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Abstract: This paper examines the various variable-length encoders that provide integer encoding
to hyperspectral scene data within a k2-raster compact data structure. This compact data structure
leads to a compression ratio similar to that produced by some of the classical compression techniques.
This compact data structure also provides direct access for query to its data elements without requiring
any decompression. The selection of the integer encoder is critical for obtaining a competitive
performance considering both the compression ratio and access time. In this research, we show
experimental results of different integer encoders such as Rice, Simple9, Simple16, PForDelta codes,
and DACs. Further, a method to determine an appropriate k value for building a k2-raster compact
data structure with competitive performance is discussed.

Keywords: compact data structure; k2-raster; DACs; Elias codes; Simple9; Simple16; PForDelta;
Rice codes; hyperspectral scenes

1. Introduction

Hyperspectral scenes [1–10] are data taken from the air by sensors such as AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) or by satellite instruments such as Hyperion and
IASI (Infrared Atmospheric Sounding Interferometer). These scenes are made up of multiple bands
from across the electromagnetic spectrum, and data extracted from certain bands are helpful in finding
objects such as oil fields [11] or minerals [12]. Other applications include weather prediction [13] and
wildfire soil studies [14], to name a few. Due to their sizes, hyperspectral scenes are usually compressed
to facilitate their transmission and reduce storage size.

Compact data structures [15] are a type of data structure where data are stored efficiently while at
the same time providing real-time processing and compression of the data. They can be loaded
into main memory and accessed directly by means of the rank and select functions [16] in the
structures. Compressed data provide reduced space usage and query time, i.e., they allow more
efficient transmission through limited communication channels, as well as faster data access. There is
no need to decompress a large portion of the structure to access and query individual data as is the case
with data compressed by classical compression algorithms such as gzip or bzip2 and by specialized
algorithms such as CCSDS 123.0-B-1 [17] or KLT+JPEG 2000 [18,19]. In this paper, we are interested in
lossless compression of hyperspectral scenes through compact data structures. Therefore, reconstructed
scenes should be identical to the originals before compression. Any deterministic analysis process will
necessarily yield the same results. Figure 1 shows several images from our datasets.
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(a) Yellowstone 00 (uncal.) (Band 128) (b) Yellowstone 03 (cal.) (Band 128) (c) Hyperion Mt. St. Helens (Band 21)

(d) AIRS Gran 6 (Band 1256) (e) AIRS Gran 120 (Band 256) (f) Yellowstone 00 (uncal.)

Figure 1. Several hyperspectral scenes used in this paper. The original and the decompressed scenes
discussed in this paper are numerically identical. Depicted also are two spectral signatures for AVIRIS
Yellowstone 00 (uncal.). The AVIRIS images in this figure are courtesy of NASA/JPL-Caltech.

The compact data structure used in this paper is called k2-raster. It is a tree structure developed
from another compact data structure called k2-tree. k2-raster is built from a raster matrix with its
pixel cells filled with integer values, while k2-tree is from a bitmap matrix with zero and one values.
During the construction of the k2-raster tree, if the neighboring pixels have equal values such as
clusters (spatial correlation), the number of nodes in the tree that need to be saved is reduced. If the
values are similar, as discussed later in this paper, the values will be made even smaller. They are then
compressed or packed in a more compact form by the integer encoders, and with these small integers,
the compression results are even better. Moreover, when it comes to querying cells, a tree structure
speeds up the search, saving access time. Another added advantage of some of the integer encoders is
that they provide direct random access to the cells without any need for full decompression.

Currently, huge amounts of remote sensing data have been produced, transmitted, and archived,
and we can foresee that in the future, the amount of larger datasets is expected to keep growing at
a fast rate. The need for their compression is becoming more pressing and critical. In view of this
trend, we take on the task of remote sensing compression and make it as one of our main objectives.
In this research work, we reduce hyperspectral data sizes by using compact data structures to produce
lossless compression. Early on, we began by examining the possibility of taking advantage of the
spatial correlation and spectral correlation in the data. In our previous paper [20], we presented a
predictive method and a differential method that made use of these correlations in hyperspectral
data with favorable results. However, in this paper, we would like to focus on selecting a suitable
integer encoder that is employed in the k2-raster compact data structure, as that is also a major factor
in providing competitive compression ratios.

Compression of integer data in the most effective and efficient way, in relation to compact data
structures, has been the focus of many studies over the past several decades. Some include Elias [21–23],
Rice [24–26], PForDelta [27–29], and Directly Addressable Codes (DACs) [30–32]. In our case, we
need to store non-negative, typically small integers in the k2-raster structure. This structure is a tree
built in such a way that the nodes are not connected by pointers, but can still be reached with the
use of a compact data structure linear rank function. When the data are saved, no pointers need to
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be stored, thus keeping the size of the structure small. Additionally, we use a fixed code ([15], §2.7)
to help us save even more space. In what follows, we investigate the effectiveness of some of these
integer encoders.

The rest of the paper is organized as follows: In Section 2, we describe the k2-raster structure,
followed by the various variable-length integer encoders such as Elias, Rice, PForDelta, and DACs.
Section 3 presents experimental results for finding the best and optimal values for k and exploring
the different integer encoders for k2-raster. This is done in comparison with classical compression
techniques. Lastly, some conclusions and final thoughts on future work are put forth in Section 4.

2. Materials and Methods

In this section, we describe k2-raster [33] and the integer encoders Elias, Rice, Simple9, Simple16,
PForDelta codes, and DACs. This is followed by a discussion on how to obtain the best value of k and
two related works on raster compression: heuristic k2-raster [33] and 3D-2D mapping [34].

