
not rely on these data for labeling). Cells not meeting this criterion were eliminated. Cells were also
denoted as good, average, or poor examples of ground cover as related to the health of the vegetation,
and cells labeled as poor were eliminated.

Table 2. The number of ground-truth data points by class by site (Kbg = Kaberege, Kin = Kinyaga,
Kbm = Kabarama, Cym = Cyampirita, Nga = Ngarama, Rwa = Rwakigarati).

Class Kbg Kin Kbm Cym Nga Rwa Total

Maize 130 37 11 101 8 2 289
Beans 33 8 69 20 7 7 144

Cassava 0 17 53 47 6 12 135
Bananas 4 12 42 14 9 4 85

OtherVeg 12 46 29 47 0 9 143
Trees 105 30 56 104 0 0 295

NonVeg 37 38 29 26 5 25 160
Total 321 188 289 359 35 59 1251
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Figure 2. Examples of 10 × 10-m sections of UAV images representing selected categories: (a) Maize,
(b) Beans, (c) Cassava, (d) Bananas, (e) OtherVeg, (f) Trees, (g) NonVeg.

2.3. Satellite Data Processing

We used optical images from the S2 satellite and SAR images from the S1 satellite. S2 optical
images represent the reflectance of light from the Earth’s surface as a function of the wavelength of
the light. For crops, this spectral reflectance is determined by the plant’s biophysical and biochemical
properties, such as the leaf area, biomass, chlorophyll content, water content, and canopy structure, as
well as external factors such as background soil [35]. The S2 optical image processing was carried out
in Google Earth Engine (GEE) [36]. For Rwanda, going back to December 2018, GEE provides access
to S2 images that are corrected to represent signal values at the bottom of the atmosphere. Values
of reflectance in the four bands B2 (490 nm), B3 (560 nm), B4 (665 nm), and B8 (842 nm) [29] were
extracted from the identified imagery after cloud masking was applied using a built-in GEE algorithm
and visually verifying the masked results. The S2 multispectral instrument (MSI) offers 10-m ground
resolution in these four selected bands [29].

S1 SAR image processing was also carried out in GEE. SAR images represent the reflectance of
electromagnetic radiation in the microwave range and are therefore not affected by cloud cover. For
crops, this reflectance is primarily a function of the canopy architecture such as the size, shape, and
orientation of the canopy components; the dielectric properties of the crop canopy; and the cropping
characteristics such as plant density and row direction [37]. GEE provides access to S1 images that
are preprocessed with thermal noise removal, radiometric calibration, and terrain correction. For this
analysis, we selected images acquired using the interferometric wide (IW) swath mode and the vertical
transmit/vertical receive (VV) polarization. The S1 SAR instrument offers a 10-m ground resolution in
this band [38].

2.4. Cropped Land Modeling

Of the several ML algorithms that are available on the GEE platform [39], we elected to use the
random forest (RF) model. RF is an ensemble learning method that uses the most common output of a
large number of independent decision trees as its prediction. RF models have been widely used in
interpreting remote sensing images because they produce accurate results, are computationally efficient,
and can handle high data dimensionality without overfitting [40]. The model was parameterized using
training data consisting of four S2 features and three S1 features for each of the labeled pixels. The S2
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imagery from December 2018 through February 2019 was evaluated for cloud cover, and two images
from late January were identified based on minimal cloud cover for the entire country (Table 3). The
four S2 features were signal values in B2, B3, B4, and B8, extracted from a composite S2 image that
was generated by filling in clouded pixels in the 2019-01-28 scene with unclouded pixels from the
2019-01-23 scene when available. The three S1 features were median VV values for the months of
November 2018, December 2018, and January 2019. The training/testing datasets were generated from
the ground-truth data using an 80/20 split.

Table 3. S2 imagery cloud cover by frame (information from Sentinel-hub EO-Browser); Rwanda falls
within four S2 frames (35MQU: Kaberege, Ngarama; 35MRU: Cyampirita, Ngarama; 35MQT: Kinyaga,
Rwakigarati; 35MRT: Kabarama).