2.1. K2-Raster

The k2-tree structure was originally proposed by Ladra et al. [35] as a compact representation of
the adjacency matrix of a directed graph. Its applications include web graphs and social networks.
Based on k2-tree, the same authors also proposed k2-raster [33], which is specifically designed for raster
data including images. A k2-raster is built from a matrix of width w and height h. If the matrix can be
partitioned into k2 square subquadrants of equal size, it can be used directly. Otherwise, it is necessary
to enlarge the matrix to size s× s, where s is computed as:

s = kdlogk max(w, h)e, (1)

setting the new elements to 0. This extended matrix is then recursively partitioned into k2 submatrices
of identical size, referred to as quadrants. This process is repeated until all cells in a quadrant have the
same value, or until the submatrix has size 1× 1 and cannot be further subdivided. This partitioning
induces a tree topology, which is represented in a bitmap T. Elements can then be accessed via a
rank function. At each tree level, the maximum and minimum values of each quadrant are computed.
These are then compared with the corresponding maximum and minimum values of the parent,
and the differences are stored in the Vmax and Vmin arrays of each level. Saving the differences instead
of the original values results in lower values for each node, which in turn allows a better compression with
DACs or other integer encoders such as Simple9, PForDelta, etc. An example of a simple 8 × 8 matrix
is given in Figure 2 to illustrate this process. A k2-raster is constructed from this matrix with maximum
and minimum values as given in Figure 3. Differences from the parents’ extrema are then computed
as explained above, resulting in the structure shown in Figure 4. Next, with the exception of the root
node at the top level, the Vmax and Vmin arrays at all levels are concatenated to form Lmax and Lmin,
respectively. Both arrays are then compressed by an integer encoder such as DACs. The root’s maximum
(rMax) and minimum (rMin) values remain uncompressed. The resulting elements, which fully describe
this k2-raster structure, are given in Table 1.
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8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 0 (Root)

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 1

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 2

8 6 5 4 4 3 2 2
7 6 5 4 3 3 2 2
7 5 4 4 3 2 2 2
6 5 4 3 2 2 2 2
4 4 3 2 2 2 2 2
4 3 3 2 2 2 2 2
3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2

Level 3

Figure 2. Subdivision of an example 8×8 matrix for k2-raster (k = 2).

8-2

2-24-2
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8-3

4-3

3444
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8-6
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Level 0
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Level 3

Figure 3. A k2-raster (k = 2) tree storing the maximum and minimum values for each quadrant of
every recursive subdivision of the matrix in Figure 2. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

8-2

6-04-0

1-0

1110

1-0

1100

1-0

1010

0-1

1000

4-0

2-01-0

1110

2-00-1

1110

0-1

4-0

1000

1-2

2120

3-1

1010

0-3

2120

Level 0

Level 1

Level 2

Level 3

Figure 4. Based on the tree in Figure 3, the maximum value of each node is subtracted from that of its
parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences then replace their corresponding values in the node. The maximum and minimum values
of the root remain the same.

Table 1. An example of the elements of a k2-raster based on Figures 2–4.

T Bitmap binary 1110 1111 1010 1111

Lmax decimal
Level 1 0446

Level 2 0314 0212 0111

Level 3 0212 0101 0212 0001 0111 0111 0001 0101 0011 0111

Lmin decimal Level 1 100

Level 2 3120 10 1000

rMax decimal 8

rMin decimal 2

2.2. Unary Codes and Notation

We denote x as a non-negative integer. The expression |x| gives the minimum bit length needed
to express x, i.e., |x| = blog2 xc+ 1.

Unary codes are generally used for small integers. Unary codes have the following form:

u(x) = 0x 1 , (2)
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where the superscript x indicates the number of consecutive 0 bits in the code. For example,
u(1d) = 01 1 = 01b, u(6d) = 06 1 = 0000001b, u(9d) = 09 1 = 0000000001b. Here, bits are denoted
by a subscript b and decimal numbers by a subscript d. Furthermore, when codes are composed of two
parts, they are spaced apart for readability purposes. In general, the notation used in [15] is adopted in
this paper.

2.3. Elias Codes

Elias codes include Gamma (γ) codes and Delta (δ) codes. They were developed by Peter Elias [21]
to encode natural numbers, and in general, they work well with sequences of small numbers.

Gamma codes have the following form:

γ(x) = 0|x|−1 [x]|x| = u(|x| − 1) [x]|x|−1 , (3)

where [x]l represents the l least significant bits of x. For example, γ(1d) = γ(1b) = 1b,
γ(4d) = γ(100b) = 001 00b, γ(6d) = γ(110b) = 001 10b, γ(9d) = γ(1001b) = 0001 001b,
γ(14d) = γ(1110b) = 0001 110b.

Delta codes have the following form:

δ(x) = γ(| x |) [x]|x|−1 . (4)

For values that are larger than 31, Delta codes produce shorter codewords than Gamma codes.
This is due to the use of Gamma codes in forming the first part of their codes, which provides a shorter
code length for Delta codes as the number becomes larger. Some examples are: δ(1d) = δ(1b) = 1b,
δ(6d) = δ(110b) = 011 10b, δ(9d) = δ(1001b) = 00100 001b, δ(14d) = δ(1110b) = 00100 110b.

2.4. Rice Codes

Rice codes [25] are a special case of Golomb codes. Let x be an integer value in the sequence, and
let y = bx/2lc, where l is a non-negative integer parameter. The Rice codes for this parameter are
defined as:

Rl(x) = u(y + 1) [x]l . (5)

Some examples are shown for different values of l in Table 2.

Table 2. Some examples of Rice codes.

Value v Rice Code Rl(v)
Decimal Binary l = 1 l = 2 l = 3 l = 4

1d 1b 1b 1b 1b 1b
6d 110b 0001 0b 01 10b 110b 110b
9d 1001b 00001 1b 001 01b 01 001b 1001b

14d 1110b 00000001 0b 0001 10b 01 110b 1110b

To obtain optimal performance among Rice codes, l should be selected to be close to the expected
value of the input integers. In general, Rice codes give better compression performance than Elias γ

and δ codes.

2.5. Simple9, Simple16, and PForDelta

Apart from Elias codes and Rice codes, the codes in this section store the integers in single or
multiple word-sized elements to achieve data compression. They have been shown to have good
compression ratios [30].



Remote Sens. 2020, 12, 1983 6 of 18

Simple9 [36] assigns a maximum possible number of a certain bit length to a 28-bit segment or
packing space of a 32-bit word. The other 4 bits contain a selector that has a value ranging from 0 to 8.
Each selector has information that indicates how the integers are stored, and that includes the number
of these integers and the maximum number of bits that each integer is allowed in this packing space.
For example, Selector 0 tests to see if the first 28 integers in the data have a value of 0 or 1, i.e., a bit
length of 1. If they do, then they are stored in this 28-bit segment. Otherwise, Selector 1 tests to see if it
can pack 14 integers into the segment with a maximum bit length of 2 bits for each. If this still does
not work, Selector 2 tests to see if 9 integers can each be packed into a maximum bit length of 3 bits.
This testing goes on until the right number of data are found that can be stored in these 28 bits. Table 3
shows the 9 different ways of using 28 bits in a word of 32 bits in Simple9.

Simple16 [37] is a variant of Simple9 and uses all 16 combinations in the selector bits. Their values
range from 0 to 15. Table 4 shows the 16 different ways of packing integers into the 28-bit segment
in Simple16.

PForDelta [27] is also similar to both Simple9 and Simple16, but encodes a fixed group of numbers
at a time. To do so, 128- or 256-bit words are used.

Due to its relative simplicity, Simple9 is used here as an example to illustrate how an integer
sequence is stored in the encoders described in this section. This sequence <3591 25 13 12 15 12 11
26 20 8 13 8 9 7 13 10 12 0 10>d is taken from the Lmax array of one of our data scenes AG9, and the
bit-packing is shown in Table 5. There are 19 integers in the sequence. Assuming the integer is 16 bits
each, the sequence has a total size of 38 bytes. After packing into the array, the sequence occupies only
16 bytes.

Table 3. Nine different ways of encoding numbers in the 28-bit packing space in Simple9.

Selector Number of Integers n Width of Integers b28/nc (Bits) Wasted Bits

0 28 1 0
1 14 2 0
2 9 3 1
3 7 4 0
4 5 5 3
5 4 7 0
6 3 9 1
7 2 14 0
8 1 28 0

Table 4. Sixteen different ways of encoding numbers in the 28-bit packing space in Simple16. There are
no wasted bits in any of the selectors.

Selector Number of Integers Width of Integers (Bits)

0 28 28× 1 bit
1 21 7× 2 bits, 14× 1 bit
2 21 7× 1 bit, 7× 2 bits, 7× 1 bit
3 21 14× 1 bit, 7× 2 bits
4 14 14× 2 bits
5 9 1× 4 bits, 8× 3 bits
6 8 1× 3 bits, 4× 4 bits, 3× 3 bits
7 7 7× 4 bits
8 6 4× 5 bits, 2× 4 bits
9 6 2× 4 bits, 4× 5 bits

10 5 3× 6 bits, 2× 5 bits
11 5 2× 5 bits, 3× 6 bits
12 4 4× 7 bits
13 3 1× 10 bits, 2× 9 bits
14 2 2× 14 bits
15 1 1× 28 bits
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Table 5. Example to show how the integer sequence <3591 25 13 12 15 12 11 26 20 8 13 8 9 7 13 10 12 0
10>d is stored with Simple9.

Element Selector Number of
Integers

Integers Stored
(Decimal)

Integers Stored
(Binary)

0 7d (0111b) 2 3591 25 00111000000111 00000000011001
1 4d (0100b) 5 13 12 15 12 11 01101 01100 01111 01100 01011
2 4d (0100b) 5 26 20 8 13 8 11010 10100 01000 01101 01000
3 3d (0011b) 7 9 7 13 10 12 0 10 1001 0111 1101 1010 1100 0000 1010

2.6. Directly Addressable Codes

Directly Addressable Codes (DACs) can be used to compress k2-raster and provide access to
variable-length codes. Based on the concept of compact data structures, DACs were proposed in the
papers published by Brisaboa et al. in 2009 [30] and 2013 [31]. This structure is proven to yield good
compression ratios for variable-length integer sequences. By means of the rank function, it gains fast
direct access to any position of the sequence in a very compact space. The original authors also asserted
that it was best suited for a sequence of integers with a skewed frequency distribution toward smaller
integer values.

Different types of encoding are used for DACs, and the one that we are interested in for k2-raster
is called VBytecoding. Consider a sequence of integers x. Each integer xi, which is represented by
blog2 xic+ 1 bits, is broken into chunks of bits of size CS. Each chunk is stored in a block of size CS + 1
with the additional bit used as a control bit. The chunk occupies the lower bits in the block and the
control bit the highest bit. The block that holds the most significant bits of the integer has its control bit
set to 0, while the others have it set to 1. For example, if we have an integer 41d (101001b), which is 6
bits long, and if the chunk size is CS=3, then we have 2 blocks: 0101 1001b. The control bit in each block
is shown underlined. To show how the blocks are organized and stored, we again illustrate it with an
example. Given five integers of variable length: 7d (111b), 41d (101001b), 100d (1100100b), 63d (111111b),
427d (110101011b), and a chunk size of 3 (the block size is 4), their representations are listed in Table 6.