S2 Flight Date 35MQU 35MRU 35MQT 35MRT

2018-12-04 77% 98% 93% 65%
2018-12-09 100% 100% 100% 100%
2018-12-14 44% 39% 19% 51%
2018-12-24 79% 87% 90% 76%
2018-12-29 39% 52% 19% 18%
2019-01-03 49% 29% 33% 21%
2019-01-08 37% 34% 36% 63%
2019-01-13 25% 12% 7% 14%
2019-01-18 81% 100% 100% 89%
2019-01-23 6% 12% 26% 7%
2019-01-28 31% 22% 13% 4%
2019-02-02 40% 40% 54% 35%
2019-02-07 91% 100% 82% 45%
2019-02-12 36% 77% 37% 66%
2019-02-17 99% 97% 98% 97%
2019-02-22 100% 100% 98% 99%
2019-02-27 35% 12% 12% 3%

3. Results

3.1. Discrimination of Labeled Categories

We analyzed the signal values for the labeled categories in the Sentinel satellite imagery
that contributed most to the between-class differentiation to better understand the feasibility of
discriminating between selected categories of crops and ultimately to interpret the results of the model.
The RF algorithm outputs a standardized measure of the importance of each of the features used in
the model [40]. In our case, the S2-B3 and S2-B4 features were the most important for discriminating
between the selected seven classes, followed by the S1-VV value. Box plots of the training data for each
of the classes were created using the S2-B3, S2-B4, and S1-VV signal values (Figure 3a–c). Figure 3d
shows a two-dimensional (2D) plot in the S2-B3 and S2-B4 coordinates for representative training
points. Although there is significant overlap in the spectral signatures of beans, cassava, and other
vegetation, maize, bananas, trees, and the non-vegetative class appear separable.
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3.2. Intercropped Maize (iMaize)

A similar analysis was performed to compare spectral signatures of intercropped maize (denoted
as iMaize) with the other agricultural categories. Maize in Rwanda is most often intercropped with
beans and cassava, although intercropping patterns can vary widely between fields both in terms
of the crops being intercropped with maize and the ratio of maize to other crops (Figure 4). Given
this variability and the relatively low density of maize in these examples, it is not surprising that
such intercropped maize has a spectral signature that better matches the signature of the crop that
it is intercropped with than the signature of pure maize (Figure 5). As a result, intercropped maize
was likely classified as another crop type (i.e., beans or cassava). This is consistent with the labeling
procedure used in this study in which we assigned the label according to the dominant crop type.
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3.3. Cropped Land Model Results

An RF model was trained and tested on the GEE platform using a composite image that consisted
of four S2 features (B2, B3, B4, and B8) from a single point in time and three S1 features that spanned
the peak of the growing season (median VV values for the months of November 2018, December 2018,
and January 2019). For the optical bands, pixels from the January 23 image were used to fill in clouded
pixels in the January 28 image. The ground-truth dataset was split into training (80% of labeled points)
and testing (20% of labeled points) datasets such that none of the points used to train the model were
used to test the model. The confusion matrix for the testing dataset is provided in Table 4, where each
row corresponds to a predicted class and each column to an actual class. The cells show the counts of
correct and incorrect classifications for each class. The producer’s accuracy, defined as the ratio of the
number of sites classified correctly by the model to the total number of sites for the class, is shown in
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the last column. The overall accuracy of the model was 83%, with producer’s accuracies of 91% and
84% for maize and beans, respectively.

Table 4. Confusion matrix for the random forest (RF) model; a 95% confidence interval is provided for
the accuracy assessment.

Class Maize Beans Cassava Bananas OtherVeg Trees NonVeg % Accuracy

Maize 52 1 1 2 0 1 0 91 ± 4
Beans 1 16 2 0 0 0 0 84 ± 8

Cassava 1 1 12 1 1 0 2 67 ± 11
Bananas 2 0 1 11 0 1 0 73 ± 11

OtherVeg 1 4 2 1 21 1 0 72 ± 8
Trees 4 0 1 0 1 53 0 90 ± 4

NonVeg 0 5 1 0 0 0 16 73 ± 9
Total Pts 61 27 20 15 23 56 18 –

Examining the confusion matrix more closely, we can see that in cases where other vegetation was
not classified correctly, it was most often confused with beans and cassava. These classes are spectrally
very similar (Figure 3d), so this confusion is not surprising. The non-vegetative class was also confused
with beans, and there is some spectral overlap with this class (Figure 3d). Trees were occasionally
confused with maize, which again agrees with the short distance between data points corresponding
to these categories (Figure 3d). The comparatively large confidence intervals for some of the categories
(e.g., beans, cassava, and bananas) result from a relatively small number of data points used in the
accuracy assessment based on the 80/20 split of the original ground-truth dataset.