Table 6. Example of an integer sequence and the corresponding DACs blocks of the integers.

Decimal Binary DACs Blocks

7d 0111b (B1,1A1,1)
41d 0101 1001b (B2,2A2,2 B2,1A2,1)

100d 0001 1100 1100b (B3,3A3,3 B3,2A3,2 B3,1A3,1)
63d 0111 1111b (B4,2A4,2 B4,1A4,1)

427d 0110 1101 1011b (B5,3A5,3 B5,2A5,2 B5,1A5,1)

We store them in three blocks of arrays A and control bitmaps B. This is depicted in Figure 5.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the rank
function. This function returns the number of bits, which are set to 1 from the beginning position to the
one being queried in the control bitmap Bi. An example of how the function is used follows: If we want
to access the third integer (100d) in the sequence in Figure 5, we start looking for the third element in
the array A1 in Block1 and find A3,1 with its corresponding control bitmap B3,1. The function rank(B3,1)
then gives a result of 2, which means that the second element A3,2 in the array A2 in Block2 contains
the next block. With the control bit in B3,2, we compute the function rank(B3,2) and obtain a result of
1. This means the next block in Block3 can be found in the first element A3,3. Since its corresponding
control bitmap B3,3 is set to 0, the search ends here. All the blocks found are finally concatenated to
form the third integer in the sequence.

More information on DACs and the software code can be found in the papers [30,31] by Ladra et al.
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Block1
A1 111 (A1,1) 001 (A2,1) 100 (A3,1) 111 (A4,1) 011 (A5,1)

B1 0 (B1,1) 1 (B2,1) 1 (B3,1) 1 (B4,1) 1 (B5,1)

Block2
A2 101 (A2,2) 100 (A3,2) 111 (A4,2) 101 (A5,2)

B2 0 (B2,2) 1 (B3,2) 0 (B4,2) 1 (B5,2)

Block3
A3 001 (A3,3) 110 (A5,3)

B3 0 (B3,3) 0 (B5,3)

Figure 5. Organization of 3 DACs blocks.

2.7. Selection of the k Value

Following the description of Subsection 2.1, using different k values leads to the creation of Lmax
and Lmin arrays of different lengths. This, in turn, affects the final results of the size of k2-raster.
With this in mind, we present a heuristic approach that can be used to determine the best k value for
obtaining the smallest storage size. First, we compute the sizes of the extended matrix for different
values of k within a suitable range using Equation (1). Then, we find the k value that corresponds to
the matrix with the smallest size, and the result can be considered as the best k value. Before the start
of the k2-raster building process, the program can find the best k value and use it as the default.

2.8. Heuristic k2-Raster

In the k2-raster paper by Ladra et al. [33], a variant of this structure was also proposed whereby
the elements at the last level of the tree structure are stored by using an entropy-based heuristic
approach. This is denoted by k2

H-raster. For example, for k = 2, each set of the 4 nodes that are from the
same parent forms a codeword. It is possible that at this same level of the tree, these codewords may
be repeated, and their frequencies of occurrences can be computed. These sets of codewords and their
frequencies are then compressed and saved. In effect, the more these codewords are repeated, the less
storage space they take up. An example of codeword frequency based on the k2-raster discussed in
Section 2.1 is shown in Table 7. According to experiments conducted by the authors of [33], it saves
space in the final representation.

Table 7. Codeword frequency in Level 3 of the Lmax bitmap in the k2-raster structure in Figure 1.

Codeword Frequency

0111 3
0212 2
0101 2
0001 2
0011 1

2.9. 3D-2D Mapping

A study on compact representation of raster images in a time-series was proposed by Cruces et al.
in [34]. This method is based on the 3D to 2D mapping of a raster where 3D tuples <x, y, z> are mapped
into a 2D binary grid. That is, a raster of size w× h with values in a certain range, between 0 and v
inclusive, has a binary matrix of w× h columns and v+1 rows. All the rasters are then concatenated
into a 3D matrix and stored as a 3D-k2-tree.

3. Experimental Results

In this section, we present an exhaustive comparison of the different integer encoders for use with
k2-raster. First, though, we report results from experiments for finding the best k value. Reported also
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are the experimental results to find out if the heuristic k2-raster and 3D-2D mapping would give better
storage sizes. All storage sizes in this section are expressed as bits per pixel per band (bpppb).

The hyperspectral scenes were captured by different sensors: Atmospheric Infrared Sounder
(AIRS), AVIRIS, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and IASI.
Except for IASI, all of them are publicly available for download (http://cwe.ccsds.org/sls/docs/sls-
dc/123.0-B-Info/TestData). The hyperspectral scenes used are listed in Table 8.

The implementations for k2-raster and k2
H-raster were based on the algorithms presented in

the paper by Ladra et al. [33]. The sdsl-lite implementation of k2-tree by Simon Gog [38] (https:
//github.com/simongog/sdsl-lite/blob/master/include/sdsl/k2_tree.hpp) was used for testing
3D-2D mapping described in the paper by Cruces et al. [34]. The DACs software was downloaded
from a package called “DACs, optimization with no further restrictions” at the Universidade da
Coruña’s Database Laboratory website (http://lbd.udc.es/research/DACS/). The programming code
for the Rice, PForDelta, Simple9, and Simple16 codes was written by the programmers Diego Caro,
Michael Dipperstein, and Christopher Hoobin and was downloaded from these authors’ GitHub
web pages. Slight modifications to the code were made to meet our requirements to perform the
experiments. All programs for this paper were written in C and C++ and compiled with gnu g++
5.4.0 20160609 with -Ofast optimization. The experiments were carried out on an Intel Core 2 Duo
CPU E7400 @2.80GHz with 3072KB of cache and 3GB of RAM. The operating system was Ubuntu
16.04.5 LTS with kernel 4.15.0-47-generic (64 bits). The software code is available at http://gici.uab.
cat/GiciWebPage/downloads.php.

Table 8. Hyperspectral scenes used in our experiments. Also shown are the bit rate and bit rate
reduction using k2-raster. x is the scene width, y the scene height, and z the number of spectral bands.
bpppb, bits per pixel per band; CRISM, Compact Reconnaissance Imaging Spectrometer for Mars; IASI,
Infrared Atmospheric Sounding Interferometer.

Sensor Name C/U ? Acronym
Original

Dimensions
(x× y× z)

Bit
Depth

(bpppb)

Best
k Value

k2-raster
Bit Rate
(bpppb)

k2-raster
Bit-Rate

Reduction (%)

AIRS

9 U AG9 90 × 135 × 1501 12 6 9.49 21%
16 U AG16 90 × 135 × 1501 12 6 9.12 24%
60 U AG60 90 × 135 × 1501 12 15 9.72 19%
126 U AG126 90 × 135 × 1501 12 6 9.61 20%
129 U AG129 90 × 135 × 1501 12 6 8.65 28%
151 U AG151 90 × 135 × 1501 12 6 9.53 21%
182 U AG182 90 × 135 × 1501 12 6 9.68 19%
193 U AG193 90 × 135 × 1501 12 15 9.30 23%

AVIRIS

Yellowstone sc. 00 C ACY00 677 × 512 × 224 16 6 9.61 40%
Yellowstone sc. 03 C ACY03 677 × 512 × 224 16 6 9.42 41%
Yellowstone sc. 10 C ACY10 677 × 512 × 224 16 6 7.62 52%
Yellowstone sc. 11 C ACY11 677 × 512 × 224 16 6 8.81 45%
Yellowstone sc. 18 C ACY18 677 × 512 × 224 16 6 9.78 39%

Yellowstone sc. 00 U AUY00 680 × 512 × 224 16 9 11.92 25%
Yellowstone sc. 03 U AUY03 680 × 512 × 224 16 9 11.74 27%
Yellowstone sc. 10 U AUY10 680 × 512 × 224 16 9 9.99 38%
Yellowstone sc. 11 U AUY11 680 × 512 × 224 16 9 11.27 30%
Yellowstone sc. 18 U AUY18 680 × 512 × 224 16 9 12.15 24%

CRISM

frt000065e6_07_sc164 U C164 640 × 420 × 545 12 6 10.08 16%
frt00008849_07_sc165 U C165 640 × 450 × 545 12 6 10.37 14%
frt0001077d_07_sc166 U C166 640 × 480 × 545 12 6 11.05 8%
hrl00004f38_07_sc181 U C181 320 × 420 × 545 12 5 9.97 17%
hrl0000648f_07_sc182 U C182 320 × 450 × 545 12 5 10.11 16%
hrl0000ba9c_07_sc183 U C183 320 × 480 × 545 12 5 10.65 11%

Hyperion

Agricultural C HCA 256 × 3129 × 242 12 16 8.52 29%
Coral Reef C HCC 256 × 3127 × 242 12 8 7.62 36%
Urban C HCU 256 × 2905 × 242 12 16 8.85 26%

Erta Ale U HUEA 256 × 3187 × 242 12 8 7.76 35%
Lake Monona U HULM 256 × 3176 × 242 12 8 7.82 35%
Mt. St. Helena U HUMS 256 × 3242 × 242 12 8 7.91 34%

IASI

Level 0 1 U I01 60 × 1528 × 8359 12 12 6.32 47%
Level 0 2 U I02 60 × 1528 × 8359 12 12 6.38 47%
Level 0 3 U I03 60 × 1528 × 8359 12 12 6.31 47%
Level 0 4 U I04 60 × 1528 × 8359 12 12 6.43 46%

?: Calibrated (C) or Uncalibrated (U).

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/k2_tree.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/k2_tree.hpp
http://lbd.udc.es/research/DACS/
http://gici.uab.cat/GiciWebPage/downloads.php
http://gici.uab.cat/GiciWebPage/downloads.php
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3.1. Best k Value Selection

From our previous research [20], the selection of the k value when building a k2-raster was shown
to have a great effect on the resulting size of the structure, as well as the access time to query its
elements. In order to further investigate this idea, we extended our research to finding ways of
choosing the best k value. One way was to build the k2-raster structure with different k values for
scene data from each sensor to see how the matrix size affected the choice of the k value. Additionally,
we measured the time it took to build the k2-raster and the size of the structure. The results are shown
in Table 9. For most tested data, the k value leading to the smallest extended matrix size (attribute S in
the table) usually provided the fastest build time and the smallest storage size. With these results, we
could say that, in general, when k = 2, the compressed data size was large, sometimes even larger than
the size of the original scene. As the value of k became larger, beginning with k = 3, the compressed
data size was reduced. As far as the compressed size was concerned, the best value was in the range
from three to 10 for matrices with a small raster size (i.e., if both the original width and original height
were less than 1000) such as the ones for the AIRS Granule or AVIRIS Yellowstone scenes. If at least
one dimension was larger than 1000 such as Hyperion calibrated or uncalibrated scenes, a larger range,
typically between three and 20, needed to be considered.