A cropped land area map (Figure 6) was created using the composite S1/S2 image for the entire
country of Rwanda. National parks [41] and water bodies [42] were masked using available products
in GEE. The estimated land area for each crop included in the model was compared with the 2019
Season A SAS on a country scale (Table 5) [30].

Table 5. Comparison of areas under cultivation by selected crops predicted by the model to the
cultivated area reported in the 2019A SAS.

Model Class Model Area (ha) SAS Category 2019A SAS (ha) Difference

1. Maize 222,570 Maize 215,159 3%
2. Beans 319,548 Beans 299,443 7%

3. Cassava 322,060 Cassava 195,135 65%
4. Bananas 137,784 Bananas 253,996 −46%

The estimated areas for maize and beans agreed with the crop/cultivated areas (defined as the
area occupied by a given crop in a plot considering its density or occupation) reported in the SAS
to within 3% and 7%, respectively. The estimated area for cassava was in good agreement with the
total area reported by the SAS for tubers and roots but significantly overestimated the total area for
cassava alone. The spectral feature space for cassava was overlapped with other vegetation, which
was undercounted by the model. A large discrepancy was also observed for the predicted versus
reported cropped area for bananas. The total harvested area (defined as the total number of hectares
that was harvested in a given agricultural season) for bananas was lower than the cropped area (i.e.,
82,523 ha versus 253,996 ha), indicating that the plants are at different stages of growth as would be
expected for an annual crop. Other sources contributing to these discrepancies are further considered
in the Discussion.

The total area under cultivation (i.e., the sum of classes 1 through 5) in the model (1,454,713 ha)
agreed with the survey results (1,319,256 ha) to within 10%.
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4. Discussion

This study investigated a scalable approach for using remote sensing technologies to create
cropped land area maps for smallholder agricultural systems. UAVs were used to collect high-fidelity
ground-truth information at six sites in Rwanda during 2019 Season A. Models were implemented using
open-source, freely available resources to offer an accessible solution for the developing world [17].

Using UAVs to develop labeled datasets has advantages over traditional survey methods involving
observers on the ground. In addition to accurate georeferencing, labelled imagery can be reviewed
with respect to vegetation type, growth stage, and ground coverage. Labeling efforts can be extended
at any point after the images are obtained and points added to the datasets based on the purpose
of a specific model. The labeling can also be automated as indicated by another recently published
study from our group [34]. Limitations to collecting ground-truth examples in this manner include
restrictions on site selection in terms of the elevation and slope at which UAVs can fly.

Although other studies that specifically address crop mapping in smallholder agricultural systems
have focused on a single crop, most commonly maize [17], this study aimed to develop a cropped
area map that included several strategic crops. Determining the separability of classes using the
selected features is an important first step to ensure a robust model and aid in interpretability [16]. We
analyzed the data in selected optical and SAR bands from the peak of the growing season based on the
availability of relatively cloud-free S2 imagery. This qualitative analysis indicated that maize, bananas,
trees, and the non-vegetative class were well separated, but beans, cassava, and other vegetation
significantly overlapped.

We also examined the spectral signatures of plots of maize that were intercropped with beans
or cassava. It is generally assumed that intercropped maize will appear spectrally similar to pure
maize fields [17]. From the UAV imagery, we determined that there was a broad range of intercropping
patterns. Not surprisingly, when the density of maize was low, the plot signature more closely matched
that of beans or cassava compared with pure maize. To better capture intercropped conditions,
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researchers should include additional categories and ground-truth examples in the model to describe
specific intercropping patterns. Ultimately, as the development of publicly supported satellite networks
continues and more high-resolution imagery is made freely available, the accuracy of labeled datasets
and models will improve. For example, Richard et al. were able to differentiate between pure maize
and intercropped maize conditions using imagery acquired from the commercial RapidEye satellites
that provide images with 5-m ground resolution [38].