The above experiments were repeated to compare the access time for the different k values.
For each scene, the average time over 100,000 consecutive queries is reported. Results are shown in
Table 10, and Figure 6 shows how the access time and the size varied depending on the k value. As can
be observed, access time became smaller and smaller as the value of k became larger. The plotted data
suggested that there was a trade-off between access time and size with respect to the k value. We
considered the optimal k value to be the one that created a relatively small size with a minimal access
time. For example in AG9, when comparing the results between k = 6 and k = 15, the difference in
bits per pixel per band for storage size was not very significant, but the reduction in access time was.
Therefore, for this scene, k = 15 was considered an optimal value.

3.2. Heuristic k2-Raster

In this section, we present the results of the experiments using the heuristic k2-raster proposed by
Ladra et al. [33] on some of our datasets. Table 11 reports results for two hyperspectral scene datasets:
AIRS Granule and AVIRIS Uncalibrated Yellowstone. In the experiments, we found that only when
k = 2 would there be enough repeated sets of codewords in the last level of nodes to help us save
space. When k ≥ 3, there were no repeated sets of codewords. From the table, it can be seen that
there was not much size reduction with k2

H-raster in most cases. However, if we built a k2-raster using
the best or optimal k value, the size was considerably smaller. Therefore, we can see that k2

H-raster
structure did not produce a better size.
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Table 9. Results for different k values using the scene data from each sensor for the following attributes: (S) the extended matrix Size (pixels), (C) the k2-raster
Compressed storage data rate (bpppb), and (B) the time to Build the k2-raster (seconds). The original scene width and height are shown in the first column. The best
results are highlighted in blue.

Scene Data
(w × h) ? k=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AG9
(90 × 135)

S 256 243 256 625 216 343 512 729 1000 1331 144 169 196 225 256 289 324 361 400
C 13.06 10.11 10.03 10.47 9.49 9.98 10.68 9.89 10.65 12.98 11.23 10.33 11.29 9.53 11.57 11.72 10.78 12.52 12.13
B 5.3 3.2 4.1 10.9 4.2 10.9 12.6 10.7 17.5 29.6 2.9 4.1 3.0 4.3 4.6 6.6 6.8 4.9 7.3

ACY00
(677 × 512)

S 1024 729 1024 3125 1296 2401 4096 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000
C 12.34 10.20 9.76 10.70 9.61 9.91 10.26 9.69 9.83 9.87 9.95 10.24 10.20 10.51 10.24 10.55 10.61 10.49 10.73
B 19.5 10.7 10.8 30.7 10.5 19.3 42.0 8.8 9.3 11.5 13.2 17.1 23.2 29.1 45.5 55.8 72.6 101.1 131.0

AUY00
(680 × 512)

S 1024 729 1024 3125 1296 2401 4096 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000
C 15.31 12.93 12.20 13.06 12.08 12.35 12.47 11.92 12.11 12.13 12.17 12.52 12.43 12.84 12.44 12.83 12.87 12.69 12.96
B 18.4 10.7 10.1 30.7 11.4 20.9 41.4 7.7 8.5 10.9 12.7 17.1 22.9 29.3 44.3 55.8 73.0 101.0 130.6

C164
(640 × 420)

S 1024 729 1024 3125 1296 2401 4096 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000
C 12.60 10.42 10.17 11.35 10.08 10.46 11.12 10.34 10.20 10.76 10.48 10.96 10.66 10.77 11.19 11.18 11.55 11.80 11.30
B 47.1 28.8 27.9 74.3 27.7 47.3 98.6 19.3 21.1 24.8 29.7 38.7 49.4 69.6 96.2 133.3 179.3 231.1 314.9

HCA
(256 × 3129)

S 4096 6561 4096 15625 7776 16807 4096 6561 10000 14641 20736 28561 38416 3375 4096 4913 5832 6859 8000
C 17.2 15.64 9.79 - 10.47 - 8.54 9.13 9.7 - - - - 8.65 8.52 8.75 9.16 9.07 8.92
B 121.9 183.6 68.7 - 186.6 - 55.2 115.6 238.9 - - - - 44.3 56.7 70.6 91.9 121.8 156.6

HUEA
(256 × 3187)

S 4096 6561 4096 15625 7776 16807 4096 6561 10000 14641 20736 28561 38416 3375 4096 4913 5832 6859 8000
C 16.02 14.63 8.89 - 9.68 - 7.76 8.46 9.00 - - - - 8.50 7.80 8.69 8.68 8.46 8.27
B 131.1 189.0 74.4 - 172.3 - 60.3 120.8 245.3 - - - - 49.5 60.4 75.7 95.3 123.3 159.4

I01
(60 × 1528)

S 2048 2187 4096 3125 7776 2401 4096 6561 10000 14641 1728 2197 2744 3375 4096 4913 5832 6859 8000
C 21.99 12.59 17.98 10.25 24.60 7.71 9.33 12.23 16.97 26.49 6.32 7.28 8.28 6.80 7.64 8.54 9.44 10.43 8.25
B 1021.1 780.5 1728.7 986.5 5167.5 635.6 1426.7 3938.6 7870.7 17973.9 339.7 474.3 658.9 944.0 1498.1 1826.6 2789.8 3543.2 4810.3

?: w = scene width; h = scene height.
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Table 10. Access time (µs) for a random cell query with different kvalues. Each result is the average time over 100,000 consecutive queries. The best results are
highlighted in blue.

Scene Data
(w × h) ? k = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AG9
(90 × 135) 2.45 1.20 0.91 0.82 0.70 0.65 0.61 0.64 0.61 0.57 0.47 0.47 0.48 0.47 0.45 0.42 0.46 0.43 0.43

ACY00
(677 × 512) 15.10 4.95 2.89 2.07 1.60 1.33 1.13 1.01 0.89 0.88 0.79 0.76 0.74 0.73 0.69 0.67 0.68 0.66 0.64

AUY00
(680 × 512) 17.07 5.70 3.03 2.19 1.66 1.40 1.20 1.05 0.94 0.88 0.85 0.83 0.80 0.77 0.72 0.77 0.72 0.70 0.72

C164
(640 × 420) 14.66 5.09 2.84 2.12 1.67 1.48 1.34 1.10 1.08 1.01 0.95 0.93 0.88 0.83 0.81 0.81 0.79 0.74 0.74

HCA
(256 × 3129) 0.34 0.26 0.19 - 0.19 - 0.18 0.18 0.16 - - - - 0.17 0.14 0.15 0.15 0.16 0.16

HUEA
(256 × 3187) 31.59 10.09 5.24 - 3.11 - 1.87 1.81 1.60 - - - - 1.22 1.02 1.01 1.01 1.00 1.01

I01
(60 × 1528) 6.13 3.35 2.48 2.24 2.13 1.94 1.82 1.76 1.74 1.72 1.62 1.56 1.48 1.55 1.54 1.54 1.41 1.40 1.53

?: w = scene width; h = scene height.
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(a) AIRS Granule 9 (b) Yellowstone 00 (cal.) (c) Yellowstone 00 (uncal.)

(d) CRISM 164 (e) Hyperion Agricultural (f) Hyperion Erta Ale

(g) IASI Level 0 1

Figure 6. A comparison of the storage size (bpppb) and access time (µs) for different k values of
k2-raster built from scenes in our datasets. Access time is the average time of 100,000 consecutive
queries. For AIRS Granule 9, the best value is marked with a red circle, and the optimal value is marked
with a blue square.
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Table 11. Comparison of the structure size (bpppb) built from k2-raster and k2
H-raster where k = 2.

The sizes for k2-raster using the best k value and the optimal k value are also shown. The best results
are highlighted in blue.

AIRS
Granule

k2-raster (k = 6)
(Best)

k2-raster (k = 15)
(Optimal) k2-raster (k = 2) k2

H -raster (k = 2)

AG9 9.49 9.53 13.06 13.22
AG16 9.12 9.17 12.72 12.85
AG60 9.81 9.72 13.65 13.86

AG126 9.61 9.72 13.42 13.59
AG129 8.65 8.72 11.98 11.95
AG151 9.53 9.56 13.19 13.35
AG182 9.68 9.71 13.32 13.47
AG193 9.44 9.30 13.29 13.43

AVIRIS
Uncalibrated

k2-raster (k = 9)
(Best)

k2-raster (k = 9)
(Optimal) k2-raster (k = 2) k2

H -raster (k = 2)

AUY00 11.92 11.92 15.31 15.19
AUY03 11.74 11.74 15.03 14.74
AUY10 9.99 9.99 12.85 11.86
AUY11 11.27 11.27 14.27 14.08
AUY18 12.15 12.15 15.36 15.25

3.3. 3D-2D Mapping

As discussed earlier, Cruces et al. [34] proposed a 3D to 2D mapping of raster images using k2-tree
as an alternative to achieve a better compression ratio. We used the k2-tree implementation in sdsl-lite
software to obtain the sizes for one of our datasets (AG9) from k = 2 to k = 4. Note that similar to
k2-raster, if the 2D binary matrix cannot be partitioned into square subquadrants of equal size, it needs
to be expanded using Equation (1), and the extra elements are set to zero. The results are presented in
Table 12. The sizes for a range of bands from 1481 to 1500 of the scene are also given for comparison.

Table 12. The sizes of AIRS Granule (AG9) produced by 3D to 2D mapping from k = 2 to k = 4.
The individual band sizes ranging from 1481 to 1500 are also shown. Sizes for individual bands are in
bits per pixel (bpp), while the ones for all bands are in bits per pixel per band (bpppb).

Band Original
Size

k2-tree
k = 2

k2-tree
k = 3

k2-tree
k = 4

All bands 16 16.53 20.57 26.57

1481 16 17.56 22.00 28.45
1482 16 17.27 21.54 27.84
1483 16 17.19 21.47 27.67
1484 16 17.45 21.81 28.18
1485 16 16.93 21.10 27.29
1486 16 17.09 21.27 27.50
1487 16 16.82 21.06 27.02
1488 16 17.01 21.21 27.34
1489 16 17.23 21.51 27.78
1490 16 16.94 21.10 27.20
1491 16 16.80 20.86 26.96
1492 16 16.56 20.64 26.51
1493 16 16.80 20.91 26.89
1494 16 16.84 20.93 26.98
1495 16 16.69 20.88 26.72
1496 16 16.66 20.75 26.66
1497 16 16.70 20.87 26.73
1498 16 16.61 20.70 26.58
1499 16 16.67 20.73 26.78
1500 16 16.39 20.40 26.18
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From the results for AG9, we can see that the 3D-2D mapping did not make the size smaller.
Instead, it became larger when the k value increased, and therefore, the method did not produce
competitive results.

3.4. Comparison of Integer Encoders for k2-Raster

Experiments were conducted to determine whether other variable-length encoders of integers
might serve as a better substitute for DACs, which were the original choice in the k2-raster structure
initially proposed by Ladra et al. [33]. The performance of DACs was compared to that of other
encoders such as Rice, Simple9, PForDelta, Simple16 codes, and gzip. In these experiments, the Lmax
and Lmin arrays were encoded using these codes, and the results are shown in Table 13. For Rice
codes, the l value, as explained in Section 2.4, produced different results depending on the mean of the
raster’s elements, and only the ones with the best l value are shown.