The ground-truth dataset generated from the labeled UAV imagery was used to create a seven-class
cropped land model including three seasonal and one annual crop using a S1/S2 composite image.
This model extends the seminal work of Jin et al. and Burke et al. [8,9,17] that focused on classifying
maize only in smallholder agricultural systems. The model developed in this work was developed
using the open-access GEE platform and achieved an overall accuracy of 83%, and maize and beans
(including climbing beans and bush beans) were classified with overall accuracies of 91% and 84%,
respectively. Model accuracies for these categories compare well to the models reported in the other
studies of smallholder agricultural systems, in which single crops were classified with accuracies
ranging from 67% to 79% [8,9,17]. Overall accuracy was also similar to the pixel-based multi-class
modeling approaches used by Kussul et al. in their study combining S1 and S2 data to classify
fields in Ukraine [13]. Other studies reported higher accuracies for multi-class models using optical
and/or SAR data, but these studies had access to larger ground-truth data sets and/or more cloud-free
optical imagery [7,14,16]. To tighten the confidence interval and improve accuracies for individual
categories, labeling efforts should be expanded in future studies [15]. Ideally, independently gathered
ground-truth data (especially for testing) would also be incorporated into a full-scale study to highlight
and remove any biases in the model.

To further assess the model, we compared crop-specific areas calculated by the model with areas
reported by the SAS for the same 2019 Season A. Although the estimated areas for maize and beans
agreed with the survey results, the estimated area for cassava did not. The classification accuracy of
cassava was lower than the other classes included in the model. The spectral signature of cassava
overlapped with the spectral signature of the “other vegetation” class, which was undercounted by the
model compared with the 2019 SAS. Additionally, some of intercropped maize was likely counted as
cassava based on the similarity in the spectral information.

Although not a major source of testing error in the model, bananas were undercounted in relation
to the 2019A SAS. Again, the harvested area was less than the total cropped area: 32% of the crop was
harvested during Season A. The examples of bananas included in the training set were all from mature,
healthy plants. Additionally, we did not include banana plants that were growing in residential areas,
which is commonly practiced in Rwanda. To reduce noise in the training dataset, we decided early in
the labeling effort to include only cells that were dominated (i.e., at least 75%) by a single class type,
and we included only cells with banana plants that were surrounded by other cells with banana plants.
Banana plants that were growing next to structures were likely classified in the non-vegetative class in
our model because it was the dominant landcover. Again, as more higher resolution satellite imagery
becomes available, the addition of mixed-landcover classes to the labeling taxonomy will help capture
bananas growing in residential areas.

In the process of creating the country-scale map, we used existing shapefiles of water bodies and
national parks to mask out known areas. The accuracy of these shapefiles affects the accuracy of the
land areas calculated from the map generated using the trained model. Therefore, as these shapefiles
are updated and improved, the precision of any models downstream in the mapping process will
benefit. Future studies will be positively affected by the availability of up-to-date shapefiles for urban
areas and other large-area non-vegetative structures that do not change as quickly as agricultural
regions. These shapefiles can be created using commercial imagery as a source of ground-truth datasets
for training the model, leaving UAV-acquired imagery for the ground-truthing of areas of intensive
agricultural growth.
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5. Conclusions

This pilot study indicates the potential to use UAV-acquired imagery rather than traditional
ground-observer methods to collect large amounts of accurate ground-truth data, especially for
smallholder agricultural systems. When collected via UAVs, ground-truth locations can be
georeferenced accurately, which is important in areas where individual plots are small (<1 ha)
and intercropping is the predominant practice. Additionally, imagery can be reviewed to verify ground
cover and extract different features such as the density of vegetation coverage. More examples can
easily be added to the training and testing datasets at any time based on the intent of the model.
Limitations to collecting ground-truth examples in this manner include restrictions on site selection in
terms of the elevation and slope at which UAVs can fly and regulatory constraints.

The UAV-based ground-truth dataset was used for training and testing an ML model for seven
selected landcover categories, including four key crops in Rwanda. The overall accuracy of the model
was 83%, with accuracies of 91% and 84% for maize and beans, respectively. Cassava was classified with
lower accuracy (67%), and the model tended to confuse it with the catch-all class of other vegetation.
Model accuracy may be improved by creating mixed land use categories to better capture intercropping
and bananas growing in residential areas.

Future work will benefit from further increasing the size of the ground-truth datasets (note: our
sample size included 1251 total examples that were divided between training and testing datasets)
and adding categories to the limited taxonomy we worked with. The addition of these categories will
need to be accompanied by an increase in the number of data points assuming 100 samples per class
and ideally per AEZ as a typical rule of thumb for the minimum size. Further attention needs to be
given to creating accurate and up-to-date shapefiles for landcover categories that do not require the
resolution and timeliness needed for agricultural areas. The availability of these shapefiles will allow
the downstream models to focus on agricultural classes and improve the overall classification accuracy.
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