Table 13. A comparison of the storage size (in bpppb) using different integer encoders on Lmax and
Lmin from the k2-raster built from our datasets. The combined entropies for Lmax and Lmin are listed
as a reference. The l value that was used in Rice codes is enclosed in brackets. The best and optimal k
values for DACs are also enclosed in brackets. Except for the entropy, the best rates for each scene’s
data are highlighted in blue.

Hyperspectral
Scene

Entropy
(Lmax + Lmin)

Rice
(l Value) Simple9 PForDelta Simple16 DACs

(Best k)
DACs

(Optimal k) gzip

AG9 8.29 10.10 (7) 10.06 9.88 9.69 9.49 (6) 9.53 (15) 12.45
AG16 7.92 9.88 (7) 9.64 9.55 9.30 9.12 (6) 9.17 (15) 11.96
AG60 8.58 10.31 (7) 10.50 10.19 10.12 9.72 (15) 9.81 (6) 12.79
AG126 8.42 10.34 (7) 10.25 9.98 9.81 9.61 (6) 9.72 (15) 12.55
AG129 7.47 9.66 (7) 9.01 9.01 8.61 8.65 (6) 8.72 (15) 11.21
AG151 8.36 10.39 (7) 9.99 9.79 9.54 9.53 (6) 9.56 (15) 12.39
AG182 8.44 10.58 (7) 10.44 10.09 10.01 9.68 (6) 9.71 (15) 12.71
AG193 8.25 10.26 (7) 10.06 9.93 9.65 9.30 (15) 9.44 (6) 12.33

ACY00 8.81 9.89 (7) 10.37 9.80 10.11 9.61 (6) 9.69 (9) 12.56
ACY03 8.48 9.70 (7) 9.80 9.40 9.57 9.42 (6) 9.50 (9) 11.98
ACY10 6.88 9.18 (7) 7.34 7.43 7.18 7.62 (6) 7.74 (9) 9.32
ACY11 8.12 9.45 (7) 9.32 9.02 9.09 8.81 (6) 9.00 (9) 11.61
ACY18 8.96 10.58 (7) 10.52 9.84 10.28 9.78 (6) 9.88 (9) 12.66

AUY00 11.16 17.59 (7) 14.01 11.93 13.79 11.92 (9) 11.92 (9) 15.13
AUY03 10.83 16.59 (7) 13.54 11.56 13.29 11.74 (9) 11.74 (9) 14.59
AUY10 9.26 12.87 (7) 10.90 9.61 10.54 9.99 (9) 9.99 (9) 12.29
AUY11 10.60 15.16 (7) 13.12 11.24 12.89 11.27 (9) 11.27 (9) 14.47
AUY18 11.38 20.70 (7) 14.19 12.10 14.01 12.15 (9) 12.15 (9) 15.53

C164 9.18 10.33 (7) 11.35 10.44 11.14 10.08 (6) 10.08 (6) 12.85
C165 9.48 10.91 (7) 11.78 10.69 11.57 10.37 (6) 10.37 (6) 13.17
C166 10.02 12.83 (7) 12.99 11.41 12.74 11.05 (6) 11.05 (6) 13.61
C181 9.16 9.96 (7) 10.93 10.53 10.72 9.97 (5) 9.97 (5) 13.37
C182 9.27 10.17 (7) 11.24 10.67 10.99 10.11 (5) 10.11 (5) 13.26
C183 9.60 11.15 (7) 12.33 11.21 12.05 10.65 (5) 10.65 (5) 13.32

HCA 7.59 8.94 (7) 9.79 8.80 9.56 8.52 (16) 8.54 (8) 11.20
HCC 6.75 8.20 (7) 8.28 7.60 7.93 7.62 (8) 7.71 (16) 9.51
HCU 7.87 9.78 (7) 10.30 8.91 10.04 8.85 (16) 8.86 (8) 11.35

HUEA 6.66 7.67 (5) 8.30 7.99 8.00 7.76 (8) 7.80 (16) 9.85
HULM 6.71 7.66 (5) 8.38 8.11 8.10 7.82 (8) 7.88 (16) 10.13
HUMS 6.77 7.90 (5) 8.48 8.14 8.20 7.91 (8) 7.94 (16) 10.12

I01 5.39 6.51 (4) 6.26 6.54 5.94 6.32 (12) 6.80 (15) 7.46
I02 5.46 6.56 (4) 6.27 6.55 5.96 6.38 (12) 6.84 (15) 7.51
I03 5.42 6.51 (4) 6.19 6.48 5.89 6.31 (12) 6.79 (15) 7.39
I04 5.51 6.62 (4) 6.37 6.65 6.04 6.43 (12) 6.90 (15) 7.63
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The results showed that, in most cases, DACs still provided the best storage size compared
to other encoders for our datasets. They also had the added advantage of direct random access to
individual elements of the matrix whilst the other encoders would need to decompress each raster
in order to retrieve the element, thus requiring much longer access time. When DACs did not yield
the best performance, DACs results were usually only less than 0.1 bpppb worse. In the worst cases,
DACs results lagged behind by, at most, 0.4 bpppb.

4. Conclusions

In this research, we examined the possibility of using different integer coding methods for k2-raster
and concluded that this compact data structure worked best when it was used in tandem with DACs
encoding. The other variable-length encoders, though having competitive compression ratios, lacked
the ability to provide users with direct access to the data. We also studied a method whereby we could
obtain a k value that gave a competitive storage size and, in most cases, also a suitable access time.

For future work, we are interested in investigating the feasibility of modifying elements in a
k2-raster structure, facilitating data replacements without having to go through cycles of decompression
and compression for the entire compact data structure.
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